ELETTROSTATICA

- CARICA ELETTRICA E FORZA DI COULOMB
- CAMPO ELETTROSTATICO
- ENERGIA POTENZIALE ELETTROSTATICA
- POTENZIALE ELETTRICO

4ª grandezza fondamentale:

dimensioni [Q] = [i][t]

- unità di misura S.I.
 coulomb (C) ≡ ampere x secondo (*)
- (*) nel S.I. la grandezza fondamentale elettrica é la corrente elettrica ($i = \Delta q/\Delta t$) la cui unità é l'ampere

caratteristiche:

• positiva (+), negativa (-)

• Q multipla intera carica elettrica elementare

$$e = 1.6 \, 10^{-19} \, C$$

• conservazione della carica elettrica

azioni di forza tra cariche elettriche:
 forza di Coulomb (da legge di Coulomb)

• legge di Coulomb

$$\vec{F} = \frac{1}{4\pi \, \epsilon_o \epsilon_r} \frac{q_1 \, q_2}{r^2} \, \frac{\vec{r}}{r}$$

 $\epsilon_{\rm o}$ = costante dielettrica del vuoto = 8.86 10⁻¹² C²N⁻¹m⁻² $\epsilon_{\rm r}$ = costante del mezzo relativa al vuoto

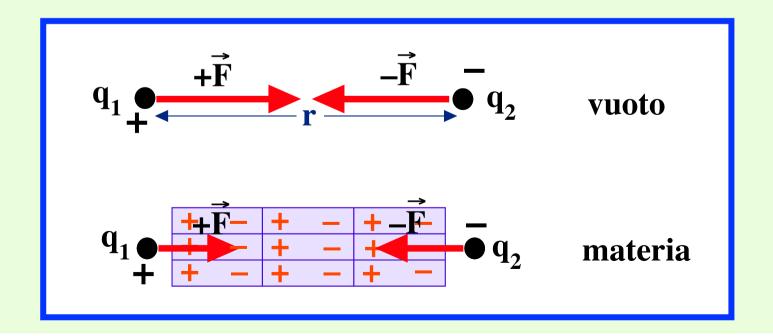
$$G \approx 6.67 \, 10^{-11} \, \text{kg}^{-2} \, \text{N m}^2 \text{(forza di gravità)}$$
 (sensibile per masse molto grandi)

$$\frac{1}{4\pi \epsilon}$$
 ≈ 9 10° C⁻² N m² (forza elettrostatica) (materia quasi sempre neutra !!!)

• legge di Coulomb

$$\vec{F} = \frac{1}{4\pi \, \epsilon_o \epsilon_r} \frac{q_1 \, q_2}{r^2} \, \frac{\vec{r}}{r}$$

 $\epsilon_{\rm o}$ = costante dielettrica del vuoto = 8.86 10⁻¹² C²N⁻¹m⁻² $\epsilon_{\rm r}$ = costante del mezzo relativa al vuoto

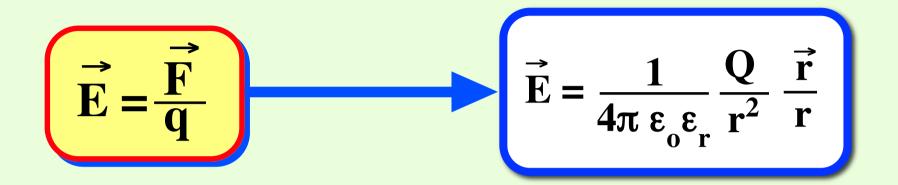

- forza attrattiva per cariche di segno opposto
- forza repulsiva per cariche di segno uguale

• legge di Coulomb

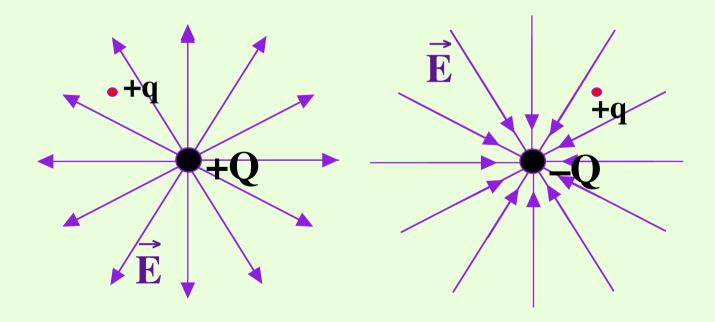
$$\vec{F} = \frac{1}{4\pi \, \epsilon_o \epsilon_r} \frac{q_1 \, q_2}{r^2} \, \frac{\vec{r}}{r}$$

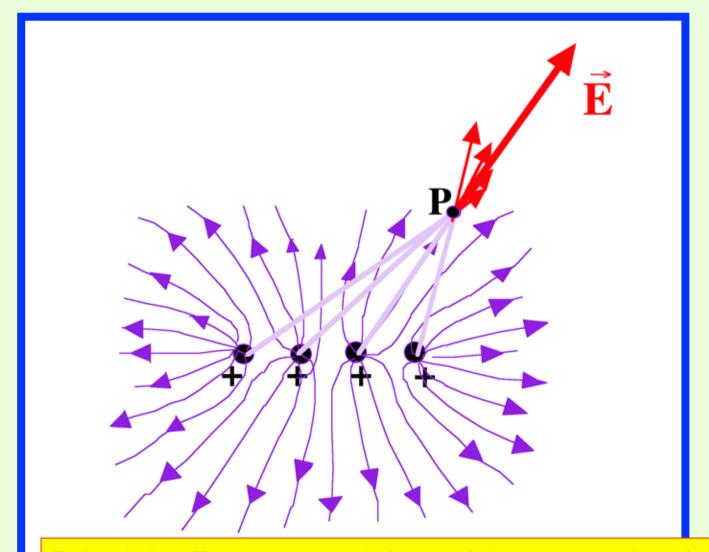
$$\varepsilon_{\rm r} = 1$$
 nel vuoto $\varepsilon_{\rm r} > 1$ nella materia

esempio $\varepsilon_{\rm r}$ (H2O) ≈ 80

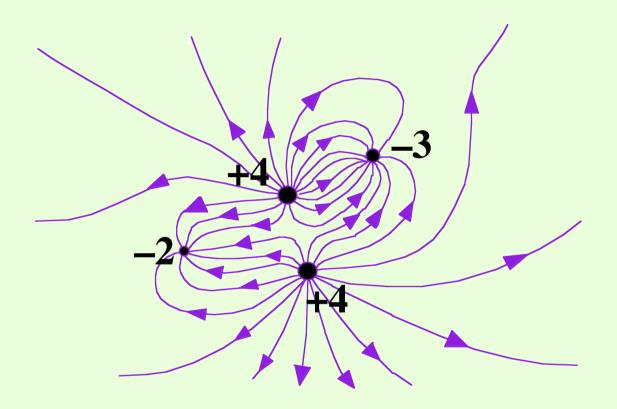

$$\vec{F} = \frac{1}{4\pi \, \epsilon_0 \epsilon_r} \frac{q \, Q}{r^2} \frac{\vec{r}}{r}$$

(cariche elettriche puntiformi) q unitaria positiva

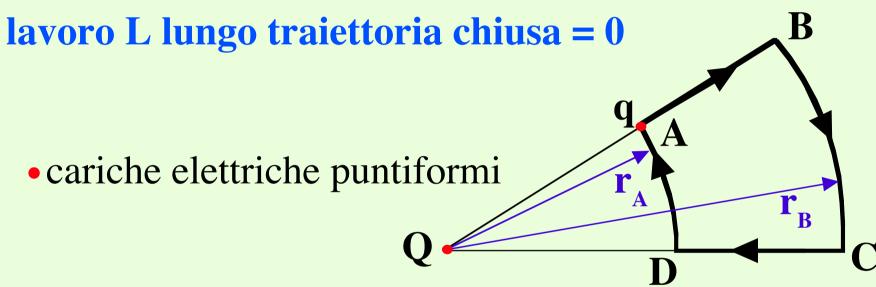

$$\vec{E} = \frac{\vec{F}}{q}$$


$$\vec{E} = \frac{1}{4\pi \, \epsilon_o \epsilon_r} \frac{Q}{r^2} \frac{\vec{r}}{r}$$

• unità di misura: S.I. newton coulomb⁻¹ (N C⁻¹)

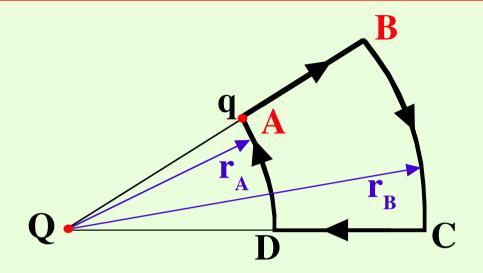

q unitaria positiva

Principio di sovrapposizione del campo elettrico (somma vettoriale dei contributi di ciascuna carica)



Principio di sovrapposizione del campo elettrico (somma vettoriale dei contributi di ciascuna carica)

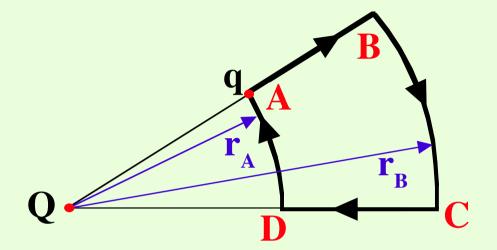
campo di forze conservativo?



$$L = \sum_{ABCD} \vec{F} \vec{\Delta}s = L_{ABCD} = L_{AB} + L_{BC} + L_{CD} + L_{DA} = 0$$

forza elettrostatica:

conservativa



$$L_{AB} = \frac{q Q}{4\pi \epsilon_o \epsilon_r} \left[\frac{1}{r_A} - \frac{1}{r_B} \right]$$

•
$$L_{BC} = 0$$

$$\bullet L_{DA} = 0$$

•L_{CD} =
$$\frac{q Q}{4\pi \epsilon_0 \epsilon_r} \left[\frac{1}{r_B} - \frac{1}{r_A} \right] = -L_{AB}$$

$$L_{ABCD} = L_{AB} + L_{BC} + L_{CD} + L_{DA} =$$

$$= L_{AB} + 0 - L_{AB} + 0 = 0$$

forza elettrostatica: conservativa

$$L_{AB} = \frac{q Q}{4\pi \epsilon_{o} \epsilon_{r}} \frac{1}{r_{A}} - \frac{q Q}{4\pi \epsilon_{o} \epsilon_{r}} \frac{1}{r_{B}} = U(r_{A}) - U(r_{B})$$

$$U(r) = \frac{q Q}{4\pi \epsilon_o \epsilon_r} \frac{1}{r}$$

funzione energia potenziale elettrostatica (cariche elettriche puntiformi)

$$\overrightarrow{\mathbf{F}} = -\operatorname{grad} \ \mathbf{U}(\mathbf{r})$$
 $F = -\frac{\Delta U}{\Delta r} \rightarrow -\frac{dU}{dr}$

POTENZIALE ELETTRICO

$$\mathbf{V} = \frac{\mathbf{U}}{\mathbf{q}}$$

carica puntiforme:

$$V(r) = \frac{U(r)}{q} = \frac{Q}{4\pi \epsilon_o \epsilon_r} \frac{1}{r}$$

differenza di potenziale elettrico (d.d.p.)

$$\Delta V = V_B - V_A = -\frac{L_{AB}}{q}$$

$$B \rightarrow \infty \longrightarrow V_B = 0 \longrightarrow V_A = -\frac{L_{A\infty}}{q}$$

d.d.p. tra A e B = lavoro cambiato di segno compiuto dal campo elettrico per portare una carica unitaria positiva da A a B.

POTENZIALE ELETTRICO

$$\mathbf{V} = \frac{\mathbf{U}}{\mathbf{q}}$$

carica puntiforme:

$$V(r) = \frac{U(r)}{q} = \frac{Q}{4\pi \epsilon_o \epsilon_r} \frac{1}{r}$$

dimensioni $[M][L]^2[t]^{-2}[Q]^{-1} = [M][L]^2[t]^{-1}[i]^{-1}$

• unità di misura S.I. volt $(V) = \frac{\text{joule}}{\text{coulomb}}$

legame fra campo elettrico e potenziale elettrostatico:

CAMPO ELETTRICO e POTENZIALE ELETTRICO

campo di forza conservativo

$$\vec{F} = \vec{q} \vec{E}$$

$$\vec{F} = -grad \ U(r) = -\vec{q} \ grad \ V(r)$$

$$\vec{E} = -grad V(r)$$

- \Rightarrow modulo : $\mathbf{E} = \frac{\Delta \mathbf{V}(\mathbf{r})}{\Delta \mathbf{r}}$
- → direzione : moto +q
- verso : V decrescenti

CAMPO ELETTRICO e POTENZIALE ELETTRICO

modulo :
$$E = \frac{\Delta V(r)}{\Delta r}$$

• unità di misura del campo elettrico S.I.:

$$\frac{\text{newton}}{\text{coulomb}}(\text{N C}^{-1}) = \frac{\text{volt}}{\text{metro}}(\text{V m}^{-1})$$

• unità di misura pratica di energia

(scala atomica)

elettronVolt (eV) =
$$1.6 \ 10^{-19}$$
C $1 \ V = 1.6 \ 10^{-19}$ J