BILANCI TERMICI

meccanismi di trasmissione del calore

- **convezione PROPAGAZIONE MEDIANTE TRASPORTO DI MATERIA**
- **conduzione**PROPAGAZIONE SENZA TRASPORTO DI MATERIA
- irraggiamento
 EMISSIONE DI ONDE ELETTROMAGNETICHE
 (RADIAZIONE TERMICA)
- **evaporazione** (sistemi biologici)

CONVEZIONE

PROPAGAZIONE MEDIANTE TRASPORTO DI MATERIA

$$\frac{\mathbf{Q}}{\Delta t} = \mathbf{K}_{\text{conv}} \mathbf{S} \Delta \mathbf{T} \quad \text{(cal s}^{-1}\text{)}$$

 ΔT = variazione di temperatura Δt = intervallo di tempo

S = superficie

 $K_{conv} = costante convettiva$

fluidi nei sistemi biologici:

- sangue (animali)
- linfa (vegetali)

CONDUZIONE

PROPAGAZIONE SENZA TRASPORTO DI MATERIA

$$\frac{\mathbf{Q}}{\Delta t} = \mathbf{K} \cdot \frac{\mathbf{S}}{\mathbf{d}} \Delta \mathbf{T} \text{ (cal s}^{-1}\text{)}$$

S = superficie

 Δt = intervallo di tempo

K = conducibilità termica

 $\mathbf{d} = \text{distanza}$

MATERIALI DIVERSI K (kcal m⁻¹ s⁻¹ °C⁻¹)

rame	$9.2\ 10^{-2}$	legno	$0.3\ 10^{-4}$
ghiaccio	$5.2\ 10^{-4}$	polistirolo	9.3 10-6
acqua	1.4 10-4	aria	5.5 10-6

trasporto di energia nei fenomeni ondulatori: intensità I

• energia trasportata nell'unità di tempo e attraverso l'unità di superficie :

$$I = \frac{\text{energia}}{\Delta t \cdot S}$$

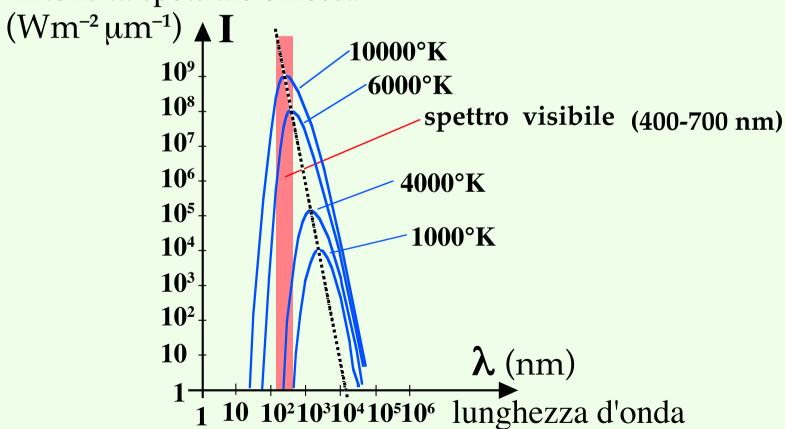
• unità di misura: S.I. $\frac{\text{joule}}{\text{s} \cdot \text{m}^2} = \frac{\text{watt}}{\text{m}^2}$ sistema pratico $\text{cal s}^{-1} \text{ m}^{-2}$

IRRAGGIAMENTO TERMICO

(RADIAZIONE TERMICA)

emissione di onde elettromagnetiche da parte di corpo a temperatura T

intensità
$$I = \frac{Q}{\Delta t \Delta S}$$
 cal $s^{-1} m^{-2}$ oppure watt m^{-2}


LEGGI DELL'EMISSIONE TERMICA

legge di Stefan
$$I = \sigma T^4$$
 (watt m⁻²)

legge di Wien
$$\lambda_{\text{Imax}} = \frac{0.2897}{T}$$
 (cm)

- legge di Stefan $I = \sigma T^4$ (watt m⁻²)
- legge di Wien $\lambda_{\text{Imax}} = \frac{0.2897}{T}$ (cm)

intensità spettrale emessa

EVAPORAZIONE

(sistemi biologici)

calore di evaporazione H2O

H2O (t = 37° C) $\approx 580 \text{ cal g}^{-1}$

(trasmissione di calore verso l'esterno)

esempio

evaporazione di 100 g H2O → 58 kcal = 242.5 kJ metabolismo basale = M.B. ≈ 50 kcal ora⁻¹ m⁻² (minima quantità di energia per garantire le funzioni vitali)