Osservazione delle oscillazioni $B_s^0 - \overline{B}_s^0$ e misura di Δm_s Dalle collisioni $p - \overline{p}$ creiamo coppie $b - \overline{b}$ che legandosi a coppie $s - \overline{s}$ formano mesoni $B_s^0(\overline{b}s)$ o $\overline{B}_s^0(b\overline{s})$

Densità di probabilità di decadimento di un Bs :

$$P\left(B_s^0 \to B_s^0\left[\overline{B}_s^0\right]\right)(t) = \frac{1}{2\tau} e^{-\frac{t}{\tau}} \left(1 \pm \cos\left(\Delta m_s t\right)\right)$$

dove
$$\Delta m_s = m_h - m_l$$

Per la misura di Δm_s e, quindi, per osservare oscillazioni dipendenti dal tempo, dobbiamo determinare

- Flavour di B al tempo di produzione e di decadimento: FLAVOUR TAGGING
- Tempo proprio di decadimento dell'adrone

FLAVOUR TAGGING

Il flavour al tempo di decadimento si determina guardando la carica delle particelle prodotte allo stato finale, ad esempio $B_s^0 \rightarrow D_s^- \pi^+$

 $\overline{B}_{s}^{0} \rightarrow D_{s}^{+}\pi^{-}$

Quello al tempo di produzione è più difficile da determinare!

L'efficacia di un flavour tag è quantificata grazie al potere effettivo di tagging \mathcal{ED}^2 dove **D** è la diluizione e \mathcal{E} l'efficienza.

D grande \rightarrow facile fare la misura \rightarrow risoluzione più alta.

Avremo
$$\frac{1}{\sigma} \propto \sqrt{N \varepsilon D^2}$$

Per migliorare la risoluzione: suddivido i tags con diluizione diversa e parametrizzo D in ciascuna categoria.

ESEMPIO

Studio la variazione di D dei tags di elettroni con pTrel

Si ottiene il seguente grafico

 $\vec{p}(B) + \vec{p}(track)$ $\vec{p}(B)$ p_{L}^{rel} p(track)

Quindi se ho un algoritmo che mi dice il flavour iniziale del B e so che è migliore per certi valori di pTrel, mi conviene fare la misura in diversi bin di pTrel. In ciascun bin i avrò $\varepsilon_{i,}D_{i} \longrightarrow \Sigma_{i}\varepsilon_{i}D_{i}^{2} \ge \varepsilon D^{2}$

In pratica la somma quadratica è maggiore del quadrato della somma, quindi rende maggiore la risoluzione della misura.

4

Il flavor tag alla produzione si divide in

- Same Side Tag (SST) : guarda le tracce associate all'adronizzazione del b / b che produce il \overline{B}_s^0 / B_s^0
- **Opposite Side Tag (OST)** : guarda i prodotti di decadimento dell'adrone B prodotto dall'altro quark \overline{b} / b nello stesso evento.

Metodo di calibrazione

Per la calibrazione utilizziamo un campione semileptonico inclusivo parzialmente ricostruito.

Il modo in cui si controlla la diluizione di un tagger è di osservare l'ampiezza di oscillazione. Se questa è pari alla D calcolata allora abbiamo ben calibrato. D è la stessa sia per il mixing di Bd, di Bs o per lo studio della carica di B+,B-. Verifico la D misurata nel campione inclusivo ricostruendo

- decadimenti di B+/B-
- decadimenti di Bd
- Metodi di tagging
 - 1)Lepton tagging
 - 2) Kaon tagging
 - 3) Jet Charge tagging

1) LEPTON TAGGING

Cerca elettroni o muoni dal decadimento semileptonico di B che avviene nell'opposite side: $b \rightarrow cl^-\overline{\nu}, \overline{b} \rightarrow \overline{c}l^+\nu$

La carica di questo leptone è correlata al sapore dell'adrone B. BR($B \rightarrow I X$) ~ 20%

ightarrow bassa efficienza, alta D

Se considero il tag per gli elettroni $\implies L_e > 0.85$

Parametrizzo D:

$$D_{mis}(p_T^{rel}) = A \cdot (1 - e^{-p_T^{rel} + B})$$

2) KAON TAGGING

Cerca Kaoni nei jet nell'opposite side dalla catena di decadimento $b \rightarrow c \rightarrow s$. La carica di un K è correlata al sapore di B:

K⁻ da b→c→s, b→c c(bar) s, b→c u(bar) s; K⁺ da un b(bar).

Ostacoli: - identificazione di kaoni in un vasto background di pioni (importanza

TOF e di dE/dx)

- distinguere fra K da decadimento di B e non dalla prima interazione

 $p - \overline{p}$ (importanza del parametro di impatto).

📥 Alta efficienza, bassa D

Parametrizziamo D in funzione di una variabile x: $D(x) = e^{A + Bx}$

3) JET CHARGE TAGGING

Sfrutta il fatto che il segno della somma della carica delle particelle negli opposite side b jet, pesata sul momento delle particelle, è correlato alla carica del b quark che produce questi jet (Qb=-1/3, Qb(bar)=+1/3)

$$Q_{jet} = \frac{\sum_{i} Q_{i} p_{T}^{i} (1 + P_{trk}^{i})}{\sum_{i} p_{T}^{i} (1 + P_{trk}^{i})}$$

Alta efficienza, bassa D.

Per migliorare l'identificazione delle particelle nei jet, questi si dividono in classe 1, 2, 3.

La diluizione D qui è espressa come funzione lineare di Qjet.

Performance OST

Opposite Side Tag	Efficiency ε [%	6] Effect	. dilution $\langle \mathcal{D} \rangle$ [%]	Tagging Power $\varepsilon \mathcal{D}^2$ [%]
Muon	4.6 ± 0.0		34.7 ± 3.5	0.58 ± 0.02
Electron	3.2 ± 0.0		30.3 ± 0.7	0.29 ± 0.01
Jet Charge	95.5 ± 0.1		9.7 ± 0.2	0.90 ± 0.03
Kaon	18.1 ± 0.1		11.1 ± 0.9	0.23 ± 0.02
Combined NN	95.8 ± 0.1		12.7 ± 0.2	1.55 ± 0.04

L'idea del SST è di identificare la traccia che deriva dalla frammentazione di b / \overline{b} e determinare il sapore di B alla produzione dalla carica di questa traccia. Nel caso di \overline{B}_s^0 le particelle derivanti dall'adronizzazione sono soprattutto K (SSKT)

Vantaggi rispetto l' OST

 Alta efficienza e alta D: traccia dell'adronizzazione in stessa regione del segnale di B nel detector

- No limitazioni da BR

Performance SST

Dipende strettamente da specie di B che decade, non possiamo usare i dati > MC

[%]		$B_u^- ightarrow D^0 \pi^-$	$\overline{B}^0_d \to D^+ \pi^-$	$\overline{B}^0_s \to D^+_s \pi^-$
MC	ϵ	55.9 ± 0.1	56.6 ± 0.1	52.1 ± 0.3
	$\langle \mathcal{D} \rangle$	26.8 ± 0.2	16.1 ± 0.6	29.2 ± 0.7
data (1 fb ^{-1})	ε	58.2 ± 0.3	57.2 ± 0.3	49.3 ± 1.3
	$\langle \mathcal{D} \rangle$	26.4 ± 0.8	15.2 ± 1.7	

Performance of the NN based algorithm in data and Monte Carlo.

TEMPO PROPRIO DI DECADIMENTO

$$c \tau = \frac{L}{\beta \gamma} = \frac{L}{p / m_{B_s}} = \frac{L_{xy}}{p_T} m_{B_s}$$

Errore su $\mathcal{M}_{B_{s}}$ è trascurabile.

Errore su Lxy dominato da incertezza su misura vertice secondario (importanza rivelatori di vertice al silicio). Simile per decadimenti adronici e semileptonici.

Errore su pT, a causa del neutrino, è molto più grande per i decadimenti semileptonici.

Risoluzione sul mixing:

$$\frac{1}{\sigma} = \sqrt{\frac{S\varepsilon D^2}{2}} e^{-\frac{(\Delta m_s \sigma_{c\tau})^2}{2}} \sqrt{\frac{S}{S+B}}$$

$$\sigma_{c\tau} = \sqrt{\frac{m_{B_s}^2}{p_T^2}} \sigma_{L_{xy}}^2 + \frac{c\tau^2}{p_T^2} \sigma_{p_T}^2$$

Misura di Δm_s

AMPLITUDE SCAN

E' una tecnica di fitting basata sul metodo della stima del massimo della likelihood, che estrae i parametri di interesse dal campione di dati di B.

Fittiamo per l'ampiezza di oscillazione A, mentre fissiamo Δm_s

Introduciamo il parametro A nel modello della likelihood. La parte del tempo proprio ~ $\left[1 \pm A \cdot D \cos(\Delta m_{c} t)\right] \cdot e^{-\frac{t}{\tau}}$

A=1 mixing; valore di Δm_s fissato vicino al valore vero

A=0 no mixing; altrimenti

 σ_A cresce con $\Delta m_s \implies$ per valori alti di Δm_s è impossibile distinguere fra A=1 e A=0.

Questa tecnica equivale grosso modo ad un' **analisi di Fourier del segnale** oscillante $B_s^0 - \overline{B_s}^0$:

Si è visto che A(ω) $\approx \delta(\omega)$ = trasformata di Fourier di $\delta(t)$ = differenza fra le distribuzioni di tempo proprio degli eventi taggati come mixed e unmixed. La normalizzazione è tale che A=1 alla risonanza \longrightarrow Studio delle distorsioni nelle vicinanze della frequenza di oscillazione usando le trasformazioni di Fourier.

Analisi qualitativa

Modello semplificato: trascurata risoluzione, effetti di ricostruzione parziale, background.

Il picco di risonanza aspettato nell' amplitude scan predetto considerando $Re[\delta(\omega)]$ e normalizzandola al suo valore al picco.

Dai dati ottenuti con una descrizione completa della likelihood si osserva

RISULTATI

A~1 per $\Delta m_s = 17.75 \text{ ps}^{-1}$. Per $\Delta m_s = 17.75 \text{ ps}^{-1}$ si ha A=1.21±0.20.

Dall'andamento di $\Lambda \equiv -\log[L^{A=0}/L^{A=1}(\Delta m_s)]$ in funzione di Δm_s estraggo in corrispondenza del minimo $\Lambda = -17.26$

 $\Delta m_s = 17.77 \pm 0.10 (\text{stat}) \pm 0.07 (\text{sist}) \text{ ps}^{-1}$.

INTERPRETAZIONE DEL RISULTATO IN CHIAVE DI CKM

Matrice di CKM
$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

4 gradi di liberta: 3 angoli + 1 fase complessa → violazione CP Parametrizzazione di Wolfenstein (λ = 0.2272 ± 0.0010):

$$V = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

or $\rho, \eta < 1$ parametri meno conosciuti.
$$\mathbf{c}$$

$$\begin{array}{l} \sqrt{1} \sqrt{1} \sqrt{1} V_{1k} + V_{2j}^{*} V_{2k} + V_{3j}^{*} V_{3k} = \delta_{jk} \\ V_{j1}^{*} V_{k1} + V_{j2}^{*} V_{k2} + V_{j3}^{*} V_{k3} = \delta_{jk} \\ j \neq k : j = 3, k = 1 \qquad \qquad V_{ub}^{*} V_{ud} + V_{cb}^{*} V_{cd} + V_{tb}^{*} V_{td} = 0 \\ \frac{V_{ub}^{*} V_{ud}}{V_{cb}^{*} V_{ud}} + \frac{V_{cb}^{*} V_{ud}}{V_{cb}^{*} V_{cd}} + 1 = 0 \\ \end{array}$$
Il Triangolo
Unitario
$$\begin{array}{c} A = (\tilde{p}, \tilde{n}) \\ \hline V_{c} = (0, 0) \\ \hline V_{c} = (0, 0) \\ \hline V_{cb} = (0, 0) \\ \hline V_{$$

Prima di Δm_s

Dopo Δm_s

Propositi per il futuro

- Migliorare incertezza teorica sul rapporto
- Ora che abbiamo determinato il modulo dell'ampiezza di mixing Δm_s 19 possiamo cominciare a studiare la sua fase $m eta_s$

 V_{td}

 V_{ts}