

FACOLTA' DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Misura della massa del quark top al Tevatron

Anno Accademico 2008/2009

Corso di Fisica Nucleare e Subnucleare II Prof.C.Dionisi

Studente Vieri Candelise

Tutor prof.Marco Rescigno

Introduzione

Parte 1

Perché misurare la massa del quark top

Produzione del top al Fermilab

Metodi di misura / background

Parte 2

Correzioni all'energia dei jet

Calibrazione "in situ"

Parte 3

Ricostruzione della Massa

Risultati e prospettive

La Massa del Top e il Modello Standard

- Parametro libero dello SM
- Compare nella teoria Elettrodebole nelle correzioni radiative a un loop
- Accoppiamento di Yukawa
- $g_{ttH} \sim 0.7 \text{ VS } g_{bbH} \sim 0.02$
- Il top ci insegna qualcosa su Higgs tramite i parametri della teoria elettrodebole:

 $\Delta m_W \propto \Delta m_t^2$

Misurare con precisone la massa del top pone *un vincolo* su M_{Higgs}

 $\Delta m_W \propto \log \Delta m_H$

Strumento di conferma della validità dello SM ³

II quark top al Tevatron

- Non riesce ad adronizzare: τ = 10⁻²⁵s
- Decade nel canale t→W+b (BR≈100%)
- Produzione di top al Tevatron dalle collisioni pp a $\sqrt{s}=1,96$ TeV:

Selezione eventi e background

Selezione degli eventi

- Selezione di elettroni con E_t>20 GeV & muoni con pt>20 GeV
- Selezione dei neutrini dal decadimento del W: grande contributo di Transverse Missing energy. Richiesta E^{miss}_T > 20GeV
- B-tagging per 2 b-jet
 Ricostruzione e correzione dell'energia dei 2 jet

Stima del fondo

La contaminazione dipende fortemente dal numero di jet con b-tag

- 1) W+ light flavour (*mistag*) eventi che contengono light flavour jet identificati come heavy flavour jet: il contributo di W+light flavour è ottenuto con un mistag rate per ogni jet con E_T >10GeV, $|\eta|$ <2.4
- 2) W+ heavy flavour eventi con un b-tag provenienti da processi Wbb/Wcc/Wc.Questo contributo è stimato con simulazioni MC

Template method nel canale lepton+jets

- Modeling degli eventi ttbar e del fondo tramite simulazioni MC
- Si genera un set di simulazioni MC a valori definiti della massa del top e della JES
- Si ottiene una buona stima della massa ricostruita del top e dei prodotti del W
- Per ogni campione un fit del $\chi 2$ estrae la massa ricostruita del top
- Questa distribuzione di m_{reco} (template) viene confrontata poi con la distribuzione dei dati tramite un likelihood fit

Parametrizzazione del segnale

 MC solo a valori discreti di Mtop: si ottengono delle forme funzionali dalle distribuzioni m_{reco} in funzione di Mtop (pdf's), costituite da due gaussiane e una gamma-dis.

Risoluzione in energia dei calorimetri

- **Regione centrale** $|\eta|$ <1.1 suddivisa in due sezioni $|\eta|$ =0 ciascuna con 10 torri di15°, $|\eta|$ =0,1:
- CEM 18 lung di radiazione.risoluzione in Et per e⁻,γ
- CHA 4,7 lung di radiazione /risoluzione in Et per π :
- WHA 4,7 lung di radiazione /risoluzione in Et per π⁻ :

$$\frac{s(Et)}{Et} = \frac{13.5\%}{\sqrt{Et(GeV)}} \oplus 2\%$$
$$\frac{s(Et)}{Et} = \frac{50\%}{\sqrt{Et(GeV)}} \oplus 3\%$$
$$\frac{s(Et)}{Et} = \frac{75\%}{\sqrt{Et(GeV)}} \oplus 4\%$$

Regione end plug 1 < $|\eta|$ < 3,6 geometria complicata segmentati in torri di 7,5° e 15° rispettivamente per $|\eta|$ <2,11 e $|\eta|$ >2,11:

- PEM 23,2 lungh di radiazione.risoluzione in E
- PHA 6,8 lungh di radiazione.risoluzione in E

$$\frac{s(E)}{E} = \frac{16\%}{\sqrt{E}} \oplus 1\%$$

$$\frac{s(E)}{E} = \frac{80\%}{\sqrt{E}} \oplus 5\%$$

Cos'è un jet?

- Un jet è un cono stretto di particelle prodotte dall'adronizzazione di quark e gluoni
- Solo con i jet possiamo ottenere informazioni sui quark (QCD confinment)
- Misurare i jet è difficilebassa risoluzione di energia
- È necessario ricostruire l'energia dei jet tramite correzioni specifiche
- 1% incertezza su JES corrisponde a 10% incertezza su σ e 1GeV su M_t 9

Jet Cone Clustering algorithm

- Misurare i jet è complicato ma necessario:
- Sistematiche sui jet si riflettono sugli errorri di M_t
- Correggere l'energia dei jet contribuisce alla risoluzione di M_t.
- l'energia dei jet permette di capire la natura dei quark costituenti

Algoritmo di clustering per determinare l'energia dei jet:

1) Si raggruppano tutte le torri che rivelano E_t>1GeV (energia trasversa rispetto alla direzione del fascio) e si ordinano in energie decrescenti

2) Si definisce un cluster di torri distanti R = $\sqrt{(\eta^{tower} - \eta^{jet})^2 + (\phi^{tower} - \phi^{jet})^2}$ da ognuna di queste

3) Da questa lista viene calcolata l'energia e la direzione del jet

$$E_T^{jet} = \sum_{i=0}^{N_{tower}} E_{Ti}; \qquad \phi_T^{jet} = \sum_{i=0}^{N_{tower}} \frac{E_{Ti}\phi_i}{E_T^{jet}}; \qquad \eta^{jet} = \sum_{i=0}^{N_{tower}} \frac{E_{Ti}\eta_i}{E_T^{jet}}$$

4)Si itera il processo fin che non si ottiene un risultato stabile.

Correzioni all'energia dei jets (1)

- Si può risalire all'energia del partone "padre" del jet tramite opportune correzioni
- La precisione con cui si corregge l'energia dei jet si riflette sulla precisione della Mtop

Si definisce tramite le correzioni l'impulso trasverso del partone:

$$p_T^{partone} = (p_T^{jet} \times C_\eta - C_{MI}) \times C_{abs} - C_{UE} + C_{OOC}$$

- $\mathbf{p}_{\mathsf{T}}^{\mathsf{partone}}$: impulso trasverso del partone padre
- \mathbf{p}^{jet}_{T} : impulso trasverso misurato nel calorimetro

Definiamo le correzioni *process-indipendent*:

- C_{η} : correzione dipendenza da eta della risposta nel calorimetro (dijet balanching procedure), dovuta alle tecnologie del detector
- C_{MI}: energia da interazioni multiple nello stesso bounching cross, effetti di non linearità del calorimetro

Correzioni all'energia dei jets (2)

Definiamo le correzioni *process-specific*:

- **C**_{abs} : correzione "assoluta", risposta del calorimetro all'impulso della particella
- C_{UE}: correzione dovuta agli underlying event, energia extra nel calorimetro assegnata ai jet MA associata ad altre particelle dell'interazione ppbar**:
 - * particelle da gluoni di ISR
 - * partoni spettatori

 C_{ooc}: correzione che tiene conto di energia dissipata al di la del cono, ad esempio particelle da *FSR*

Correzioni all'energia dei jets (3)

γ jet balancing method

L'energia cosi' corretta viene testata con il metodo γ -jet balancing: $pp \rightarrow jet + \gamma$

- Si confronta l'energia del jet corretto con l'energia di un γ di alta energia, imponendo
 p_t(γ) = p_t (jet) @tree level: p_t(γ) /p_t (jet) = 1
- L'energia del γ è misurata con grande precisone nel Calorimetro elettromagnetico
- Selezione di: fotoni con impulso trasverso >27 GeV e pseudorapidity<0,9

Calibrazione in situ

- Ulteriore vincolo per le sistematiche sulla misura:
- Si misura la massa combinata dei jet provenienti da W→jj (M_{ii}),
- al fine di determinare indipendentemente la scala di energia dei jet

Sigma JES: shift dalla scala di energia totale nominale del jet in σ_c

Selezione dei jet e b-tagging

- Si richiedono almeno 4 jet con $|\eta| < 2.0$ per ricostruire l'evento ttbar
- Si dividono gli eventi in 4 categorie in base all'attività del jet:

Double tagged:	-Due b-tagget event		
	-basso fondo, eccellente risoluzione di massa		
	-richiesta: 3 jet Et>15GeV, 1 jet Et>8 GeV		
Tight single tagged:	-1 evento b-tagged		
	-richiesta: 4 jet Et>15 GeV		
	-buona risoluzione di massa		
Loose single tagged:	-1 evento b-tagged piu fondo rispetto a 1tag-T		
	-richiesta 8GeV < Et < 15GeV		
0 tag:	-0 b-tag, grande fondo		

-richiesti 4 jet Et> 21 GeV

★ Per aumentare S:B: cut all jets Et>21GeV

🛨 165 eventi ttbar candidati

L'importanza del b-tagging

Categor	rv	2-tag	1-tag(T)	1-tag(L)	0-tag
Jet E _T	i1–i3	$E_T > 15$	$E_T > 15$	$E_T > 15$	$E_T > 21$
cuts (GeV)	j= j4	$E_T > 8$	$E_T > 15$	$15 > E_T > 8$	$E_T > 21$
b-tagged	jets	2	1	1	0
Expected	S:B	10.6:1	3.7:1	1.1:1	N/A
Number of e	events	25	63	33	44

TABLE II: The sources and expected numbers of background events in the three subsamples with

b tags.

Source	Expected Background				
	2-tag	1-tag (T)	1-tag(L)		
Non- W (QCD)	0.31 ± 0.08	2.32 ± 0.50	2.04 ± 0.54		
$Wb\bar{b}+Wc\bar{c}+Wc$	1.12 ± 0.43	3.91 ± 1.23	6.81 ± 1.85		
W + light jets	0.40 ± 0.08	3.22 ± 0.41	4.14 ± 0.53		
WW/WZ	0.05 ± 0.01	0.45 ± 0.10	0.71 ± 0.13		
Single top	0.008 ± 0.002	0.49 ± 0.09	0.60 ± 0.11		
Total	1.89 ± 0.52	10.4 ± 1.72	14.3 ± 2.45		

17

Ricostruzione della massa del top

- A questo punto si estrae la variabile m^{reco} con un fit cinematico
- Attraverso la distruibuzione di m^{reco} confrontata con le simulazioni viene estratta la Mtop
- Per ogni evento si minimizza χ^2 (MINUIT) per ogni modo di assegnare 4jet ai 4quark di ttbar

Fit cinematico

Simulazioni MC e dati per distribuzioni della massa ricostruita.

Per tuttie le possibili combinazioni di b-tag abbiamo:

IMPORTANZA DEL b-TAGGING!!

Likelihood Fit

 $L = L_{2tag} \times L_{1tagT} \times L_{1tagL} \times L_{0tag} \times L_{JES}$

 La massa ricostruita dai dati viene confrontata con le simulazioni e col fondo tramite un likelihood fit, in cui, per ogni sample:

•L'errore statistico del fit è dato dai punti M^{+/-} per cui Δ**logL=-1/2**

•Per una serie di M_{top} fissati, la curva di L è massimizzata rispetto a tutti i suoi parametri

La Massa del Quark Top

CDF II detector @ Fermilab:

√s= 1,96 TeV

∫L = 318 pb⁻¹

W boson in situ

21

 $M_{top} = 173.5_{-3.6}^{+3.7} (stat + JES) \pm 1.3 (other syst) \quad GeV/c^2$ $= 173.5_{-3.8}^{+3.9} GeV/c^2 \quad .$

La Massa del Quark Top oggi

Marzo 2006→Marzo 2009

La massa del top oggi è nota con una precisione relativa del 0,75%

Le incertezze sistematiche sono dominate dalle incertezze sulla

II Quark Top domani

Top factory

23

Top quark is waiting for LHC:

Top protagonista della prima fisica di LHC

8 milioni di coppie ttbar l'anno a bassa luminosità = 1 al secondo!