L'analisi dati negli esperimenti DAMA/Nal e DAMA/LIBRA

Fisica Nucleare e Subnucleare II Marco Bentivegna

Rate di eventi singoli vs Tempo vs Energia

- r_{ijk} = rate nell'intervallo di tempo i, per il detector j, nel bin di energia k
- > flat_{ik} = r_{ijk} mediato nel tempo
- r_{ijk} flat_{jk} è mediata su tutti i detector j e su tutti i bin di energia k

 $A cos \omega(t-t_0)$

- Dove
- > $T = 2\pi/\omega = 1 \text{ yr}$
- ▶ t₀ = 152.5 gg (2 Giugno)
- A = parametro libero del fit

2-4 keV

Rate di eventi singoli vs Tempo vs Energia

A3 (DAMA/NaI) – A3 DAMA/LIBRA) = 0,008 ± 0,004 cpd/Kg/KeV **2 σ**

Tuttavia...

Da test χ^2 , l'ipotesi di fluttuazioni statistiche attorno ai valori centrali è verificata al 90% C.L.

Fit con ω e t₀ parametri liberi

Probabilità di assenza di modulazione:

- 1,3 × 10⁻⁴ (2-4 KeV)
- 1,9 × 10⁻⁴ (2-5 KeV)
- 1,8 × 10⁻⁴ (2-6 KeV)

	A (cpd/kg/keV)	T= 2π/ω (yr)	t ₀ (day)	C.L.
DAMA/Nal (7 years)				
(2÷4) keV	0.0252 ± 0.0050	1.01 ± 0.02	125 ± 30	5.0σ
(2÷5) keV	0.0215 ± 0.0039	1.01 ± 0.02	140 ± 30	5.5σ
(2÷6) keV	0.0200 ± 0.0032	1.00 ± 0.01	140 ± 22	6.3σ
DAMA/LIBRA (4 years)				
(2÷4) keV	0.0213 ± 0.0032	0.997 ± 0.002	139 ± 10	6.7σ
(2÷5) keV	0.0165 ± 0.0024	0.998 ± 0.002	143 ± 9	6.9σ
(2÷6) keV	0.0107 ± 0.0019	0.998 ± 0.003	144 ± 11	5.6 σ
DAMA/Nal + DAMA/LIBRA				
(2÷4) keV	0.0223 ± 0.0027	0.996 ± 0.002	138 ± 7	8.3σ
(2÷5) keV	0.0178 ± 0.0020	0.998 ± 0.002	145 ± 7	8.9σ
(2÷6) keV	0.0131 ± 0.0016	0.998 ± 0.003	144 ± 8 🌔	8.2σ

Ampiezza di Modulazione vs Energia

• Valori di S_m nella regione 6-20 KeV compatibili con fluttuazioni statistiche attorno allo zero ($\chi^2 = 24.4$, su 28 gradi di libertà)

Spettri di Potenza

Ampiezze di Modulazione per Alte Energie

- Background nella regione di interesse generato da neutroni, muoni ed elettroni Compton, strettamente correlati con gli eventi ed energie più alte.
- Studiamo il rate integrato di eventi ad energie superiori a 90 KeV, R₉₀

Ampiezze di Modulazione per Eventi Multipli

Per DM, la probabilità di far scattare più detector è trascurabile. Studiamo il rate di interazioni multiple nella regione di interesse

> -0.02-0.030.04 -0.05

300

350

400

450

250

500

550

600

Time (day)

software identiche nei due casi

Nessuna modulazione negli eventi multipli

Analisi Statistica delle Ampiezze di Modulazione

Analisi Statistica delle Ampiezze di Modulazione

 Distribuzione di χ²/g.d.l. per ogni detector, nella regione 2-6 KeV (χ² = ∑ x²)

- Valor medio = 1,072 ≠ 1 ; Fluttuazione statistica o errore sistematico?
- Ulteriore incertezza sulla A.M. (nella regione di interesse) di

 $\Box \leq 5 \times 10^{-4} \text{ cpd/kg/keV}$ (quadraticamente) = $\leq 4.7\%$

Limite superiore per possibili effetti sistematici

Ampiezza cosinusoidale vs sinusoidale vs t*

 2σ contours

 $R(t) = S_0 + S_m \cos[\omega(t - t_0)] + Z_m \sin[\omega(t - t_0)] = S_0 + Y_m \cos[\omega(t - t^*)]_{0.0}$

Analisi delle incertezze sistematiche

• Analisi della stabilità delle condizioni di running

	DAMA/LIBRA-1	DAMA/LIBRA-2	DAMA/LIBRA-3	DAMA/LIBRA-4
Temperature	-(0.0001 ± 0.0061) °C	(0.0026 ± 0.0086) °C	(0.001 ± 0.015) °C	(0.0004 ± 0.0047) °C
Flux N ₂	(0.13 ± 0.22) l/h	(0.10 ± 0.25) l/h	-(0.07 ± 0.18) l/h	-(0.05 ± 0.24) l/h
Pressure	(0.015 ± 0.030) mbar	-(0.013 ± 0.025) mbar	(0.022 ± 0.027) mbar	(0.0018 ± 0.0074) mbar
Radon	-(0.029 ± 0.029) Bq/m ³	-(0.030 ± 0.027) Bq/m ³	(0.015 ± 0.029) Bq/m ³	-(0.052 ± 0.039) Bq/m ³
Hardware rate above single photoelectron	-(0.20 ± 0.18) × 10 ⁻² Hz	(0.09 ± 0.17) × 10 ⁻² Hz	-(0.03 ± 0.20) × 10 ⁻² Hz	(0.15 ± 0.15) × 10 ⁻² Hz

- Stabilità superiore all'1%
- Tutte le A.M. compatibili con 0
- Effetti apprezzabili già esclusi dall'analisi degli eventi ad alte energie, degli eventi multipli e della distribuzione delle A.M., infatti...

Criteri di Selezione

La segnatura del segnale da DM è prevista soddisfare i seguenti criteri:

- Componente di modulazione cosinusoidale...
- ...con periodo di un anno...
- ...e fase intorno al 2 Giugno...
- ...presente solo in una finestra di energia ben definita, ...
- ...relativa unicamente agli eventi singoli...
- ...e con un'ampiezza relativa $\leq \sim 7\%$

Anche se fosse presente una modulazione nei suddetti parametri, ne risulterebbe una modulazione del segnale anche nelle zone ad alta energia e negli eventi multipli, il che non è osservato

Ciononostante...

Incertezze sistematiche: Temperatura

- PM e cristalli alloggiati in reticolo di rame, in contatto diretto con il massiccio schermo anti-radiazioni (capacità ≈ 10⁶ cal/°C)
- Mantenuta stabile da due impianti indipendenti

Incertezze sistematiche: Radon

 Pareti della camera in Supronyl (permeabilità 2 × 10⁻¹¹ cm²/s)

Valori misurati: al livello di sensibilità degli strumenti (≈ 3 Bq/m³); AM compatibile con 0

- Scudo in plexiglas sigillato (N)
- Box di rame sigillato (N)

- Da ricerca di doppie coincidenze di γ (609 e 1120 KeV) da ²¹⁴Bi, [Rn]_{interna} < 5.8 × 10⁻² Bq/m³ al 90% C.L.
 - Meno di 2.5 × 10⁻⁵ cpd/Kg/KeV attesi
- Se 10% modulazione, < 0.01%
 S_mosservata

Background

- Nessuna modulazione per alte energie ed eventi multipli.
- Tuttavia, ulteriori analisi per eventuale background da:
- Neutroni termici
- Neutroni veloci
- Muoni

Misura del flusso di neutroni termici: $n + {}^{23}Na \rightarrow {}^{24}Na \rightarrow {}^{24}Mg + e^- + \gamma + \gamma$ $\Phi_n < 1.2 \times 10^{-7} \text{ n cm}^{-2} \text{ s}^{-1} (90\% \text{C.L.})$ Capture rate = $\Phi_n \sigma_n N_T < 0.022 \text{ captures/day/kg}$

Se 10% modulazione, < 0.01% S_mosservata

Sopra 2 KeV, Rate ≈ 10⁻³ cpd/Kg/KeV (da simulazioni MonteCarlo)

Anche una modulazione del 10% di Φ_{FN} darebbe un contributo trascurabile rispetto a **S**_mosservata

Background da muoni

Φ_{μ} @ LNGS \approx 20 μ m⁻² d⁻¹

- Da esperimento MACRO: andamento sinusoidale di ampiezza ≈ 2% in Φ_µ, con T ≈ 1 anno e massimo in estate, dovuto alle variazioni di temperatura dell'atmosfera. Ma…
- Fase non compatibile
- > L'effetto predominante (neutroni veloci) è stimato essere:

$$\begin{array}{ll} \mbox{Neutron Yield @ LNGS: Y=1\div7 10^{-4} n /\mu /(g/cm^2)} \\ \hline R_n = (fast n by \mu)/(time unit) = \Phi_\mu Y M_{eff} & M_{eff} = 15 tons \\ g = fattore \\ geometrico & \\ & S_m^{(\mu)} = R_n \ g \ \epsilon \ f_{\Delta E} \ f_{single} \ 2\% /(M_{setup} \ \Delta E) & \Delta E = \\ & 4 \ KeV \\ \hline M_{setup} = \\ & scattering elastico & f_{\Delta E} = accettanza \ per \\ & f_{single} = efficienza \\ & per \ single-hit & D \\ \hline M_{eff} = 15 \ tons \\ & \Delta E = \\ & 4 \ KeV \\ \hline M_{setup} = \\ & 250 \ Kg \\ \hline \end{array}$$

 $S_m^{(\mu)} < (0.4 \div 3) \times 10^{-5} \text{ cpd/kg/keV}$

Rumore elettronico

- Studiamo l'hardware rate totale (su tutto lo spettro energetico = rumore + segnale + background) per ogni detector
- Le variazioni relative seguono distribuzione di Gauss
- A.M. < 1.8 × 10⁻³ Hz (90% C.L.)
- Noise rate da ogni detector ≈ 0.1 Hz

100

80

60

20

0.1

frequency

DAMA/LIBRA-1

1500

time (d)

1600

- <R_{Hj}>) (Hz)

. ສິ

0.2

1400

 $\sigma = 0.3\%$

0

 $\Sigma_{i}(R_{Hi} - \langle R_{Hi} \rangle)$ (Hz)

0.1

Fattori di Calibrazione ed Efficienze

- td_{cal} = fattore di prop. fra energia ed area della forma d'onda misurata
- Analizziamo la distribuzione di per basse ed alte energie $\mathcal{E}_{tdcal} = \frac{tdcal_k tdcal_{k-1}}{tdcal_{k-1}}$
- Distribuzioni Gauss-like ($\sigma_{LE} = 0.5\%$; $\sigma_{HE} = 0.6\%$)
- Incertezza aggiuntiva sulle misure di energia

$\sigma = \sqrt{\sigma_{res}^2 + \sigma_{cal}^2} \approx \sigma_{res} \cdot \left[1 + \frac{1}{2} \left(\frac{\sigma_{cal}}{\sigma_{res}} \right)^2 \right]; \qquad \frac{1}{2} \left(\frac{\sigma_{cal}}{\sigma_{res}} / E \right)^2 \le 7.5 \cdot 10^{-4} \frac{E}{20 keV}$

massimo contributo da fluttuazioni di td_{cal} = 1-2 ×10⁻⁴ cpd/Kg/KeV

 Efficienza sul segnale dei tagli sulla forma d'onda misurati ogni ≈ 10gg tramite sorgenti di ²⁴¹Am 4-

Riassunto Sistematiche

Sorgente	Commenti	<i>Limite superiore (90%C.L.)</i>
RADON	Box di rame sigillato, atmosfera d'azoto HP, 3 livelli di sigillazione, etc.	<2.5×10 ⁻⁶ cpd/kg/keV
TEMPERATURE	2 impianti di condizionamento+ detectors in struttura di rame in contatto diretto con schermo a.r. ad alta capacità + T monitorata costantemente	<10 ⁻⁴ cpd/kg/keV
NOISE	Reiezione del rumore ad alta efficienza	<10 ⁻⁴ cpd/kg/keV
ENERGY SCALE	Calibrazioni intrinseche ed esterne	<1-2 ×10 ⁻⁴ cpd/kg/keV
EFFICIENCIES	Misurata regolarmente tramite calibrazioni	<10 ⁻⁴ cpd/kg/keV
BACKGROUND	Nessuna modulazione sopra i 6 KeV; nessuna modulazione in eventi multipli nella regione 2-6 KeV; Questo limite include tutte le possibili sorgenti di background	<10 ⁻⁴ cpd/kg/keV
SIDE REACTIONS	A.M. del flusso di muoni (MACRO)	<3×10 ⁻⁵ cpd/kg/keV
	che se maggiori	T • N

+ anche se maggiori, non soddisferebbero tutti I requisiti della segnatura di modulazione annua Non possono perciò spiegare il segnale osservato

Presenza di modulazione annua in 11 cicli a livello di confidenza di 8.2 σ

- Tratti distintivi della segnatura model-independent cercata
- Assenza di possibili effetti sistematici, background o altri processi capaci di rendere quantitativamente conto dell'effetto osservato e soddisfare le numerose peculiarità della segnatura

L'evidenza model-independent è compatibile con numerosi candidati di DM tipici di diversi scenari in astrofisica e fisica delle particelle

Attualmente in corso

- Ulteriori acquisizioni (in seguito a vari upgrade dell'apparato)
- Analisi model-dependent sull'intero data set