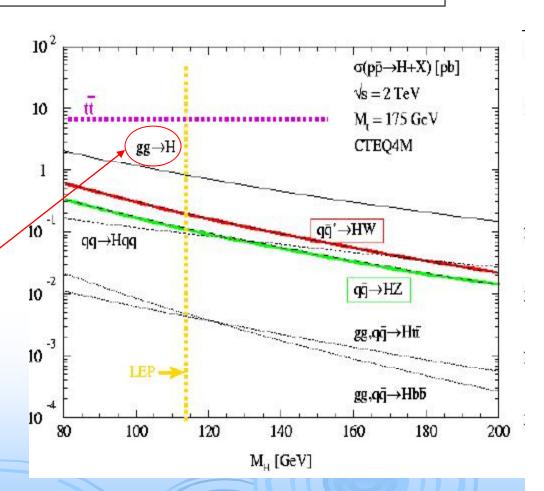


Introduzione

Ricerca dell'Higgs ad alta massa a **Tevatron** nel canale di decadimento

$$H \rightarrow WW^* \rightarrow l^+l^-\nu\overline{\nu}$$


Prospettive di ricerca ad alta massa a LHC nel canale di decadimento

$$H \rightarrow ZZ \rightarrow 4l$$

Quali sono i modi in cui l'Higgs viene prodotto nelle collisioni adroniche?

Questi processi sono previsti dalla teoria e le probabilità sono calcolate dai fisici teorici.

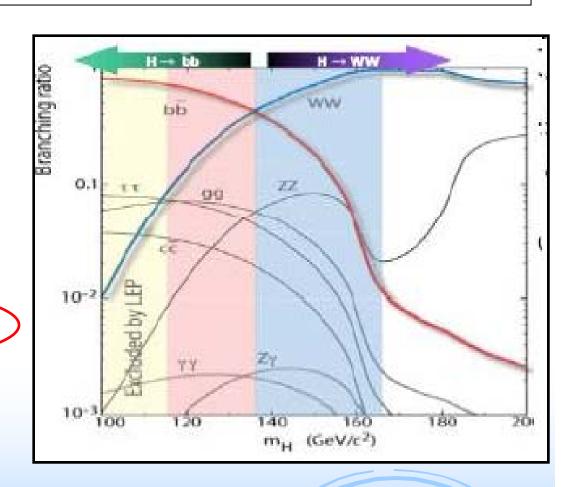
Il processo più probabile è quello di creare un Higgs dalla gluon fusion, subito dopo quelli in cui l'Higgs è accompagnato da un W o Z.

Sezione d'urto dei vari decadimenti in funzione della massa del Bosone di Higgs. 3

Quali sono i suoi prodotti di decadimento?

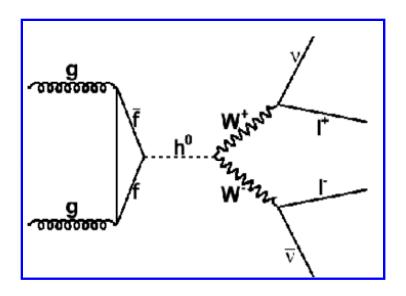
$$m_H < 135 \, GeV / c^2$$

è favorito il decadimento

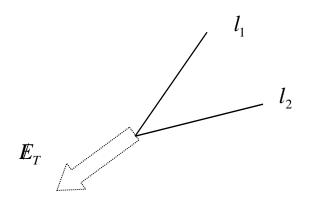

$$H \rightarrow b\bar{b}$$

$$m_H > 135 GeV/c^2$$

è favorito il decadimento


$$H \rightarrow WW$$

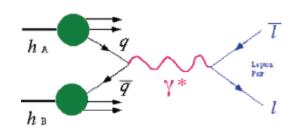
Probabilità di ogni decadimento in funzione della massa dell' Higgs


Canale di decadimento: $gg \rightarrow H \rightarrow WW^* \rightarrow l^+l^-\nu\nu$

- Ricercato a Tevatron nell'esperimento CDF
- Collisione $pp \quad \text{con } \sqrt{s} = 1.96 TeV$
- Luminosità integrata 3.6 fb⁻¹

Segnale

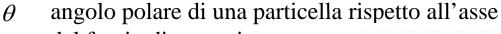
$$gg \rightarrow H \rightarrow WW^* \rightarrow l^+l^-\nu\nu$$


• 2 leptoni isolati di segno opposto

$$e^{+}e^{-}, \mu^{+}\mu^{-}, e^{\pm}\mu^{\mp}$$

• Energia mancante (neutrini)

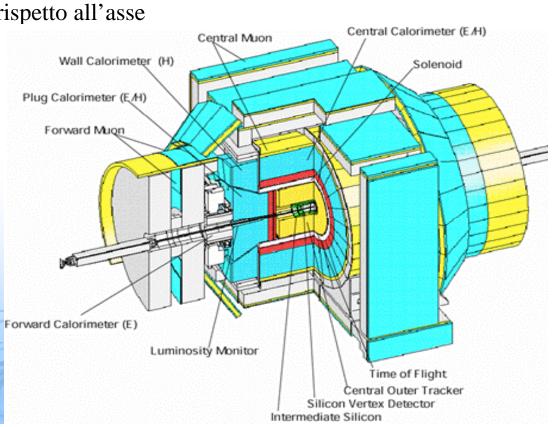
Fondo



- Drell Yan
- $WZ \rightarrow lll \nu$
- $WW \rightarrow ll \nu \nu$
- $t\bar{t} \to b\bar{b}ll \nu\bar{\nu}$
- $W\gamma$
- W + jet
- $ZZ \rightarrow ll \nu \nu$
- QCD
- Raggi cosmici

Breve descrizione del detector

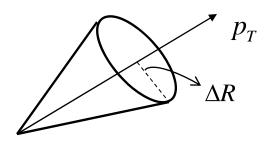
- La geometria del detector è descritta da :
 - ϕ angolo azimutale


$$\eta = -\ln(\tan\theta/2)$$
 pseudorapidità

del fascio di protoni.

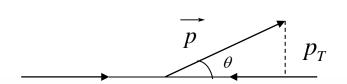
• CDF è costituito da:

tracciatore
rivelatore al silicio
COT camera a deriva (B = 1.4 T)
calorimetro elettromagnetico
calorimetro adronico
camera a deriva per muoni



Identificazione dei leptoni e dei neutrini

I **leptoni** devono essere isolati in modo tale che :

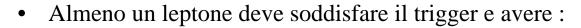

$$\sum E_T^{tower,i} < 10\% E_T^e$$

$$\sum p_{\scriptscriptstyle T} < 10\% \; p_{\scriptscriptstyle T}^{\,\mu}$$

all'interno del cono $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \theta)^2} < 0.4$ intorno alla direzione del leptone

$$\begin{cases} E_T^{tower} = E \sin \theta \\ p_T = p \sin \theta \end{cases}$$

Per identificare la presenza dei <u>neutrini</u> nel decadimento del Bosone di Higgs usiamo (

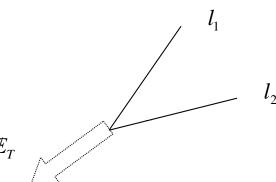

l'energia trasversa mancante
$$\mathbf{E}_T = \left| \sum_i E_T \hat{n}_{T,i} \right|$$

dove $\hat{n}_{T,i}$ è la componente trasversa del versore che va dal punto d'interazione alla torre i del calorimetro.

Preselezione degli eventi di segnale

• I candidati di Higgs ll vv sono selezionati attraverso due leptoni di segno opposto

$$M_{l^+l^-} > 16 GeV / c^2$$



$$E_T > 20 GeV$$

per elettroni

$$p_T > 20 GeV/c$$

per muoni

• Il secondo leptone, per aumentare l'accettanza cinematica deve avere :

$$E_T > 10 GeV$$

per elettroni

$$p_T > 10 GeV / c$$

per muoni

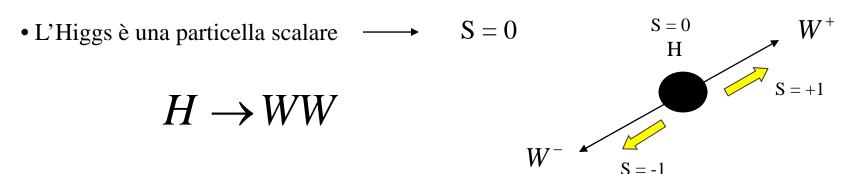
Problema: separare gli eventi di segnale da quelli di fondo

Riduzione dei fondi: tagli cinematici

• Drell-Yan in cui l'energia mancante è dovuta a code di risoluzione. Si richiede :

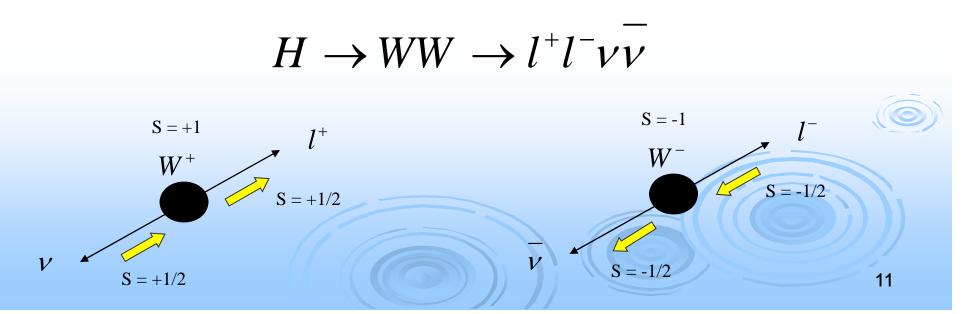
$$E_{Tspec} > 25 \ GeV$$
 per eventi a due elettroni o due muoni $E_{Tspec} > 15 \ GeV$ per eventi elettrone-muone

 \mathbb{E}_{Tspec} è definita come :


$$E_{Tspec} = \begin{cases} E_{T} & se\Delta\phi(E_{T,nearest-leptone-or-jet})) > \frac{\pi}{2} \\ E_{T} \sin(\Delta\phi(E_{T,nearest-leptone-or-jet})) & se\Delta\phi(E_{T,nearest-leptone-or-jet})) < \frac{\pi}{2} \end{cases}$$

- $t\bar{t} \to b\bar{b}ll \nu \nu$ si richiede
 - che i candidati abbiano meno di 2 jet con $p_T > 15 GeV/c$ e $|\eta| < 2.5$
- $WZ \rightarrow lll \nu$ e $ZZ \rightarrow ll \nu \nu$ si richiedono:

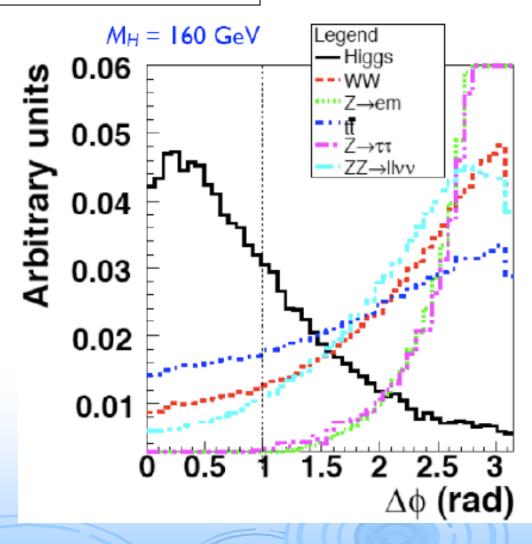
due leptoni esatti per ricostruire la massa invariante del bosone Z


• $W\gamma$ e W + jet in cui un fotone o un jet è scambiato con un leptone isolamento dei leptoni all'interno del cono.

Riduzione dei fondi : correlazione di spin

I due bosoni W avranno spin opposto

• I leptoni carichi, a causa della loro elicità opposta, tendono ad avere la stessa direzione



Segnale e fondo

Grazie ai tagli cinematici è stato possibile separare il segnale dal fondo.

Usando l'apertura dell'angolo $\Delta\phi$ tra i leptoni, questi sono stati distinti da quelli provenienti dal fondo WW

Simulazione eventi

(Data modeling)

L'accettanza geometrica e cinematica per gli eventi: WW, WZ, ZZ, $W\gamma$, Drell - Yan, tt e per tutti gli eventi di segnale è basata su <u>simulazioni</u>.

- Monte Carlo : per le collisioni
- GEANT3_based : per la risposta del detector
- MC@NLO: per generare processi WW (S e B)
- PYTHIA per generare: WZ, ZZ, $W\gamma$, Drell Yan, $t\bar{t}$
- CTEQ5L : per la funzione di distribuzione dei partoni

Per verificare l'affidabilità di queste simulazioni sono previste delle regioni di controllo **CROSS-CHECKS**, basate sui dati per testare :

- efficienza di identificazione dei leptoni
- efficienza dei trigger
- efficienza nel rilevare i fotoni e i jet
- modellizzazione di E_T

Analisi dati

Per discriminare eventi di segnale e di fondo vengono usati dei

<u>Classificatori Statistici Multivariati</u>

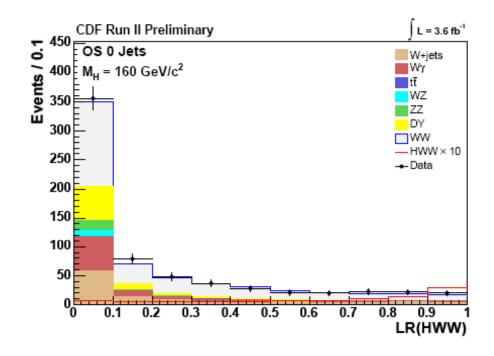
condensano un set multidimensionale e correlato di variabili di input in un'unica grandezza scalare (output del classificatore). Algoritmo di regressione:

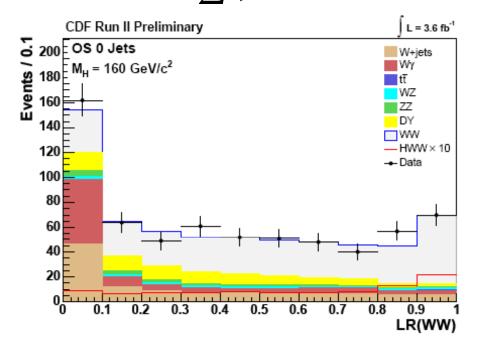
$$R^n \to R$$

I classificatori statistici multivariati possono essere:

- Lineari (ignorano possibili correlazioni tra variabili)
- Non Lineari

Rapporto di verosimiglianza


(Likelihood Ratio)

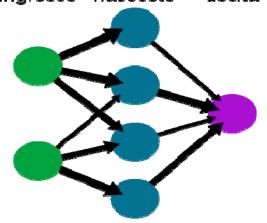

Classificatore multivariato lineare che stima LR.

$$LR(x_j) = \frac{P_{Higgs}(x_j)}{P_{Higgs}(x_j) + \sum_{i} k_i P_i(x_j)}$$
 0 < LR(x_j) < 1

Informazioni cinematiche

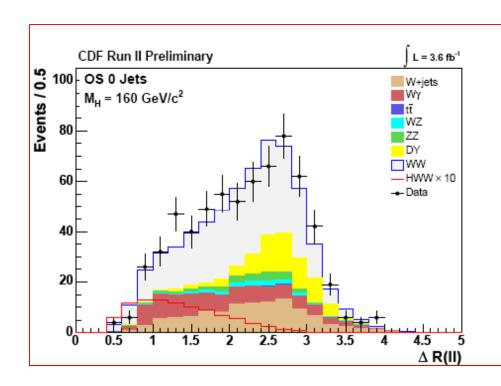
Frazione aspettata per i fondi $\sum k_i = 1$

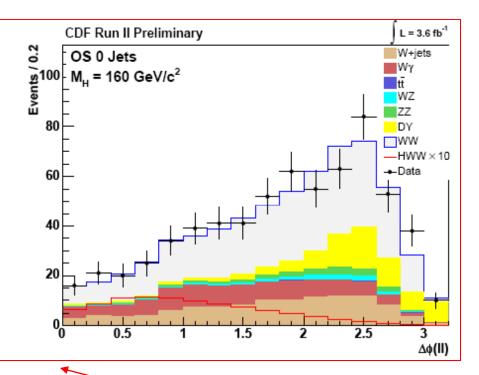
Rete Neurale

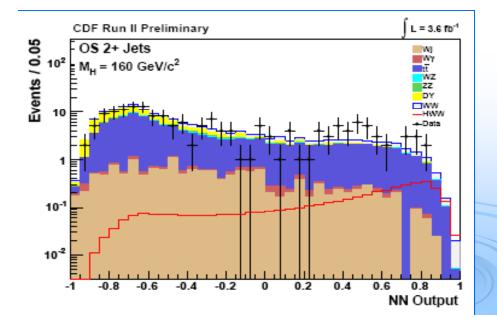

Neuro Bayes

(Neural Network)

La struttura della rete neurale è:


3 layers — Nodi in input, nodi nascosti, 1 output


Il numero di questi nodi varia a seconda dell'analisi di uno o più jet o particelle delle stesso segno. Semplice rete neurale strato di strato strato di Ingresso nascosto uscita



Variabili di input

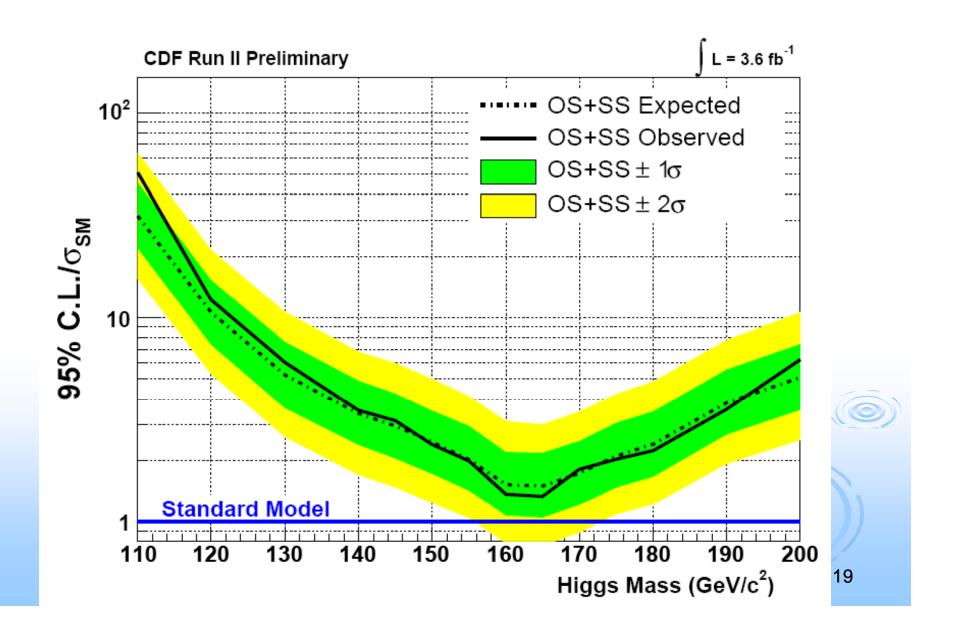
Variable	Meaning
LRHWW	Likelihood ratio - $H \rightarrow WW$
LRWW	LR - WW production
LRZZ	LR - ZZ production
LRWg	$LR - W\gamma$
LRWj	LR - W+jets
dimass	Dilepton invariant mass
Met	Missing Transverse Energy
dPhiLeptons	$\Delta \phi$ between the leptons
dRLeptons	ΔR between the leptons
MetDelPhi	$\Delta \phi$ between the $ec{E}_T$ and nearest lepton or jet
MetSpec	$E_{Tspec} = E_T \text{ if } \Delta \phi \ (\vec{E}_T, 1 \text{ or } j) > \frac{\pi}{2}$
	$E_{Tspec} = E_T \sin(\Delta\phi (\vec{E}_T, 1 \text{ or j})) \text{ if } \Delta\phi (\vec{E}_T, 1 \text{ or j}) < \frac{\pi}{2}$

Distribuzione delle variabili in input in in una rete neurale con eventi con 0 jet nello stato finale:

 ΔR tra i leptoni, $\Delta \phi$ tra i leptoni.

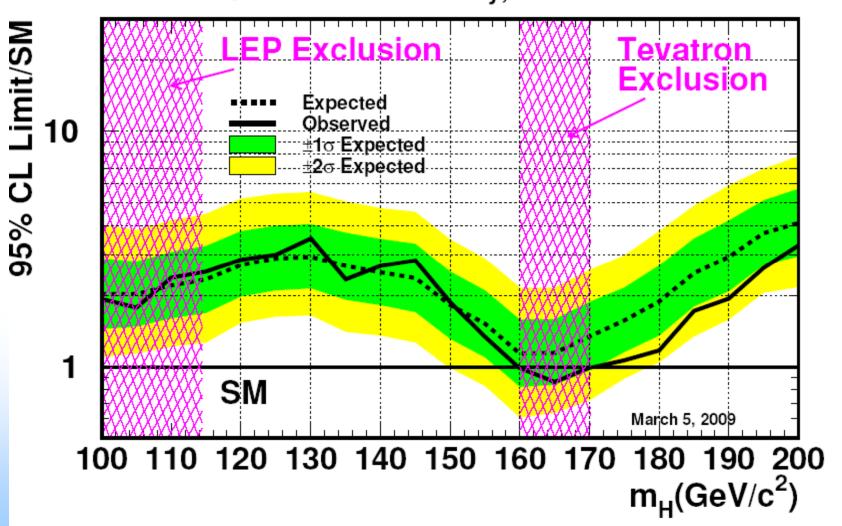
Distribuzione della rete neurale con eventi con 0 jet nello stato finale.

Valori attesi e osservati per gli eventi di segnale e di fondo

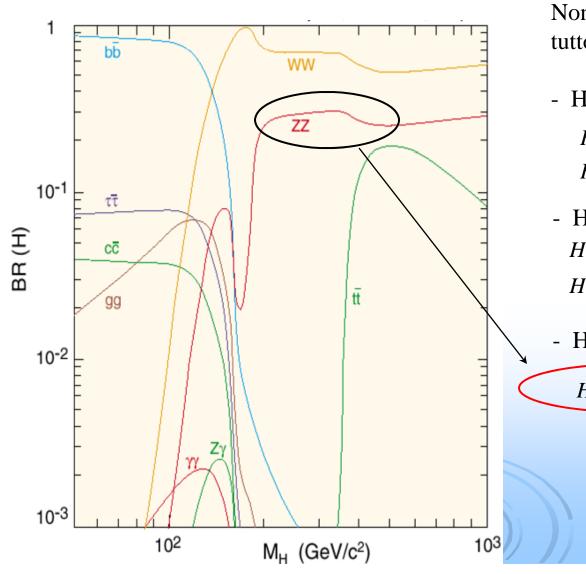

Gli eventi di fondo e di segnale sono stati ricavati dalle simulazioni. I dati sono quelli veri.

$M_H = 160 \text{ Ge}$	eV/c^2		
$t\bar{t}$	1.35	士	0.21
DY	80	\pm	18
WW	318	\pm	35
WZ	14	\pm	1.9
ZZ	20.7	\pm	2.8
W+jets	113	\pm	27
$W\gamma$	92	\pm	25
Total Background	637	\pm	67
$gg \to H$	9.5	\pm	1.4
Total Signal	9.5	士	1.4
Data	(3 5 4	1

$M_H = 160 \; {\rm GeV}/c^2$				
$t\bar{t}$	34.9	\pm	5.5	
DY	85	\pm	27	
WW	85.3	\pm	9.1	
WZ	14.5	\pm	2.0	
ZZ	5.48	\pm	0.75	
W+jets	40	\pm	10	
$W\gamma$	13.2	\pm	4.0	
Total Background	278	\pm	35	
$gg \to H$	4.70	\pm	0.72	
WH	0.66	\pm	0.09	
ZH	0.24	\pm	0.03	
VBF	0.38	\pm	0.06	
Total Signal	5.98	\pm	0.78	
Data	262			
Data		202		


OS 0 Jet

Risultati CDF



Risultati Tevatron

Tevatron Run II Preliminary, L=0.9-4.2 fb⁻¹

Prospettive a LHC

Non esiste una singola analisi che copre tutto il range plausibile 114GeV - 1TeV

- Higgs "leggero" ($m_H < 150 \, GeV$)

$$H \rightarrow bb$$

$$H \rightarrow \gamma \gamma$$

- Higgs "medio" ($m_H \approx 2m_Z$)

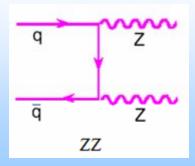
$$H \rightarrow WW$$

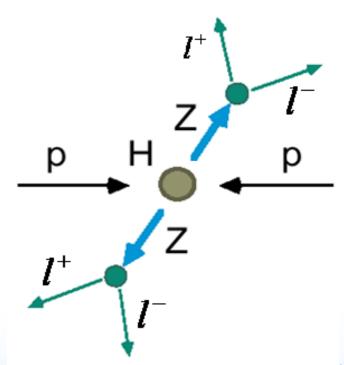
$$H \rightarrow ZZ^*$$

- Higgs "pesante" ($m_H > 2m_Z$)

$$H \rightarrow ZZ$$

Canale di decadimento : $H \rightarrow ZZ \rightarrow 4l$

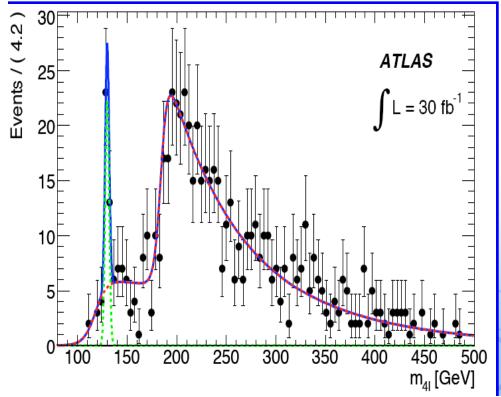

(alta massa, canale più attendibile)


Segnatura sperimentale:

- 4 leptoni riconosciuti nel range $|\eta| < 2.5$
- 2 leptoni con $p_T > 20 GeV$
- 2 leptoni con $p_T > 7GeV$

Fondo principale:

$$Z(\gamma^*)Z(\gamma^*) \rightarrow 4l$$

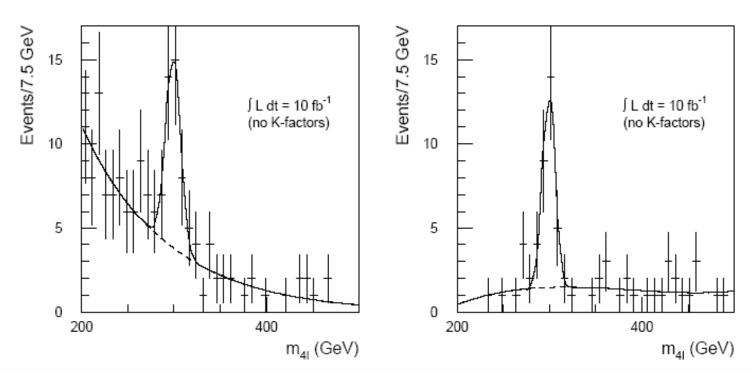



Possibili tagli:

- p_T dei leptoni
- massa invariante dei 2 leptoni
- massa invariante dei 4 leptoni
- variabili angolari

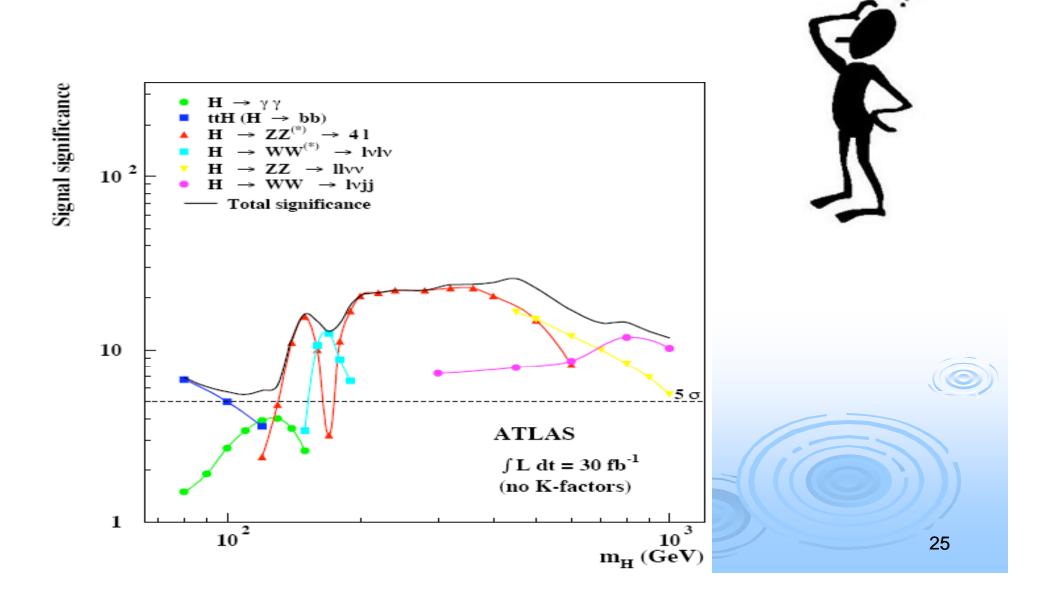
Segnali aspettati a LHC : ATLAS

Massa dell' Higgs a 180 GeV



Massa dell' Higgs a 130 GeV

23


Segnali aspettati a LHC : ATLAS

Segnali aspettati per il canale $H \to ZZ \to 4l$ per $m_H = 300~GeV$ e una luminosità integrata di $10~fb^{-1}$. A destra senza taglio del $p_T^{\rm max}$ e a sinistra con il taglio $p_T^{\rm max}(Z_1Z_2)$

I bosoni Z sono prodotti dal decadimento di un oggetto pesante, è possibile così porre una certa soglia sull'impulso trasverso.

Segnali aspettati a LHC: ATLAS

