
La struttura della materia L'ATOMO

- Protoni
- Elettroni

L'atomo di Idrogeno (H)

- 1 elettrone
- 1 protone

L'atomo di Elio (He)

- 2 elettroni
- 2 protoni
- 2 neutroni

STRUTTURA ATOMICA

	elettrone	protone	neutrone
carica elettrica	-e	+ <i>e</i>	0
dimensione	< 10 ⁻¹⁸ cm ^(*)	≈10 ⁻¹³ cm	≈10 ⁻¹³ cm
massa	$9.07 \ 10^{-28} \mathrm{g}$	$1.67 \ 10^{-24} \mathrm{g}$	$1.67 \ 10^{-24} \mathrm{g}$
vita media	stabile	stabile	≈ 17 min ^(**)
(*) li	mite superiore	(**) n	eutrone libero

(all'interno di un nucleo

i neutroni sono stabili)

STRUTTURA ATOMICA

atomi

- 92 elementi naturali
- nucleo (protoni, neutroni) + elettroni
- **■** dimensioni $\approx 10^{-8}$ cm = Å

Z = numero atomico

A = numero di massa

N = numero di neutroni

$$A = Z + N$$

peso atomico:

riferito all' isotopo 12 del carbonio (12C)

- unità di misura: S.I. unità di massa atomica (u.m.a.) = dalton
- **grammo-atomo** (o grammo-molecola => N Avogrado atomi) 4

STRUTTURA ATOMICA

elementi: stesso Z diverso numero di neutroni (isotopi)

elemento	isotopi	Z	A	N=A-Z	abbondanza relativa (%)	peso atomico
carbonio	¹² C	6	12	<u>6</u>	98.89	10 011
	¹³ C ¹⁴ C	6	13	7	1.11	12.011
		6	14	8	traccie	
ossigeno	^{16}O	8	16	8	99.759	15 0004
	^{17}O	8	17	9	0.037	15.9994
	^{18}O	8	18	10	0.204	
potassio	$^{39}\mathrm{K}$	19	39	20	93.138	
	$^{40} m K$	19	40	21	0.012	39.0983
	^{41}K	19	41	22	6.800	
piombo	²⁰⁴ Pb	82	204	122	1.3	
	²⁰⁶ Pb	82	206	124	26.0	207.19
	²⁰⁷ Pb	82	207	125	20.7	
	²⁰⁸ Pb	82	208	126	52.0	5

Esercizio:

Calcolare la densita' di atomi (N = numero di atomi per cm³) in un mezzo materiale di peso atomico A e densita' ρ (\mathcal{N} = 6.02 x 10²³ numero di Avogadro).

$$N = \frac{\mathcal{N}\rho}{A}$$

	Α	ρ (g/cm³)	N (atomi/cm³)
Ferro	55.8	7.87	8.49 x 10 ²²
piombo	207.2	11.4	3.31 x 10 ²²
elio (gas)	4.0	1.66 x 10 ⁻⁴	2.50 x 10 ¹⁹
aria (secca)	28.97	1.2 x 10 ⁻³	2.49 x 10 ¹⁹
acqua	18.0	1	3.34 x 10 ²²

STRUTTURE MOLECOLARI

tipi di legame:

- **■** legame ionico $E \approx 5 \div 10 \text{ eV}$
- legame covalente E ≈ 3 ÷ 5 eV (elettrone in conpartecipazione)
- legame idrogeno E ≈ 0.1 eV (H- polimerizzazione (ghiaccio))
- legame molecolare E ≈ 10⁻¹ ÷ 10⁻² eV (legame di Van der Waals)
- **■** legame metallico E ≈ 1 eV

