Misura della massa del Top al Tevatron (CDF)

Caterina Doglioni

Indice

Il quark Top Canali di decadimento Perché misurare la massa del Top Come misurare la massa del Top il rivelatore CDF b-tagging metodi di analisi dati Lepton+Jet – Template Method Dilepton – Matrix Element All Hadronic Risultati recenti e combinazione Sistematiche Il futuro

Il quark Top

Anticipato da LEP (correzioni radiative)

Scoperto da CDF nel 1994

Prima misurazione della massa: $174 \pm 16 \text{ GeV/c}^2$

Canali di decadimento

tt decay modes

Perché misurare M_{top}

SM:

- M_{top} parametro libero
- Correzioni radiative one-loop sensibili a M_{top} ²
- Legame con la massa dell'Higgs

-LEP1 and SLD ····· LEP2 and Tevatron (prel.) 80.5 68% CL [Лар 80.4-ш 80.3 $\Delta \alpha$ 000 175 200 150 m, [GeV]

BSM:

- Supersimmetria?
- Possibile presenza di nuova fisica se discrepanze di misure tra canali o tra teoria/esperimento

Il rivelatore CDF

(stand-alone tracking)

risoluzione complessiva sul parametro d'impatto: ca 35 µm Detector al silicio: Rivelatori concentrici L00 – SVXII - ISL

L00: Layer 00

- posizionato al di fuori del tubo del fascio
- \bullet risoluzione sul parametro d'impatto: 17 μm
- SVXII: Silicon Vertex Detector
- rivelatore di microvertice
- \bullet risoluzione sul parametro d'impatto: 28 μm

ISL: Intermediate Silicon Layer

• tre strati di silicio a diverse distanze dal fascio

svantaggio: integrazione e modellizzazione complessa tī decay modes

Lepton + Jet Template Method

vincolo su JES attraverso m_{jj} (presenza di W)

errore sistematico trasformato in statistico Combinatoria (jet-quark)

Campioni di dati differenti a seconda del numero di b-tags (differenze nel fondo, numero di eventi nel campione finale) Cosa ci si aspetta: Leptone ad alto p_T MET 2 b-jets 2 jets

- 1. estrarre m^{reco} con un fit cinematico (input: quantità misurate)
- 2. fit di likelihood: il template che massimizza la verosimiglianza fornisce M_{top}

utilizzo della variabile Δ_{JES} Shift nella JES rispetto alla calibrazione standard (talk di Valerio) in termini di σ

Fit cinematico

$$\chi^{2} = \sum_{i=\ell,4jets} \frac{(p_{T}^{i,fit} - p_{T}^{i,meas})^{2}}{\sigma_{i}^{2}} \\ + \sum_{j=x,y} \frac{(p_{j}^{UE,fit} - p_{j}^{UE,meas})^{2}}{\sigma_{UE}^{2}} \\ + \frac{(M_{\ell\nu} - M_{W})^{2}}{\Gamma_{W}^{2}} + \frac{(M_{jj} - M_{W})^{2}}{\Gamma_{W}^{2}} \\ + \frac{(M_{b\ell\nu} - m_{t}^{\text{reco}})^{2}}{\Gamma_{t}^{2}} + \frac{(M_{bjj} - m_{t}^{\text{reco}})^{2}}{\Gamma_{t}^{2}}$$

 \rightarrow fit a p_T leptone/jet

 \rightarrow fit a unclustered energy (legata a MET)

ightarrow vincolo su massa invariante dei prodotti di W

 \rightarrow vincolo m_t = m_t (ricostruite)

chiquadro per evento e per combinazione jet-quark – $\chi^2 < 9$ & minimo \rightarrow m^{reco} in istogramma:

Distribuzione di m^{reco} (MC) • : combinazioni jet-quark corrette • : anche combinazioni scorrette Importanza b-tagging

Bg: Z/γ*+2jets, WW+2 jets, W+3jets (fake leptons)

2. $P(\mathbf{x}|M_t) = P_s(\mathbf{x}|M_t)p_s(M_t) + P_{bg_1}(\mathbf{x})p_{bg_1} + P_{bg_2}(\mathbf{x})p_{bg_2} + \cdots$

ogni evento è pesato dalle probabilità a priori (da MC) di segnale e fondo

3. Moltiplicare le $P(\mathbf{x}|M_t)$ dei singoli eventi e massimizzare

Alta BR per il W→jj (45%)

Molto fondo (QCD) Canale legato a JES Possibilità di vincolo su JES attraverso m_{jj} Cosa ci si aspetta: 6 jet, di cui 2 b-jet

Risultati recenti (GeV/c²)

Lepton + Jet L _{int} = 940 pb ⁻¹	170,9	2,2 (stat+JES)	1,4 (syst)	•Matrix Element • Eliminato vincolo L _{JES}
Dilepton L _{int} = 1,0 fb ⁻¹	164,5	3,9 (stat)	3,9 (syst)	•Matrix Element •Migliorato modeling ISR/FSR • Rimossa ip. p _{T,sys} =0
All Hadronic L _{int} = 940 pb ⁻¹	171	3,7 (stat+JES)	2,1 (syst)	• Combinazione ME + Template

Combinazione dei risultati

Le sistematiche

lepton+jets

Source	$\Delta M_t [\text{GeV/c}^2]$
JES residual	0.42
Initial state radiation	0.72
Final state radiation	0.76
Generator	0.19
BG composition and modeling	0.21
Parton distribution functions	0.12
<i>b</i> -JES	0.60
b-tagging	0.31
Monte Carlo statistics	0.04
Lepton p_t	0.22
Multiple interactions	0.05
Total	1.36

dilepton

Source	Size (GeV/c^2)
Jet Energy Scale	3.5
Multiple Interactions	0.2
Lepton Energy Scale	0.1
Generator	0.9
Method	0.6
Sample composition uncertainty	0.7
Background MC	0.7
Background modeling	0.2
FSR modeling	0.3
ISR modeling	0.3
PDFs	0.8
Total	3.9

Come ridurre le sistematiche: $Z \rightarrow bb$

Massa dello Z ottenuta con precisione a LEP \rightarrow vincolo su massa dijet

Credits

Pagina web top a CDF: <u>http://www-cdf.fnal.gov/physics/new/top/top.html</u>

Articoli principali: *Top Quark Mass Measurement Using the Template Method in the Lepton + Jets Channel at CDF II* (CDF Collaboration) *Top Quark Mass Measurement from Dilepton Events at CDF II with the Matrix-Element Method* (CDF Collaboration)

Altri articoli: (1) Evidence for top quark production in pbarp collisions at $\sqrt{s}=1,8$ TeV (CDF Collaboration) Dynamical Likelihood Method and Top Quark Mass Measurement at CDF (Kunitaka Kondo)

Immagini (da <u>http://www-cdf.fnal.gov/physics/alltran.html</u>) : *Precision Determination of the Top Quark Mass* (Pedro Movilla Fernandez) *Top Mass and Decay Properties* (Jeannine Wagner)

Altre immagini: *Top Quark Production at Hadron Colliders* (Joao Guimaraes da Costa)

Backup slides

Fino a η <2 il sistema di tracciamento al silicio può considerarsi autosufficiente

Tracking in dettaglio

The CDF secondary vertex detection algorithm, SECVTX, is designed to examine the tracks with large impact parameter (d_0) within each jet and to attempt to vertex them to a common point.

Talk di S. Rappoccio

Correzioni radiative: dettagli

$$M_{\rm W}^2 \left(1 - \frac{M_{\rm W}^2}{M_Z^2}\right) = \frac{\pi \alpha_{\rm em}(M_Z^2)}{\sqrt{2}G_{\rm F}} \frac{1}{1 - \Delta r_{\rm w}}$$

$$\begin{split} \Delta r^{(t)} &= -\frac{G_{\rm F} M_{\rm W}^2}{8\sqrt{2}\pi^2} \bigg[3\cot^2\theta_W \frac{M_V^2}{M_W^2} + 2 \bigg(\cot^2\theta_W - \frac{1}{3}\bigg) \ln \frac{M_t^2}{M_W^2} \\ &+ \frac{4}{3}\ln\cos^2\theta_W + \cot^2\theta_W - \frac{7}{9} \bigg], \\ \Delta r^{(\rm H)} &= \frac{11}{3} \frac{G_{\rm F} M_W^2}{8\sqrt{2}\pi^2} \bigg(\ln \frac{M_{\rm H}^2}{M_W^2} - \frac{5}{6} \bigg) \quad \text{for } M_{\rm H} \geqslant M_{\rm W} \;. \end{split}$$