# Misura della massa del W a LEP

Matteo Pompili

### Strategia utilizzando fasci di e e si producono una coppia di bosoni W e si concentra poi l'attenzione sui prodotti dei loro decadimenti

## Processi in studio

L'elemento di matrice del processo e  $e \rightarrow W W$  è dato dalla somma di tre contributi



I decadimenti dei W possono dare tre stati finali: canale adronico: W W  $\rightarrow \overline{\phantom{aaaa}} - qqqq \quad q = u,d,s,c,b$ canale semileptonico: W W  $\rightarrow \overline{q}q \; \ell \nu \quad \ell = e, \, \mu, \, \tau$ canale leptonico: W W  $\rightarrow \ell \nu \ell \nu$ 

# Strategie per la misura

• <u>Metodo della soglia</u>: la soglia cinematica delle

la soglia cinematica delle produzione di coppie di W dipende da  $M_{\rm W}$ 

 $\sigma(e e \rightarrow W W) = \sigma(M_{W_{,}}\sqrt{S})$ 

- <u>Metodo della ricostruzione diretta</u>: M<sub>W</sub> è ricavata dalla massa invariante del decadimento W→ff m<sub>inv</sub> (W) = m<sub>inv</sub> (ff)
- <u>Metodo dell'angolo</u>:

L'angolo compreso tra il fermione e l'antifermione di W $\rightarrow$ ff ha un limite inferiore dipendente da M<sub>W</sub>

 $\alpha_{\min} \le \alpha_{ff} \le 180^{\circ}$  $\cos \alpha_{\min} = 1-8(M_W)^2/s$ 

• <u>Metodo del punto finale</u>:

L'energia di ogni fermione proveniente da W $\rightarrow$ ff ha un limite inferiore e superiore dipendenti da M<sub>W</sub>  $E_{-} \leq E_{f} \leq E_{+}$  $E_{\pm} \leq (\sqrt{s/4})[1 \pm (1 - 4M_{W}^{2}/s)^{\frac{1}{2}}]$  Applicabile se entrambi i fermioni del decadimento sono visibili (es.  $W \rightarrow q\overline{q}$ )

Applicabile per µ ed e con energie misurate con alta precisione Gli ultimi due metodi utilizzano solo i decadimenti che sono ai margini delle distribuzioni Statisticamente meno potenti dei primi due che fanno uso di tutti gli eventi

Negli esperimenti si è fatto uso del metodo a soglia e della ricostruzione diretta

# Condizioni di misura



LEP-II:  $\sqrt{s} = 161 - 209 \text{ GeV}$ 

Massima luminosità integrata in un anno:

254 pb<sup>-1</sup> a LEP-II

# Metodo della soglia

- Si misura la sezione d'urto a differenti energie del c.d.m. intorno al valore 2  $M_{W_{\rm c}}$ 

Vicino al valore di soglia, la sezione d'urto cresce rapidamente al crescere di  $\sqrt{s}$ 

- Dal Modello Standard è possibile ricavare la sezione d'urto come funzione di  $\sqrt{s}$  ( $\sigma = \sqrt{s}$ )
- Questo permette di ricavare il valore di M<sub>W</sub> misurando la sezione d'urto



# Errori

- La sensibilità della sezione d'urto su  $M_W$  è data da  $\delta M_W = \delta \sigma / (d\sigma_{WW}/dM_W)$
- 3 tipi di errore  $\delta\sigma$  contribuiscono all'errore totale della sezione d'urto:
- errore statistico  $\delta \sigma \propto (\sigma_{WW})^{\frac{1}{2}}$  (es. luminosità)
- errore sistematico di scala  $\delta \sigma \propto \sigma_{WW}$
- errore sistematico di offset  $\delta \sigma = \text{cost.}$  (es. sottrazione del fondo)

 $\delta M_{\rm W} \propto \begin{cases} ({\rm d}M_{\rm W}/{\rm d}\sigma) \sqrt{\sigma_{\rm WW}} \ , \\ ({\rm d}M_{\rm W}/{\rm d}\sigma) \sigma_{\rm WW} \ , \\ {\rm d}M_{\rm W}/{\rm d}\sigma \ . \end{cases}$ 

-Un'incertezza di scala del 2% causa un'errore di 34 MeV su  $M_{\rm W}$ 

•L'errore sulla sottrazione del fondo nei vari canali W W  $\rightarrow$ ffff è al massimo di 0.1 pb e comporta un errore di 50 MeV su M<sub>W</sub>

•A causa del valore della luminosità, meno di 100 pb<sup>-1</sup>, l'errore statistico è quello dominante



- La sensibilità della misura è massima a un valore superiore di circa 0.5 GeV rispetto al valore nominale della soglia di  $2M_W$
- Il metodo della soglia è quindi più efficiente per determinazioni di  $M_W$  con una misura di sezione d'urto all'energia ottimale  $\sqrt{s} = 2M_W + 0.5$  Gev = 161GeV

Nel 1996 LEP- II lavorava a un'energia di c.d.m.  $\sqrt{s} = 161.33 \pm 0.05$  GeV.

Ogni esperimento collezionava una luminosità di 10 pb<sup>-1</sup> e selezionava circa 30 eventi

# Canali della misura

• Canale leptonico: W W  $\rightarrow \ell \nu \ell \nu$ 

Caratterizzato da:

- 2 leptoni acoplanari di alta energia
- 3 sapori leptonici possibili → 6 differenti stati finali
- Energia mancante a causa dei due neutrini non rivelati

### Canali della misura

- canale leptonico: W W  $\rightarrow \ell \nu \ell \nu$ Peculiarità:
- Presenza di due leptoni carichi acoplanari di alta energia
- 3 sapori leptonici possibili → 6 differenti stati finali
- Energia mancante a causa dei due neutrini non rivelati
- Poiché il τ ha vita media breve (0.3 psec), per identificarlo sono usate delle selezioni speciali, basate sulla topologia degli eventi, dopo la ricostruzione dei jet



- Efficienza tipica ~  $30(\tau) 70\%$
- Purezza tipica ~ 75 ( $\tau$ ) 90 %

• Canale adronico: W W  $\rightarrow \overline{q}q\overline{q}q$ 

Caratterizzato da:

- Presenza di 4 jet adronici (in configurazione back to back)
- Tutta l'energia è rivelata
- Nessun leptone o fotone altamente energetici

# W W $\rightarrow$ qq6 qq

#### Peculiarità:

- Presenza di 4 jet adronici
- Tutta l'energia è rivelata
- Nessun leptone o fotone altamente energetici
- Fondo principale derivante da e e → qq (QCD)
- Fondo derivante da e e  $\rightarrow$  ZZ  $\rightarrow$ qqqq (per energie del c.d.m.  $\sqrt{s} > 2MZ$ )



#### W W $\rightarrow$ qq6 qq

- Efficienza tipica ~ 85 90 %
- Purezza tipica ~ 80 %

• Canale semileptonico: W W  $\rightarrow \overline{q}q \,\ell\nu$ 

Caratterizzato da:

- Presenza di 2 jet adronici
- Presenza di un leptone carico di alta energia
- Energia mancante a causa del neutrino non rivelato

Peculiarità:

- Presenza di 2 jet adronici
- Presenza di un leptone carico di alta energia
- Energia mancante a causa del neutrino non rivelato
- Fondo derivante da processi e e → qq e da produzione inclusiva di leptoni



 $\rightarrow qq \text{ ev}$ 

W W

W W  $\rightarrow qq \mu \nu$ 

- Efficienza tipica ~  $60(\tau) 90 \%$
- Purezza tipica ~  $80(\tau) 95 \%$

# Fondo canale leptonico

- Fondo derivante da
- e e  $\rightarrow \ell \ \ell \ (\gamma)$
- $e e \rightarrow \gamma \gamma$

Può essere ridotto richiedendo che i due leptoni finali siano acoplanari

## Fondo canale semileptonico

- Fondo derivante da
- Produzione inclusiva di leptoni in eventi qq

### inserire???



All 4f diagrams (enqq)

## Fondo canale adronico

Fondo derivante da:

• e e  $\rightarrow \bar{q}q(\gamma) (QCD)$ 

# Risultati

Nel 1996 LEP- II lavorava a un'energia di c.d.m.  $\sqrt{s} = 161.33 \pm 0.05$  GeV.

Ogni esperimento collezionava una luminosità di 10 pb<sup>-1</sup> e selezionava circa 30 eventi

La sezione d'urto media è  $\sigma_{WW}$  = 3.69 ± 0.45 pb A questo valore corrisponde un valore di massa  $M_W$  = 80.40<sub>-0.21</sub><sup>+0.22</sup> ± 0.03 GeV

Il primo errore è sperimentale, il secondo dovuto all'incertezza nella calibrazione dell'energia del beam del LEP



# Metodo della ricostruzione diretta

A LEP le energie del c.d.m. sono state via via aumentate fino a raggiungere il valore  $\sqrt{s} = 209 \text{ GeV}$ 

In tali condizioni il metodo ottimale per misurare  $M_W$  è quello della ricostruzione diretta.

I fermioni dei processi e  $e \rightarrow W W \rightarrow ffff$ sono ricostruiti misurando l'energia e gli angoli polari e di azimuth,  $\theta e \phi$ , dei fermioni visibili. Si può quindi ricavare la massa invariante dei prodotti del decadimento del W

# Vantaggi

- Numero elevato di eventi WW disponibili a causa della sezione d'urto più grande
- Il sistema di laboratorio coincide con il c.d.m., semplificando l'analisi cinematica degli eventi
- L'utilizzo di un fit cinematico che impone la conservazione del quadrimpulso e una massa uguale per i due W permette la determinazione della cinematica del neutrino negli eventi semileptonici

# Svantaggi

- La sensibilità della sezione d'urto totale delle coppie WW da  $M_W$  è ridotta
- Non si può effettuare una misura di  $M_W$ utilizzando i processi leptonici  $W \quad W \rightarrow \ell \nu \ell \nu$ a causa della presenza dei due neutrini
- Difficoltà associata ai processi adronici per raggruppare i 4 jet:

a priori ci sono 3 possibilità:

(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)

# Come raggruppare i jet adronici?

- Si utilizzano degli algoritmi, richiedendo, ad esempio, la combinazione con la più piccola differenza di massa; oppure la combinazione tale che la somma delle due masse risulti la maggiore.
- Per ognuna delle possibilità si esegue un fit cinematico
- Viene scelto il fit con la più alta probabilità di verosimiglianza
- Per migliorare i risultati si considera anche la seconda migliore combinazione



Distribuzioni delle masse invarianti a  $\sqrt{s} = 183 \text{ GeV}$ 

Gli accoppiamenti errati dei jet danno una distribuzione più larga e non piccata

# Misura di $M_{\rm w}$

- Mw è determinata basandosi sullo spettro della massa ricostruita
- Con un Monte Carlo è possibile costruire dei campioni a diversi valori di Mw.
- Successivamente è aggiunto il fondo, indipendentemente da Mw e i risultati del Monte Carlo sono confrontati con i dati sperimentali

#### Distribuzione delle masse invarianti a $\sqrt{s} = 192 - 202$ Gev



# Fondi

- Oltre ai fondi presenti già a energie  $\sqrt{s} = 161 \text{ GeV}$ , sono presenti anche processi e e  $\rightarrow ZZ \rightarrow qqqq$
- Si ricorre a diverse variabili per ridurre i vari fondi



Acoplanarità di leptoni carichi a  $\sqrt{s} = 183$  GeV

Per determinare le sezioni d'urto di ogni canale di decadimento e  $e \rightarrow W W \rightarrow ffff e le relative branching ratio si usa il metodo della massima verosimiglianza (Likelihood)$ 

La sezione d'urto del canale i-esimo è determinata massimizzzando  $P(N_i, \mu_i)$ , ossia la probabilità di Poisson di osservare  $N_i$  eventi, essendo  $\mu_i$  quelli aspettati

$$L = \prod_{i} P(N \ i \ ,\mu \ i)$$
$$\mu_{i} = (\sum_{j} \varepsilon_{ij} \sigma_{j} + \sigma_{i}^{bg}) \mathcal{L}$$

È possibile ricavare la sezione d'urto totale  $\sigma_{WW}$  e le branching ratios del decadimento del W

$$\sigma(qqqq) = \sigma_{WW} \cdot B(W \rightarrow qq)B(W \rightarrow qq)$$
  

$$\sigma(qq\ell\nu) = \sigma_{WW} \cdot (W \rightarrow qq)(B(W \rightarrow e\nu) + B(W \rightarrow \mu\nu) + B(W \rightarrow \tau\nu))$$
  

$$\sigma(\ell\nu\ell\nu) = \sigma_{WW} \cdot (B(W \rightarrow e\nu) + B(W \rightarrow \mu\nu) + B(W \rightarrow \tau\nu))^2$$

| Experiment | $B(W \rightarrow ev)$  | $B(W \rightarrow \mu \nu)$ | $B(W \rightarrow \tau \nu)$ | $B(\mathbf{W}\to q\bar{q})$ |
|------------|------------------------|----------------------------|-----------------------------|-----------------------------|
| ALEPH      | $11.2 \pm 0.8 \pm 0.3$ | $9.9 \pm 0.8 \pm 0.2$      | $9.7 \pm 1.0 \pm 0.3$       | $69.0 \pm 1.2 \pm 0.6$      |
| DELPHI     | $9.9 \pm 1.1 \pm 0.5$  | $11.4 \pm 1.1 \pm 0.5$     | $11.2 \pm 1.7 \pm 0.7$      | $67.5 \pm 1.5 \pm 0.9$      |
| L3         | $10.5 \pm 0.9 \pm 0.2$ | $10.2 \pm 0.9 \pm 0.2$     | $9.0 \pm 1.2 \pm 0.3$       | $70.1 \pm 1.3 \pm 0.4$      |
| OPAL       | $11.7 \pm 0.9 \pm 0.3$ | $10.1 \pm 0.8 \pm 0.3$     | $10.3 \pm 1.0 \pm 0.3$      | $67.9 \pm 1.2 \pm 0.6$      |
| Average    | 10.9 ± 0.5             | $10.3 \pm 0.5$             | $10.0 \pm 0.6$              | $68.8 \pm 0.8$              |
| SM         | 10.8                   | 10.8                       | 10.8                        | 67.5                        |

ALEPH W-wy  $(1.20 \pm 0.88)$  $9.90 \pm 1.21$ DELPHI W-say ALEPH  $10.50 \pm 0.92$  $69.0 \pm 1.4$ L3 W-sev  $11.70 \pm 0.97$ OPAL W-see LEP W-sev  $10.92 \pm 0.49$ DELPHI  $67.5\pm1.7$  $9.90 \pm 0.84$ ALEPH W-say DELPHI W-say  $11.40 \pm 1.21$ L3 L3 W-quy  $10.20 \pm 0.92$  $70.1\pm1.4$ OPAL W-sign  $10.10 \pm 0.86$ LEP W-HIV  $10.29 \pm 0.47$ OPAL.  $67.9 \pm 1.4$ ALEPH WARRY  $9.70\pm1.06$ DELPHI W→tw  $11.20 \pm 1.84$  $9.00\pm\,1.24$  $L3 W \rightarrow tv$ LEP  $68.8 \pm 0.8$ OPAL W-+ev  $10.30 \pm 1.05$ LEP  $W \rightarrow \tau v$  $9.95 \pm 0.60$ LEP  $W \rightarrow hv$  $10.40 \pm 0.26$ 68 70726664  $\mathbb{B}(W \xrightarrow{10} \mathbb{H}) [9]$ 8  $B(W \rightarrow hadrons)$  [%]

Fig. 5.51. Branching fractions of W decay. The hadronic branching fractions are determined under the assumption of charged-current lepton universality [163]. The Standard Model expectations are 10.8 and 67.5%, respectively.

Branching fractions of W decay. The hadronic branching fractions are determined under the assumption of chargedcurrent lepton universality [163]

# Errori

L'errore sistematico su  $M_W$  è stimato essere 0.04 GeV per il canale semileptonico e 0.10 GeV per quello adronici.

Gli errori sistematici comuni agli esperimenti derivano:

- dalla calibrazione dell'energia del beam,  $\delta~M_W/~M_W = \delta \sqrt{s}/\sqrt{s},$
- dalle incertezze di frammentazione
- dalle interazioni forti nello stato finale (FSI) nel canale adronico. Gli effetti FSI tra i prodotti del decadimento di diverse W può portare a uno scambio del quadrimpulso tra i due sistemi adronici, con la conseguente non conservazione individuale delle masse invarianti (stimato a 90 MeV )

L'errore statistico è stimato essere circa 30 Mev per entrambi i canali

## Risultati

I risultati sono:

 $M_W(qq\ell\nu) = 80.31 \pm 0.11 \text{ GeV}$ 

 $M_W(qqqq) = 80.39 \pm 0.14 \text{ GeV}$ 

Mediando i due canali si ha:  $M_W(ffff) = 80.36 \pm 0.09 \text{ GeV}$ 



- $M_W(soglia) = 80.40_{-0.21}^{+0.22} \pm 0.03 \text{ GeV}$
- $M_W(m_{inv}) = 80.36 \pm 0.09 \text{ GeV}$

Mediando i risultati del metodo della soglia con quello della ricostruzione diretta, l'errore migliora per meno di 10 MeV

•  $M_W(ffff) = 80.37 \pm 0.09 \text{ GeV}$ 



# Confronto dei risultati

- $M_W(TEVATRON) = 80.41 \pm 0.09 \text{ GeV}$
- $M_W(LEP) = 80.37 \pm 0.09 \text{ GeV}$

La media è  $M_W = 80.39 \pm 0.06 \mbox{ GeV}$ 



## Commenti finali

La sezione d'urto e  $e \rightarrow W W$  misurate a LEP sono in accordo con il modello standard che prevede un vertice di 3 bosoni: WW $\gamma$  e WWZ

