

Misura dell'elemento |Vub| della matrice CKM tramite la misura del BR di $B \rightarrow X_u \ell v$

Andrea Lucarelli

1 luglio 2009

Indice & Citazioni

Indice

- mescolamento dei quark e matrice CKM
- triangolo di unitarietà
- esperimento BaBar

Citazioni

[1] <u>B.</u> Aubert <u>et</u> al [BaBar Collaboration], "Measurements of Partial Branching Fractions for $B \rightarrow X_u \ell v$ and determination of $|V_{ub}|$ " BaBar -PUB-07/051, SLAC-PUB- 12713, 3/4/2008

[2] D. del Re, Dottorato di ricerca, "Measurement of $|V_{ub}|$ Studying Inclusive Semileptonic Decays on the Recoil of Fully Reconstructed *B* s with the BaBar experiment"

[3] N.Cabibbo, "Mescolamento dei quark", appunti dal corso di "Teorie di gauge"

[4] Results of the UTFit collaboration, www.utfit.org

Introduzione

L'obiettivo principale dell'esperimento BaBar è di stabilire la CP violation nei mesoni B e verificare se gli effetti osservati sono compatibili con le predizioni dello Standard Model. In questo modello gli effetti della violazione di CP sono predetti dalla matrice CKM degli accoppiamenti delle correnti cariche deboli con i quark.

La determinazione del valore assoluto di V_{ub} è una sfida sia teorica che sperimentale: • sperimentalmente la difficoltà è quella di separare i decadimenti b->ulv da quelli più probabili b->clv

• teoricamente la rate inclusiva semileptonico si può calcolare a livello dei partoni. Per esprimere la rate in funzione di $|V_{ub}|$ si usa l'OPE (Operator Product Expansion) in potenze inverse della massa del quark b e perciò dalla scelta della scala di rinormalizzazione.

Mescolamento dei quark

Le interazioni deboli (accoppiamenti tra quark di tipo u con carica 2/3 e quark di tipo d con carica -1/3) non sono diagonali nella base degli autostati di massa:

 $u_i = \{u, c, t\}$

 $d_i = \{d,s,b\}$

Il mescolamento dei quark è responsabile di:

- violazione di numeri quantici (come la stranezza)
- violazione della simmetria CP
- violazione di T (simmetria per inversione temporale) nei decadimenti dei mesoni K⁰ e B⁰

Kobayashi e Maskawa hanno dimostrato che queste violazioni sono resi possibili dal mescolamento se esistono tre (o più) famiglie di fermioni.

Questo lavoro ha portato alla scoperta del primo membro della terza famiglia (leptone τ).

Meccanismo di Higgs->Quark mixing

Ogni famiglia di fermioni è composta da:

- due quark con carica 2/3, -1/3 (ognuno in tre stati di colore)
- due leptoni

Sotto il sottogruppo SU(2) i quark si organizzano in

- tre doppietti sinistrorsi $q_i^L = \{u_i^L, d_i^L\}$
- tre coppie di singoletti destrorsi u_i^R, d_i^R

Accoppiamento dei quark ai mesoni W[±] (Interazioni deboli)

$$\mathcal{L}_{qW} = g \sum_{i} \bar{u}_{i}^{L} \gamma^{\mu} d_{i}^{L} W_{\mu}^{\dagger} + h.c.$$

Accoppiamento dei quark con il campo di Higgs

$$\mathcal{L}_{q\Phi} = \sum_{ik} \left[(g_{ik}^d \bar{q}_i^L d_k^R) \Phi \right] + \sum_{ik} \left[(g_{ik}^u \bar{q}_i^L u_k^R) \tilde{\Phi} \right] + \text{h.c.}$$

Per la rottura di simmetria $\langle 0|\Phi|0\rangle = \begin{pmatrix} 0\\ \frac{v}{\sqrt{2}} \end{pmatrix}$ si hanno matrici di massa

$$\mathcal{L}_{qM} = (\bar{u}^L \tilde{M}^u u^R + \bar{d}^L \tilde{M}^d d^R + h.c.) \qquad \tilde{M}^u_{ik} = \frac{v}{\sqrt{2}} g^u_{ik}; \quad \tilde{M}^d_{ik} = \frac{v}{\sqrt{2}} g^d_{ik}$$

Matrice CKM

Diagonalizzazione matrici di massa->Trasformazioni unitarie

$$u^L = V_{uL} \, u'^L; \ u^R = V_{uR} \, u'^R; \ d^L = V_{dL} \, d'^L; \ d^R = V_{dR} \, d'^R$$

Teorema: Una qualsiasi matrice può essere diagonalizzata tramite due matrici unitarie

$$V_{uL}^{\dagger}\tilde{M}^{u}V_{uR} = M^{u}, \quad V_{dL}^{\dagger}\tilde{M}^{d}V_{dR} = M^{d}$$

 $V_{uL}^{\dagger}, V_{dR_{,}}^{\dagger} V_{dL}^{\dagger}, V_{dR}^{\dagger}$ matrici unitarie M^u M^d matrici diagonali

$$M^{d} = \begin{pmatrix} m(d) & 0 & 0 \\ 0 & m(s) & 0 \\ 0 & 0 & m(b) \end{pmatrix} \qquad M^{u} = \begin{pmatrix} m(u) & 0 & 0 \\ 0 & m(c) & 0 \\ 0 & 0 & m(t) \end{pmatrix}$$

L' accoppiamento dei quark ai mesoni W[±] diventa:

$$\mathcal{L}_{qW} = g \sum_{ij} \bar{u}_i^{\prime L} \mathbf{V}_{ij} \gamma^{\mu} d_j^{\prime L} W_{\mu}^{\dagger} + h.c. \qquad \mathbf{V} = V_{uL}^{\dagger} V_{dL}$$
Matrice CKM
$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Problema delle fasi

Le matrici V_{uL},..., non sono univocamente determinate. Se U_u e U_d sono matrici unitarie diagonali:

$$U_u = \begin{vmatrix} e^{i\phi_u} & 0 & 0\\ 0 & e^{i\phi_c} & 0\\ 0 & 0 & e^{i\phi_t} \end{vmatrix}; \quad U_d = \begin{vmatrix} e^{i\phi_d} & 0 & 0\\ 0 & e^{i\phi_s} & 0\\ 0 & 0 & e^{i\phi_b} \end{vmatrix}$$

le matrici unitarie diagonalizzano le matrici di massa.

$$V'_{uL} = U_u V_{uL}, V'_{uR} = U_u V_{uR}; V'_{dL} = U_d V_{dL}, V'_{dR} = U_d V_{dR}$$

Se la matrice CKM contiene elementi complessi-> violazione di CP se la matrice CKM contiene elementi reali-> non violazione di CP

$$\mathbf{V} \to U_u^{\dagger} \mathbf{V} U_d = \begin{vmatrix} e^{-i\phi_u} & 0 & 0\\ 0 & e^{-i\phi_c} & 0\\ 0 & 0 & e^{-i\phi_t} \end{vmatrix} \begin{vmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{vmatrix} \begin{vmatrix} e^{i\phi_d} & 0 & 0\\ 0 & e^{i\phi_s} & 0\\ 0 & 0 & e^{i\phi_b} \end{vmatrix}$$

Il numero di fasi tramite una trasformazione può essere ridotto da 6 a 1: questa fase non eliminabile è la fase di Kobayashi-Maskawa δ_{KM} (Premio Nobel per la fisica 2009). La misura degli elementi della matrice CKM è un test fondamentale del Modello Standard. Le prime due righe sono misurate direttamente mentre si possono mettere dei limiti sui mixing dei quark top $|V_{ti}|$ tramite relazioni di unitarietà.

Parametrizzazione di Wolfenstein

La matrice CKM può essere riscritta in termini delle variabili di Wolfenstein (λ , A, ρ , η): $\lambda = V_{us} = 0.22$ parametro d'espansione

 η fase della violazione di CP

$$V = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4).$$

Determinazione sperimentali dei moduli degli elementi della matrice CKM (Particle Data Book 2006)

$$\textit{\textit{V}} = \begin{pmatrix} 0.97383^{+0.00024}_{-0.00023} & 0.2272^{+0.0010}_{-0.0010} & (3.96^{+0.09}_{-0.09}) \times 10^{-3} \\ 0.2271^{+0.0010}_{-0.0010} & 0.97296^{+0.00024}_{-0.00024} & (42.21^{+0.10}_{-0.80}) \times 10^{-3} \\ (8.14^{+0.32}_{-0.64}) \times 10^{-3} & (41.61^{+0.12}_{-0.78}) \times 10^{-3} & 0.999100^{+0.000034}_{-0.000004} \end{pmatrix}$$

Matrice CKM unitaria 3 x 3 \rightarrow Relazioni di ortogonalità \rightarrow Teorema: 6 triangoli con la

stessa area detta J

$$\mathbf{V} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & k \end{vmatrix}$$

$$\mathbf{V} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & k \end{vmatrix}$$

$$\mathbf{V} = \begin{vmatrix} a & b & c \\ T_2 & dg^* + eh^* + fk^* = 0 \\ T_3 & ga^* + hb^* + kc^* = 0 \\ T_4 & ab^* + de^* + gh^* = 0 \\ T_5 & bc^* + ef^* + hk^* = 0 \\ T_6 & ca^* + fd^* + kg^* = 0 \end{vmatrix}$$

$$\mathbf{Se CP fosse conservato} \longleftrightarrow \mathbf{V} = \mathbf{V}^* \rightarrow \mathbf{J} = \mathbf{0}$$

Determinare V_{ub}

 V_{ub} può essere determinato da frazioni di branching dal decadimento semileptonico B->X_u l \overline{v}

perché:

 $\sigma(\overline{B} \rightarrow X_u | \overline{v}) \sim |V_{ub}|^2$ (il rate di decadimento del

(il rate di decadimento del mesone B è collegato a |Vub|tramite calcoli perturbativi e non perturbativi di QCD)

le correnti leptoniche e adroniche sono fattorizzabili

L'analisi è basata su un campione di 383 milioni di Y(4S) in coppie B \overline{B} (luminosità integrata di 347.4 fb⁻¹) raccolte con il detector BaBar agli anelli e⁺e⁻ a PEP-II.

La sfida sperimentale

Massa invariante M_x del segnale (b \rightarrow u l v) a sinistra e del fondo (b \rightarrow c l v) a destra

Gli eventi Y(4S) \rightarrow B B sono classificati con:

la completa ricostruzione del decadimento adronico di uno dei mesoni B (B_{reco}).

Il decadimento semileptonico del secondo mesone B (B_{recoil}) è identificato dalla presenza di un elettrone o di un muone.

BaBar experiment

BaBar Detector al PEP-II Factory: collider asimmetrico e⁺e⁻

Energia di 10.58 GeV nel CMS (massa della risonanza Y(4S))

Fascio elettroni 9.0 GeV, fascio positroni 3.1 GeV

Boost di Lorentz alla risonanza del Y(4S) con $\beta\gamma$ =0.55 \rightarrow ricostruzione dei vertici di decadimento dei due mesoni B \rightarrow determinazione dei relativi tempi di decadimento Δ t

Alta luminosità (1 x 10³⁴ cm⁻² s⁻¹) \rightarrow misura di BR molto piccoli tipici dei decadimenti del B

San Francisco

Los Angeles

Stanford San Jose

buona risoluzione dei vertici \rightarrow violazione di CP dipendente dal tempo

BaBar detector

Instrumented Flux Return

Settori del barrel e endcaps anteriori (FW) e posteriori (BW)

Instrumented Flux Return

Scopo dell'IFR

Identificazione di muoni e adroni neutri (procedura di selezione)

Struttura dell'IFR

Per identificare muoni e adroni neutri, il giogo del flusso di ritorno nel barrel e nei due endcaps sono segmentati in strati (che aumentano in spessore da 2 cm fino a 10 cm).

Tra questi due assorbitori di ferro sono inserite RPCs (single gap resistive plate chambers) - poi parzialmente rimpiazzati da Streamer Tubes, LST - che rivelano strisce di luce dalle particelle ionizzanti attraverso strisce esterne capacitive readout : i segnali sono estratti su ambo i lati del gap da elettrodi esterni fatti di strisce

Vi sono 19 strati di RPCs nei settori del barrel e 18 strati negli endcaps

I muoni vengono identificati misurando il numero di lunghezze di interazione nell'intero detector e comparandolo con il numero di lunghezze di interazione aspettate per un muone con un dato impulso.

Instrumented Flux Return

L'IFR (Instrumented Flux Return) rivela i muoni usando un blocco di ferro (scattering multiplo).

I μ attraversano tutto l'IFR mentre i π vengono fermati prima.

La probabilità di decadimento è $e^{-x/\lambda}$ x=percorso effettuato dalla particella λ =lunghezza di interazione

Se x>> λ pochi p e π attraversano l'IFR (nel nostro caso x $\approx 3\lambda$)

Muon identification Hadron misidentification

L'efficienza nell'identificazione dei muoni è stata misurata usando eventi $\mu^+\mu^-$ e la produzione di due fotoni di coppie $\mu^+\mu^-$.

L'identificazione dei muoni è schematizzata in figura:

probabilità di identificazione dei muoni e probabilità che un adrone venga confuso con un muone per un selezionatore di muoni funzione dell'impulso (sx) e dell'angolo polare (dx).

Ricostruzione dei mesoni B_{reco}

Per ricostruire un campione di mesoni B che decadono adronicamente si considera: B_{reco} ->D^(*)Y[±]

La consistenza cinematica dei candidati si controlla con due variabili:

 $m_{ES} = \sqrt{E^2 - p^2} = \sqrt{(\sqrt{s/2})^2 - p_B^2}$ Mass Energy substituted

 $\Delta E = E_{B} - \sqrt{s/2}$

 \sqrt{s} = energia totale nel frame di Y(4S)

 $p_{B_r} E_B$ = impulso, energia del candidato B_{reco} nel sistema di riferimento di Y(4S)

Perché m_{ES} e ΔE ?

m_{ES} migliora la risoluzione sperimentale dell'energia (c'è solo l'errore su p_B)

 ΔE rappresenta una misura dell'errore

La risoluzione di ΔE è molto peggiore di quella di m_{ES}

Il numero dei candidati B_{reco} si ottiene con un fit alla distribuzione di m_{ES} effettuato con il metodo della massima verosimiglianza. Il fit comprende tre contributi:

- decadimenti del segnale B_{reco}
- fondo di B B
- eventi del continuo ($e^+e^- \rightarrow q q$, q=u,d,s,c)

Distribuzione di m_{ES}

Distribuzione di m_{ES} per i dati (pallini) insieme con i risultati del fit (linea continua) per decadimenti semileptonici da eventi B^+B^- (a)e $B^0 \overline{B^0}$ (b).

La linea tratteggiata mostra il contributo dal fondo di combinazione e del continuo.

B_{recoil}

Per selezionare decadimenti semileptonici B->XI \overline{v} del candidato B_{recoil} :

un e o un μ di momento p_l^{*} >1 GeV definito nel sistema di riferimento del B

Tracce cariche ed energia depositata nel calorimetro che non sono associate a B_{reco}

conservazione della carica ($Q_x + Q_l + Q_{Breco} = 0$) (Verifica di tutte le particelle cariche)

Il 4impulso del neutrino è $p_v = p_{miss} = p_{Y(4S)} - p_{Breco} - p_X - p_e$ (impulsi sistema laboratorio)

massa mancante consistente con zero (m² $_{miss}$ < 0.5 GeV²/c⁴)

Per selezionare candidati $B \rightarrow X_u I v$:

uno e un solo leptone carico con $p_1^* > 1$ GeV (X_c potrebbe decadere leptonicamente)

 $M_x^2 = P_x^{\mu} P_{x\mu}$ $P_x^{\mu} = \Sigma P_i^{\mu}$ (somma tracce/neutri ricostruiti)

no K⁺ e K_s

Per ridurre le incertezze sistematiche nella determinazione dei branching ratio si calcola:

$$\frac{\Delta \mathcal{B}(X_u \ell \bar{\nu}_\ell)}{\mathcal{B}(X \ell \bar{\nu}_\ell)} = \frac{(N_u - N_u^{\text{out}} - BG_u) / (\epsilon_{\text{sel}}^u \epsilon_{\text{kin}}^u)}{(N_{\text{sl}} - BG_{\text{sl}})} \times \frac{\epsilon_\ell^{\text{sl}} \epsilon_t^{\text{sl}}}{\epsilon_\ell^u \epsilon_t^u} \qquad \qquad \mathsf{M}_{\mathsf{X}} < 1.55$$

 $N_u = #$ eventi osservati, $N^{out}_u = #$ eventi sopra taglio che vengono presi erroneamente BG_u= #eventi fondo, Termini in ε = efficienza, $N_{sl} - BG_{sl}$ = normalizzazione eventi sleptonici

Spettro di M_x

Per estrarre la distribuzione della variabile M_x si effettuano fit alle distribuzioni di m_{ES} di B_{reco} per poi separare il segnale dal fondo. Si ottiene:

Misure di |V_{ub}|già esistenti

Exp.	Method	S/B	$ V_{ub} $ [10 ⁻³]	$\sigma_{b \to c}(V_{ub})$	$\sigma_{th}(V_{u\bar{b}})$
ALEPH [36]	Neural Net	0.07	$4.12 \pm 0.67 \pm 0.62 \pm 0.35$	15%	9%
OPAL [37]	Neural Net	0.05	$4.00 \pm 0.71 \pm 0.59 \pm 0.40$	15%	10%
DELPHI [39]	M_X	0.10	$4.07 \pm 0.65 \pm 0.47 \pm 0.39$	12%	10%
L3 [38]	$\pi = l$ Cut	0.22	$5.7 \pm 1.0 \pm 1.3 \pm 0.5$	22%	10%
LEP[31]	Average	Average $4.09 \pm 0.37 \pm 0.44 \pm$			9-15%
CLEO[34]	E_l endpoint	0.39	$4.12 \pm 0.34 \pm 0.44 \pm 0.33$	7%	10-15%
BABAR[35]	E_l endpoint	0.36	$4.43 \pm 0.20 \pm 0.20 \pm 0.66$	3%	15%
CLEO[29]	$\pi(\rho) l\nu\text{+hard cuts}$	2.1	$3.30 \pm 0.40 \pm 0.70$	8%	
CLEO[30]	$\rho l \nu$ +loose cuts	0.7-2.1	$3.23 \pm 0.35 \pm 0.58$	5%	
CLEO[31]	$\pi + \rho l \nu$ Average		$3.25^{+0.25}_{-0.32} \pm 0.55$		15-20%
BABAR[33]	$\pi(\rho,\omega)l\nu$	0.15-0.22	$3.25 \pm 0.23 \pm 0.27 {}^{+0.40}_{-0.59} \pm 0.55$		11% 16%
Belle[32]	$\pi l \nu$ LCSR Mod.		$4.09 \pm 0.17 \pm 0.33 \pm 0.76$		19%
<u> </u>	UKQCD Mod.		$3.71 \pm 0.15 \pm 0.29 \pm 0.67$		18%
$Method$ N_u	N_u^{out} BG_u	$\epsilon^u_{ m sel}\epsilon^u_{ m kin}$	$\frac{\frac{\epsilon_{\ell}^{\rm sl}\epsilon_t^{\rm sl}}{\epsilon_{\ell}^{\rm u}\epsilon_t^{\rm u}}}{\epsilon_{\ell}^{\rm u}\epsilon_t^{\rm u}} \qquad \Delta \mathcal{B}(\overline{B} \to X_u \ell \bar{\nu}) \ (10^{-3})$	$ V_{ub} \times (10^{-3})$	
$M_X = 803 \pm 60$	27 ± 2 923 ± 21	0.331 ± 0.003	0.76 ± 0.02 $1.18 \pm 0.09 \pm 0.07 \pm 0.03$	$ \begin{array}{r} 4.27 \pm 0.16 \pm \\ 4.56 \pm 0.17 \pm \\ \end{array} $	0.13 ± 0.30 [4] 0.14 ± 0.32 [5]

Conclusioni

I risultati delle frazioni parziali di branching ratio sono tradotti in |V_{ub}| tramite calcoli di QCD, includendo la stima delle incertezze teoriche.

La frazione parziale di branching è $\Delta B(\overline{B} - X_u | \overline{v})$ è collegata a $|V_{ub}|$ dalla relazione:

$$|V_{ub}| = \sqrt{[\Delta B(\overline{B} - X_u | \overline{v})/\tau_b \Delta \zeta]}$$

 $\tau_{\rm b}$ = vita media del B $\Delta \zeta$ = predizione del rate parziale \bar{B} ->X_u I $\bar{\nu}$ nella data regione dello spazio tempo

Si è determinato il Branching Ratio parziale in regioni limitate dello spazio tempo $\Delta B = (1.18 \pm 0.09_{stat} \pm 0.07_{syst} \pm 0.01_{theo}) \times 10^{-3} (M_X < 1.55 \text{ GeV/c}^2).$ Si ottengono corrispondenti valori di $|V_{ub}|$ per diversi metodi di calcolo teorici.

Method	N_u	N_u^{out}	BG_u	$\epsilon^u_{ m sel} \epsilon^u_{ m kin}$	$\frac{\epsilon_\ell^{\rm s1} \epsilon_t^{\rm s1}}{\epsilon_\ell^{\rm u} \epsilon_t^{\rm u}}$	$\Delta \mathcal{B}(\overline{B} \to X_u \ell \bar{\nu}) \ (10^{-3})$	$ V_{ub} \times (10^{-3})$	
M_X	803 ± 60	27 ± 2 923 ± 21	000 01	0.331 ± 0.003	0.76 ± 0.02	$1.18 \pm 0.09 \pm 0.07 \pm 0.01$	$4.27 \pm 0.16 \pm 0.13 \pm 0.30$ [4]	
			923 ± 21				$4.56 \pm 0.17 \pm 0.14 \pm 0.32 \ [5]$	22

Riassunto dei numeri fittati per $\Delta B(B \rightarrow X_u \ell v)$ e $|V_{ub}|$ per M_X