UNIVERSITÀ DEGLI STUDI DI ROMA "LA SAPIENZA" FACOLTÀ DI SCIENZE MATEMATICHE FISICHE E NATURALI DIPARTIMENTO DI FISICA

Decadimenti charmless del B a CDF

Shervin Nourbakhsh

Priscilla Pani

Tutor: dott. Stefano Giagu

Decadimenti senza charm

Il quark b è stato per la prima volta osservato al Fermilab nel 1977. I $B(\overline{B}^0)$ sono mesoni pseudoscalari (spin 0)

Introduzione • Decadimenti senza c

APIENZA

Violazione CP

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

Risultati sperimentali

Conclusioni

 $B_{d}^{0} = \begin{pmatrix} \overline{b} \\ d \end{pmatrix} \qquad B_{s}^{0} = \begin{pmatrix} \overline{b} \\ s \end{pmatrix} \qquad m_{B_{d}^{0}} = 5.280 \text{ GeV} \qquad \tau_{B_{d}^{0}} = 1.53 \text{ ps}$ $m_{B_{s}^{0}} = 5.370 \text{ GeV} \qquad \tau_{B_{s}^{0}} = 1.47 \text{ ps}$

Canale di decadimento dominante: $B^0 \longrightarrow D + anything \simeq 80 - 85\%$

Verranno presentati i risultati dello studio dei decadimenti dei $B_d^0 e B_s^0$ a CDF in canali di decadimento che non coinvolgono il quark *c*.

Importanza:

- studio del mixing dei quark e dei coefficienti della CKM (violazione di CP)
- sensibilità a Nuova Fisica

Mescolamento dei quark

Teoria elettrodebole \implies teoria chirale $(SU(2)_L \times U(1)_Y) \implies$

Introduzione

Violazione CP

 Mescolamento dei quark

SAPIENZA

Q

- La fase inelimininabile della CKM
- CKM
- Triangolo di unitarietà
- CPV
- mixing
- diretta
- interferenza
- Decadimenti charmless
- Decadimenti barionici
- Tabella riassuntiva dei decadimenti studiati

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

$$L = \left(\begin{pmatrix} u \\ d \end{pmatrix}_{L} & \begin{pmatrix} c \\ s \end{pmatrix}_{L} & \begin{pmatrix} t \\ b \end{pmatrix}_{L} \end{pmatrix} \qquad U_{R} = \begin{pmatrix} u_{R} & c_{R} & t_{R} \end{pmatrix}$$
$$D_{R} = \begin{pmatrix} d_{R} & s_{R} & b_{R} \end{pmatrix}$$

Nel modello standard la massa viene data tramite il meccanismo di Higgs. Dato il numero di famiglie G si ha:

$$\mathcal{L}_{Y} = -\sum_{ji}^{G} \left[\hat{y}_{ij}^{d} \bar{Q}_{L}^{i} \phi D_{R}^{i} + h.c. + \hat{y}_{ij}^{u} \bar{Q}_{L}^{i} \tilde{\phi} U_{R}^{i} + h.c. \right] = D_{L}^{i} \tilde{M}_{ij}^{D} D_{R}^{j} + U_{L}^{i} \tilde{M}_{ij}^{U} U_{R}^{j} + h.c.$$

Le matrici di massa \tilde{M}_{ij}^U e \tilde{M}_{ij}^D sono in generale non diagonali, ma possono essere diagonalizzate mediante una trasformazione unitaria: $M_{ij} = V^{\dagger} \tilde{M}_{ij} V$ sostituendo nella Lagrangiana ottengo

$$D_L^i \tilde{M}_{ij}^D D_R^j = D_L^i V^{\dagger} \tilde{M}_{ij} V D_R^j = D_L'^i M_{ij}^D D_R'^j$$

La fase inelimininabile della CKM

Gli autostati di massa $D'^i U'^i$ sono legati agli autostati di sapore dalla matrice V (CKM): $D'^i = VD^i$

Introduzione

Violazione CP

 Mescolamento dei quark

SAPIENZA

- La fase inelimininabile della CKM
- CKM
- Triangolo di unitarietà
- CPV
- mixing
- diretta
- interferenza
- Decadimenti charmless
- Decadimenti barionici
- Tabella riassuntiva dei decadimenti studiati

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Nella Lagrangiana di interazione debole (\mathcal{L}_W) interviene quindi la matrice V. Si ha che

$$\hat{C}\hat{P}\mathcal{L}_{W} = \mathcal{L}_{W} \Leftrightarrow V$$
 è ortogonale (reale).

N^2	$- \frac{N(N-1)}{2} = \frac{N(N)}{2}$	+1) >	2N - 1
unitarietà	ortogonalità param minare	etri da eli- e	fasi di CP

Se N=3 V non può essere resa ortogonale \Rightarrow resta 1 fase ineliminabile che genera la violazione di CP.

La parametrizzazione di Wolfenstein della matrice CKM:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & \mathbf{V_{ub}} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} + O(\lambda^4) =$$

$$\begin{pmatrix} 1 - \lambda^2/2 & \lambda & \mathbf{A}\lambda^3(\rho - \mathbf{i}\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - \mathbf{i}\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

 $\lambda = sin(\theta_C) \simeq 0.22$

Il termine V_{ub} è di ordine λ^3 e quindi fortemente Cabibbo soppresso e può presentare una fase complessa ineliminabile che comporta la violazione di CP.

Introduzione

Violazione CP

- Mescolamento dei quark
- La fase inelimininabile della CKM

● CKM

- Triangolo di unitarietà
- CPV
- mixing
- diretta
- interferenza
- Decadimenti charmless
- Decadimenti barionici
- Tabella riassuntiva dei decadimenti studiati

CDF detector

Analisi offline

Distinzione π e K

Triangolo di unitarietà

Per l'unitarietà della matrice CKM è possibile ricavare le seguenti relazioni tra gli elementi della matrice:

Introduzione

Violazione CP $B_{d}^{0} \qquad \alpha = \arg \left[-\frac{V_{td}V_{tb}^{*}}{V_{ud}V_{tb}^{*}} \right] \qquad \beta = \arg \left[-\frac{V_{cd}V_{cb}^{*}}{V_{td}V_{tb}^{*}} \right] \qquad \gamma = \arg \left[-\frac{V_{ud}V_{ub}^{*}}{V_{cd}V_{tb}^{*}} \right]$ • Mescolamento dei quark • La fase inelimininabile della CKM ● CKM • Triangolo di $B_{s}^{0} \qquad \alpha_{s} = \arg \left[-\frac{V_{ts}V_{tb}^{*}}{V_{us}V_{vb}^{*}} \right] \qquad \beta_{s} = \arg \left[-\frac{V_{ts}V_{tb}^{*}}{V_{cs}V_{vb}^{*}} \right] \qquad \gamma_{s} = \arg \left[-\frac{V_{us}V_{ub}^{*}}{V_{cs}V_{vb}^{*}} \right]$ unitarietà • CPV • mixing • diretta (ρ,η) • interferenza Decadimenti charmless Decadimenti barionici • Tabella riassuntiva dei decadimenti studiati CDF detector Analisi offline (0, 0)(1,0)Distinzione π e K $Area \propto violazione di CP$

Incertezze sperimentali

Tipi di violazioni di CP

Introduzione

Violazione CP

- Mescolamento dei quark
- La fase inelimininabile della CKM
- CKM
- Triangolo di unitarietà

• CPV

- mixing
- diretta
- interferenza
- Decadimenti charmless
- Decadimenti barionici
- Tabella riassuntiva dei decadimenti studiati

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

Nel modello standard (SM) la violazione di CP e di sapore emergono solo dalla matrice CKM. Asimmetrie di CP che presentino valori non predetti dal SM sarebbero indice di altri meccanismi di violazione oltre alla matrice CKM (Nuova Fisica).

Le violazioni di CP possono essere distinte in tre tipologie:

violazione in mixing

- violazione diretta
- violazione per interferenza

Tutte le osservabili di violazione di CP dei decadimenti degli stati iniziali $|P\rangle \in |\bar{P}\rangle$ negli stati finali $|f\rangle \in |\bar{f}\rangle$ possono essere espresse come combinazioni indipendenti da convenzioni di fase delle ampiezze di transizione $A_f, \bar{A}_f, A_{\bar{f}}, \bar{A}_{\bar{f}}$

Violazione in mixing

Violazione in mixing $B^0 \leftrightarrow \bar{B}^0$

Introduzione

- Violazione CP
- Mescolamento dei quark

SAPIENZA

- La fase inelimininabile della CKM
- CKM
- Triangolo di unitarietà

• CPV

- mixing
- diretta
- interferenza
- Decadimenti charmless
- Decadimenti barionici
- Tabella riassuntiva dei decadimenti studiati

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

$\left\langle \left B_{L}\right\rangle = p\left B^{0}\right\rangle + q\left \bar{B^{0}}\right\rangle\right\rangle$
$\left\langle \left B_{H}\right\rangle = p\left B^{0}\right\rangle - q\left \bar{B^{0}}\right\rangle\right\rangle$

 $\frac{q}{p}$

 $\neq 1$

Se $\left[\hat{H}_{weak}, \hat{C}\hat{P}\right] = 0 \Rightarrow$ Autostati di massa \equiv Autostati di CP $|p| = |q| \Leftrightarrow$ CP si conserva.

Mesoni carichi non sono affetti da questo tipo di asimmetria di CP.

Diretta

 ϕ_W

Introduzione

Violazione CP

- Mescolamento dei quark
- La fase inelimininabile della CKM
- CKM
- Triangolo di unitarietà
- CPV
- mixing

• diretta

- interferenza
- Decadimenti charmless
- Decadimenti barionici
- Tabella riassuntiva dei decadimenti studiati

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

$$\left|\frac{\bar{A}_{\bar{f}}}{A_{f}}\right| \neq 1 \qquad \left|\begin{array}{c} \mathbf{B}_{\boldsymbol{A}(B\to f)} \mathbf{f} \right|^{2} \neq \left|\begin{array}{c} \overline{\mathbf{B}}_{\boldsymbol{A}(\bar{B}\to \bar{f})} \mathbf{f} \right|^{2} \\ \overline{A}(\bar{B}\to \bar{f}) \mathbf{f} \\ \end{array}\right|^{2}$$

$$A_{f} = \left\langle f \right| H_{W} \left| B^{0} \right\rangle = \sum \left| a_{i} \right| e^{-i\phi_{W} - i\phi_{S}}$$
$$\bar{A}_{\bar{f}} = \left\langle \bar{f} \right| H_{W} \left| \bar{B}^{0} \right\rangle = \sum \left| a_{i} \right| e^{+i\phi_{W} - i\phi_{S}}$$

fase debole data data dai parametri complessi nella lagrangiana (CKM); viene coniugata sotto *CP* ϕ_S fase forte dovuta a rescattering con stati *on-shell* dato da interazioni forti; non varia sotto CP

- Violazione CP
- Mescolamento dei quark
- La fase inelimininabile della CKM
- CKM
- Triangolo di unitarietà
- CPV
- mixing

● diretta

- interferenza
- Decadimenti charmless
- Decadimenti barionici
- Tabella riassuntiva dei decadimenti studiati

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

 $A_f = a_1 e^{-i\phi_w^{1}} e^{-i\phi_s^{1}} + a^2 e^{-i\phi_w^{2}} e^{-i\phi_s^{2}}$

- Violazione CP
- Mescolamento dei quark
- La fase inelimininabile della CKM
- CKM
- Triangolo di unitarietà
- CPV
- mixing

diretta

- interferenza
- Decadimenti charmless
- Decadimenti barionici
- Tabella riassuntiva dei decadimenti studiati

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

$$A_{f} = a_{1}e^{-i\phi_{w}^{1}}e^{-i\phi_{s}^{1}} + a^{2}e^{-i\phi_{w}^{2}}e^{-i\phi_{s}^{2}}$$
$$|A_{f}|^{2} = |a^{1}|^{2} + |a^{2}|^{2} + 2|a^{1}||a^{2}|Re(e^{-i\Delta\phi_{w}}e^{-i\Delta\phi_{s}})$$
$$\Rightarrow A_{CP} \propto |A_{f}|^{2} - |\bar{A}_{f}|^{2} = \cos(+\Delta\phi_{w} + \Delta\phi_{s}) - \cos(-\Delta\phi_{w} + \Delta\phi_{s})$$
$$= -2\sin(\Delta\phi_{w})\sin(\Delta\phi_{s})$$

- Violazione CP
- Mescolamento dei quark
- La fase inelimininabile della CKM
- CKM
- Triangolo di unitarietà
- CPV
- mixing

● diretta

- interferenza
- Decadimenti charmless
- Decadimenti barionici
- Tabella riassuntiva dei decadimenti studiati

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

$$A_{f} = a_{1}e^{-i\phi_{w}^{1}}e^{-i\phi_{s}^{1}} + a^{2}e^{-i\phi_{s}^{2}}e^{-i\phi_{s}^{2}}$$
$$|A_{f}|^{2} = |a^{1}|^{2} + |a^{2}|^{2} + 2|a^{1}||a^{2}|Re(e^{-i\Delta\phi_{w}}e^{-i\Delta\phi_{s}})$$
$$\Rightarrow A_{CP} \propto |A_{f}|^{2} - |\bar{A}_{f}|^{2} = \cos(+\Delta\phi_{w} + \Delta\phi_{s}) - \cos(-\Delta\phi_{w} + \Delta\phi_{s})$$
$$= -2\sin(\Delta\phi_{w})\sin(\Delta\phi_{s})$$

Definiamo quindi:

$$A_{CP} = \frac{\Gamma(\mathbf{B} \to f) - \Gamma(\overline{\mathbf{B}} \to \overline{f})}{\Gamma(\mathbf{B} \to f) + \Gamma(\overline{\mathbf{B}} \to \overline{f})} \propto \sin(\Delta \phi_w) \sin(\Delta \phi_s)$$

Violazione in interferenza

Introduzione

Violazione CP

- Mescolamento dei quark
- La fase inelimininabile della CKM
- CKM
- Triangolo di unitarietà
- CPV
- mixing
- diretta
- interferenza
- Decadimenti charmless
- Decadimenti barionici
- Tabella riassuntiva dei decadimenti studiati

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

Interferenza λ

$$\lambda = \frac{q}{p} \; \frac{A_{\bar{f}}}{A_f} \neq \pm 1$$

 λ è un parametro conveniente per descrivere l'interferenza tra la violazione diretta e la violazione di CP dovuta all'oscillazione.

Ne sono soggetti i mesoni neutri che presentano mixing.

I decadimenti Cabibbo soppressi permettomo di studiare la matrice di mescolamento (CKM) Se nel loop rientrano nuove particelle, non predette dal Modello Standard si misura un incremento del BR rispetto a quello previsto

Decadimenti barionici

Distinzione π e K

Incertezze sperimentali

Importanza: sono simili ai decadimenti $B^0 \rightarrow \pi K$ ma non sono soggette al mixing!

Introduzione

- Violazione CP
- Mescolamento dei quark
- La fase inelimininabile della CKM
- CKM
- Triangolo di unitarietà
- CPV
- mixing
- diretta
- interferenza
- Decadimenti charmless
- Decadimenti barionici
- Tabella riassuntiva dei decadimenti studiati

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

Canale di decadimento	\mathcal{BR} assoluto (10 ⁻⁶)
$\mathcal{B}(B^0_d \to K^+ \pi^-)$	$19.5{\pm}0.6$
$\mathcal{B}(\mathrm{B}^0_\mathrm{d} \to \pi^+\pi^-)$	$5.1 {\pm} 0.2 {\pm} 0.2$
${\cal B}(B^0_s\to K^+K^-)$	$33{\pm}6{\pm}7$
$\mathcal{B}(B^0_s \to K^- \pi^+)$	4.9
$\mathcal{B}(B^0_s \to \pi^- \pi^+)$	< 1
${\cal B}(B^0_d \to K^+K^-)$	< 1
$\mathcal{B}(\Lambda_{\rm b}^0 \to \mathrm{p}\pi^-)$	0.85
$\mathcal{B}(\Lambda_{\rm b}^0 \to p {\rm K}^-)$	1.38

CDF: Collider Detector at Fermilab

Collider adronico di CDF

Introduzione

Violazione CP

CDF detector • CDF • SVX • Camera a fili • Trigger • selezione online

Analisi offline

Distinzione π e K

Incertezze sperimentali

Risultati sperimentali

Conclusioni

Collider $p\overline{p} \sqrt{s} = 1.96 \text{ TeV}$ $\int Ldt = 2 \text{ fb}^{-1} \text{ per anno}$ $L_{peack} = 200 \ \mu \text{b}^{-1} \text{ s}^{-1}$ $\sigma_{tot}^{adronica} = 75 \text{ mb}$ $\sigma_{b\overline{b}} = 100 \ \mu \text{b}$ Produzione $b\overline{b} = 20000 \text{ s}^{-1}$

Rivelatore run II

SVX silicon vertex detector COT camera a fili calorimetro e.m. calorimetro adronico spettrometro per muoni

SVX: Tracciatore al silicio

Introduzione

Violazione CP

CDF detector • CDF • SVX • Camera a fili • Trigger • selezione online

Analisi offline

Distinzione π e K

Incertezze sperimentali

Risultati sperimentali

Conclusioni

Layer 00

- copertura radiale:
 - $1.35 \div 1.65 \text{ cm}$
- ris sing pt: $6\mu m$
- canali: 13824
- SVX (Run II)
- copertura radiale:
 - $2.4 \div 10.7 ~\mathrm{cm}$
- ris sing pt: $12 \mu m$
- canali: 423 900

Camera a fili (COT)

Introduzione

Violazione CP

CDF detector • CDF • SVX • Camera a fili • Trigger • selezione online

Analisi offline

Distinzione π e K

Incertezze sperimentali

Risultati sperimentali

Conclusioni

Copertura radiale: $44 \div 132 \text{ cm}$ Campo magnetico: B = 1.5 TRisoluzione impulso: $\frac{\sigma_{p_t}}{p_t^2} = 0.1\%$

Numero di fili: $30\,240$ Ris sing punto: $180\mu m$ Pt per traccia: 96

Il trigger per decadimenti adronici

È composto di 3 livelli:

Introduzione	Livello 1	10^4 eventi/s	XFT: puramente hardware e basato sulla misura delle tracce cariche in COT		
Violazione CP CDF detector • CDF • SVX • Camera a fili • Trigger • selezione online	Livello 2	900 eventi/s	SVT: richiede un hit in 4 dei 5 layer dell'SVX (incluso il primo) e confronta le tracce con quelle dell'XFT/COT per ricostruire i parametri d'impatto		
Analisi offline Distinzione $\pi \in K$	Livello 3	150 eventi/s	riproduce con migliore granularità e risoluzione gli algoritmi applicati al Livello 2		
Incertezze sperimentali Risultati sperimentali Conclusioni					

Selezione eventi (COT):

- Selezione eventi (COT):
 - coppie di tracce con
 - $p_t > 2 \; \mathrm{GeV/c}$
 - $p_t(1) + p_t(2) > 5.5 \text{ GeV/c}$

- Selezione eventi (COT):
 - coppie di tracce con
 - $\bullet \ p_t > 2 \ {\rm GeV/c}$
 - $p_t(1) + p_t(2) > 5.5 \text{ GeV/c}$
 - angolo tra le tracce $20^{\circ} < \Delta \phi < 135^{\circ}$

- Selezione eventi (COT):
 - coppie di tracce con
 - $\bullet \ p_t > 2 \ {\rm GeV/c}$
 - $p_t(1) + p_t(2) > 5.5 \text{ GeV/c}$
 - angolo tra le tracce $20^{\circ} < \Delta \phi < 135^{\circ}$
- Selezione eventi (COT e SVT):

- Selezione eventi (COT):
 - coppie di tracce con
 - $p_t > 2 \; \mathrm{GeV/c}$
 - $p_t(1) + p_t(2) > 5.5 \text{ GeV/c}$
 - angolo tra le tracce $20^{\circ} < \Delta \phi < 135^{\circ}$
- Selezione eventi (COT e SVT):
 - parametro di impatto delle tracce rispetto al PV $100 \ \mu m < d_0 < 1 \ mm$

- Selezione eventi (COT):
 - coppie di tracce con
 - $p_t > 2 \; \mathrm{GeV/c}$
 - $p_t(1) + p_t(2) > 5.5 \text{ GeV/c}$
 - angolo tra le tracce $20^{\circ} < \Delta \phi < 135^{\circ}$
- Selezione eventi (COT e SVT):
 - parametro di impatto delle tracce rispetto al PV $100 \ \mu m < d_0 < 1 \ mm$
 - parametro di impatto del B^0 $d_0 < 140 \mu m$

Conferma offline del trigger

Sono stati raccolti dati pari a 1 fb⁻¹ di luminosità integrata ($\int Ldt$) per un totale di 14500 eventi di segnale di $B^0 \rightarrow h^+ h^{'-}$.

IntroduzioneViolazione CPCDF detectorAnalisi offline \bullet conferma trigger \bullet SNR \bullet ottimizzazione \bullet Tagli ottimizzatiDistinzione π e KIncertezze sperimentaliRisultati sperimentali

Conclusioni

È stata eseguita una analisi offline di conferma del trigger imponendo le medesime restrizioni (l'analisi offline permette di sfruttare tutte le informazioni del rivelatore alla loro massima risoluzione.

 $d_0(B) \le 140 \ \mu \mathsf{m}$ $L_{xy}(B) \ge 200 \ \mu \mathsf{m}$

 $4GeV/c^2 \le M_{\pi\pi} \le 7GeV/c^2$

È stato così ottenuto un rapporto segnale rumore (SNR) di circa 0.2

SAPIENZA UNIVERSITÀ DI ROMA Rapporto segnale rumore

Introduzione

Il fondo si stima dalla zona intorno al segnale, a qualche σ di distanza dal picco, detta *sideband*. Viene stimato il rumore presente al disotto del picco A_{fondo} e confrontato con i conteggi del segnale $A_{segnale}$:

Ottimizzazione dei tagli offline

Introduzione Violazione CP	La selezione offline è stata ottimizzata a seconda del tipo di misura effettuata. Vengono scelte delle figure di merito appropriate nelle quali si ottimizza il rapporto Segnale-Rumore.			
CDF detector Analisi offline • conferma trigger • SNR	$S \longrightarrow Segnale:$	il set di dati utilizzato per l'ottimizzazione viene da una simulazione Monte Carlo.		
• ottimizzazione • Tagli ottimizzati Distinzione π e K Incertezze sperimentali	$B \longrightarrow Rumore:$	viene stimato in un intervallo di massa inva- riante alla destra ed alla sinistra del picco di segnale, le cosiddette <i>sidebands</i>		
Pisultati sporimontali				
Kisunan spermentan	Figura di merito	ottimizzazione	utilizzo	
Conclusioni	$\frac{S}{\sqrt{S+B}}$	statistica	$\mathcal{BR} e A_{CP}$	
	$\frac{efficienza(S)}{1.5 + \sqrt{B}}$	segnali piccoli	BR molto rari	

Violazione CP

CDF detector

Analisi offline

Distinzione π e K

• riconoscimento

- variabili cinematichePID
- Capacità risolutiva della PID
- Fit multivariato
- risultati sperimentali

Incertezze sperimentali

Risultati sperimentali

Conclusioni

CDF Run II Monte Carlo

Non è possibile distinguere i canali di decadimento che danno contributi che si sovrappongono nel fit del segnale raccolto.

SAPIENZA UNIVERSITÀ DI ROMA Distinzione canali: variabili cinematiche

La distinzione dei canali di decadimento viene effettuato utilizzando tre variabili cinematiche:

- M_{$\pi\pi$}: massa invariante calcolata assegnando ad entrambe le particelle la massa del pione
- $\alpha = q_1(1 \frac{p_1}{p_2})$: squilibrio di impulso
- $p_{tot} = p_1 + p_2$: somma scalare degli impulsi

SAPIENZA UNIVERSITÀ DI ROMA Distinzione canali: PID

Oltre alle variabili cinematiche vengono utilizzate le PID: una ulteriore variabile è chiamata ID:

SAPIENZA UNIVERSITÀ DI ROMA Capacità risolutiva della PID

Introduzione

Violazione CP

CDF detector

Analisi offline

Distinzione π e K

• riconoscimento

variabili cinematiche
 PID

 Capacità risolutiva della PID

• Fit multivariato

• risultati sperimentali

Incertezze sperimentali

Risultati sperimentali

Conclusioni

Nessuna delle singole variabili permette una netta discriminazione tra i canali di decadimento, ma è possibile combinare l'informazione di ciascuna variabile mediante un fit multimensionale. Le variabili usate sono:

- Variabili cinematiche
 - $M_{\pi\pi}$: massa invariante calcolata assegnando ad entrambe le particelle la massa del pione
 - $\alpha = q_1(1 \frac{p_1}{p_2})$: squilibrio di impulso
 - $p_{tot} = p_1 + p_2$: somma scalare degli impulsi

PID ("Particle identification")

SAPIENZA UNIVERSITÀ DI ROMA Dati sperimentali distinti in canali di decadimente

Errori sistematici

Introduzione

Violazione CP

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali • Errori sistematici

Risultati sperimentali

Conclusioni

Le principali fonti di errore sistematico derivano da:

- incertezza statistica sull'efficienza di isolamento (canali B_s^0) è l'incertezza dominante per i canali del B_s^0 eccetto $A_{CP}(B_s^0 \to K^- \pi^+)$
- incertezza sulla calibrazione e parametrizzazione del $\frac{dE}{dx}$ il fit multivariato è molto sensibile al dato di PID
- incertezza sulla modellizzazione del fondo combinatoriale
 il fondo combinatoriale è stimato tramite un esponenziale ed è stato
 controllato con fit polinomiale Ne sono affetti soprattutto i modi rari

Altre incertezze minori sono date da:

- Scala di massa
- Valori delle masse in input
- Asimmetrie nelle *p.d.f.* (funzioni di densità di probabilità)
- Modello dell'impulso del fondo

Decadimenti non osservati

$$B^0_d {\longrightarrow} K^+ K^-$$

Introduzione

Violazione CP

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

■ Decadimenti non osservati

• Decadimenti molto rari

ullet Risultati di \mathcal{BR}

 $\bullet A_{CP}$ diretta

Conclusioni

$$\mathcal{BF} = \frac{\mathcal{B}(B_d^0 \to K^+ K^-)}{\mathcal{B}(B_d^0 \to K^+ \pi^-)} = 0.020 \pm 0.008 \pm 0.006$$

$$\begin{split} \mathcal{BR} &= \mathcal{BF} \cdot \mathcal{B}(B^0_d \to K^+ \pi^-) \\ \mathcal{B}(B^0_d \to K^+ \pi^-) &= (19.5 \pm 0.6) \cdot 10^{-6} \text{ (misurato alle B-Factories)} \end{split}$$

$$\mathcal{B}(B^0_d \to K^+ K^-) = (0.39 \pm 0.16 \pm 0.12) \cdot 10^{-6}$$

Che permette di porre un limite superiore pari a $0.7 \cdot 10^{-6}$ al 90% di Confidence Level (CL)

Analogamente per

 $B_s^0 \longrightarrow \pi^+ \pi^-$

$$\mathcal{B}(B_s^0 \to \pi^+\pi^-) = (0.52 \pm 0.29 \pm 0.38) \cdot 10^{-6} \text{ovvero} < 1.3 \cdot 10^{-6} \text{ @}90\% \text{CL}$$

Sapienza

Decadimenti molto rari

Sono stati osservati 3 nuovi decadimenti:

Introduzione

Violazione CP

CDF detector

Analisi offline

Distinzione π e K

Incertezze sperimentali

Risultati sperimentali • Decadimenti non

osservati • Decadimenti molto rari

 \bullet Risultati di \mathcal{BR}

 $\bullet A_{CP}$ diretta

Conclusioni

 $> 3\sigma \rightarrow \text{EVIDENZA}$

Risultati di \mathcal{BR}

	l valori di ${\cal BR}$ per i decadimenti del ${ m B}^0_{ m s}$ sono stati ricavati dal ${\cal BF}$:		
Introduzione Violazione CP	$\frac{f_s}{f_d} \frac{\mathcal{B}(\mathrm{B}^0_{\mathrm{s}} \to \mathrm{K}^- \pi^+)}{\mathcal{B}(\mathrm{B}^0_{\mathrm{d}} \to \mathrm{K}^+ \pi^-)} = 0.071 \pm 0.010 \pm 0.007$		
CDF detector Analisi offline	$f_s = (11.0 \pm 1.2)\%$ $f_d = (39.9 \pm 1.1)\%$		
Distinzione π e K	Canale di decadimento	\mathcal{BR} assoluto (10 ⁻⁶)	Valore di confronto (10^{-6})
Incertezze sperimentali	$\mathcal{B}(B^0_d \to \pi^+\pi^-)$	$5.02 {\pm} 0.33 {\pm} 0.35$	$5.1 \pm 0.2 \pm 0.2$ [Belle]
Risultati sperimentali Decadimenti non osservati	$\mathcal{B}(B^0_s \to K^+K^-)$	$25.8{\pm}1.5{\pm}3.9$	$33 \pm 6 \pm 7$ [old CDF]
 Decadimenti molto rari Risultati di <i>BR</i> 	$\mathcal{B}(B^0_s \to K^- \pi^+)$	$5.27 {\pm} 0.74 {\pm} 0.90$	4.9 [Zupan]
• A_{CP} diretta	$\mathcal{B}(B^0_s \to \pi^- \pi^+)$	< 1.3@90% CL	
Conclusioni	$\mathcal{B}(B^0_d \to K^+K^-)$	< 0.7@90% CL	
	${\cal B}(\Lambda_{ m b}^0 o { m p}\pi^-)$	$1.4{\pm}0.3^{+0.9}_{-0.5}$	0.85 [R.Mohanta]
	$\mathcal{B}(\Lambda_b^0 \to p K^-)$	$2.2{\pm}0.3^{+1.4}_{-0.8}$	1.38 [R.Mohanta]

SAPIENZA UNIVERSITÀ DI ROMA Misura dell' asimmetria di CP diretta

		Misura CDF	valore di confronto
Introduzione	$A_{\rm CP}(B^0_d \to K^+\pi^-)$	$-0.086 \pm 0.023 \pm 0.009$	$-0.094 \pm 0.018 \pm 0.008$ [Belle]
Violazione CP	$\mathcal{A}_{\rm CP}(B^0_s \to K^- \pi^+)$	$0.39{\pm}0.15{\pm}0.08$	≈ 0.37 †
CDF detector	$\frac{\Gamma(\overline{B_d^0} \to K^- \pi^+) - \Gamma(B_d^0 \to K^+ \pi^-)}{\Gamma(B_s^0 \to K^- \pi^+) - \Gamma(\overline{B_s^0} \to K^+ \pi^-)}$	$0.78 {\pm} 0.39 {\pm} 0.12$	1 †
Analisi offline	$A_{CP}(\Lambda_b^0 \to p \pi^-)$	$0.03{\pm}0.17{\pm}0.05$	0-0.1
Distinzione π e K	$A_{\rm CP}(\Lambda^0_b \to pK^-)$	$0.37{\pm}0.17{\pm}0.03$	0.1-0.4
Incertezze sperimentali			

† Test di confronto del Modello Standard [Lipkin]

rari

Conclusioni

Risultati sperimentali • Decadimenti non osservati

• Decadimenti molto

ullet Risultati di \mathcal{BR} ●A_{CP} diretta

$$\Gamma(\overline{B^0_d} \to K^- \pi^+) - \Gamma(B^0_d \to K^+ \pi^-) = \Gamma(B^0_s \to K^- \pi^+) - \Gamma(\overline{B^0_s} \to K^+ \pi^-)$$

$$A_{\rm CP}(B_{\rm s}^{0}) = \frac{\Gamma(\overline{B}_{\rm s}^{0}) - \Gamma(B_{\rm s}^{0})}{\Gamma(\overline{B}_{\rm s}^{0}) + \Gamma(B_{\rm s}^{0})} = -A_{\rm CP}(B_{\rm d}^{0}) \frac{\Gamma(\overline{B}_{\rm d}^{0}) + \Gamma(B_{\rm d}^{0})}{\Gamma(\overline{B}_{\rm s}^{0}) + \Gamma(B_{\rm s}^{0})} = -A_{\rm CP}(B_{\rm d}^{0}) \frac{\mathcal{B}(B_{\rm d}^{0}) + \mathcal{B}(\overline{B}_{\rm d}^{0})}{\mathcal{B}(B_{\rm s}^{0}) + \mathcal{B}(\overline{B}_{\rm s}^{0})} \frac{\Gamma_{tot}(B_{\rm d}^{0})}{\Gamma_{tot}(B_{\rm s}^{0})} = 0.37$$

Introduzione

Violazione CP

- CDF detector
- Analisi offline
- Distinzione π e K
- Incertezze sperimentali
- Risultati sperimentali

Conclusioni

Conclusioni

- I dati di CDF hanno fornito informazioni rilevanti sulla fisica del B⁰_se sono competitivi, in alcuni casi, con le misure delle B-Factories sul B⁰_d.
- Le misure non hanno mostrato, entro la statistica analizzata, evidenti segnali di Nuova Fisica, essendo in buon accordo con il modello standard.
- I risultati ottenuti possono fornire notevoli informazioni per la stima dei contributi dei diagrammi di feynmann.

L'esperimento LHCb al collider LHC potra' studiare i decadimenti charmless a due copri del B_d^0 , $B_s^0 e \Lambda_b^0$ con una statistica di un ordine di grandezza in piú.

Luminosità

Luminosità di picco $2\cdot 10^{32}~{\rm cm^{-2}s^{-1}}$

- p. 36