
Corso di Laboratorio di Elettromagnetismo e Circuiti - A. A. 2018-2019 (Prof. Di Domenico) Esercitazione n.3

Circuiti del primo ordine (RC, CR, LR) in regime sinusoidale

1) Circuito RC

Si monti sulla basetta il circuito mostrato in figura (si consiglia di utilizzare i valori C=22 nF ; $R=2.7 \text{ k}\Omega$):

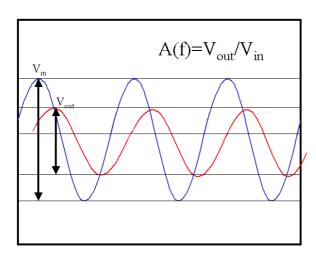
Si suggerisce di regolare inizialmente l'ampiezza dei segnali del generatore a circa 1 V. Si usi il generatore in configurazione di generatore di segnale sinusoidale.

Si vuole studiare la tensione ai capi del condensatore in funzione della frequenza ν del segnale sinusoidale.

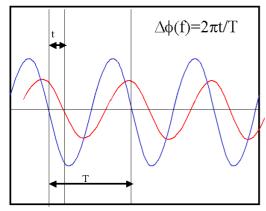
Se il segnale del generatore e' una sinusoide:

$$V_S(t) = V_S \sin(2\pi v t)$$

anche quello ai capi del condensatore sara' sinusoidale ma con ampiezza e fase differenti:


$$V_C(t) = V_C \sin(2\pi v t + \Delta \phi)$$

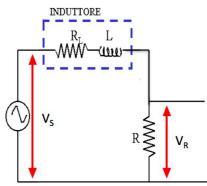
Dai valori dei componenti si calcoli la costante di tempo $\boldsymbol{\tau}$ e la frequenza di taglio:


$$v_0 = \frac{1}{2\pi \cdot \tau}.$$

Si effettuino misure del rapporto V_C/V_S e $\Delta \varphi$ per valori di frequenza nell'intorno di ν_0 , ed anche molto al di sotto e molto al di sopra di ν_0 in modo da individuarne l'andamento asintotico e si riportino in un grafico (usualmente: in ordinate V_C/V_S (o $\Delta \varphi$) in scala lineare ed in ascisse la frequenza (non la pulsazione $\omega=2\pi \nu$!) in scala logaritmica).

Si suggerisce di effettuare le misure prima in un intervallo molto ampio di frequenze, ad esempio da 100 Hz a 100 kHz a passi equispaziati su scala logaritmica, 2 o 3 valori per decade, e poi alla frequenza v_0 e nell'intorno (2 o 3 valori al di sotto e 2 o 3 valori al di sopra di v_0).

La misura della fase $\Delta \phi$ puo' essere effettuata misurando il ritardo temporale relativo dei due segnali (visualizzare entrambi i canali contemporaneamente, trigger su uno dei due canali). Fare attenzione al verso dello sfasamento da misurare: si consideri che in questo caso $\Delta \phi$ =0 per ν << ν_{o} .


2) Circuito CR

Utilizzando lo stesso circuito del punto 1) si vuole studiare la tensione ai capi del resistore in funzione della frequenza ν del segnale sinusoidale.

Si effettuino misure del rapporto V_R/V_S e $\Delta \phi$ per valori di frequenza nell'intorno del valore ν_0 ed anche molto al di sotto e molto al di sopra di ν_0 , analogamente al punto precedente e si riportino in un grafico. Fare attenzione al verso dello sfasamento da misurare: si consideri che in questo caso $\Delta \phi$ =0 per ν >> ν_0 .

3) Circuito LR

Si monti sulla basetta il circuito mostrato in figura utilizzando un induttore con L = 10 mH R_L = 40 Ω ed un resistore con R=470 Ω .

Si calcolino τ e ν_0 e si effettuino misure del rapporto V_R/V_S e $\Delta \varphi$ per valori di frequenza nell'intorno del valore ν_0 ed anche molto al di sotto e molto al di sopra di ν_0 , analogamente al punto precedente e si riportino in un grafico. Fare attenzione al verso dello sfasamento da misurare: si consideri che in questo caso $\Delta \varphi = 0$ per $\nu << \nu_0$.

Consigli pratici:

- Misurare sempre i valori dei componenti scelti utilizzando il ponte d'impedenze ed il mutimetro a disposizione in laboratorio. Questi sono i valori da usare per il calcolo "teorico" delle grandezze che caratterizzano il circuito, come τ.
- Nell'effettuare le connessioni ricordarsi che i terminali "ground" dei due canali dell'oscilloscopio sono connessi internamente. Connettere il terminale "ground" del generatore di segnali con il "ground" del circuito e con quello dell'oscilloscopio.