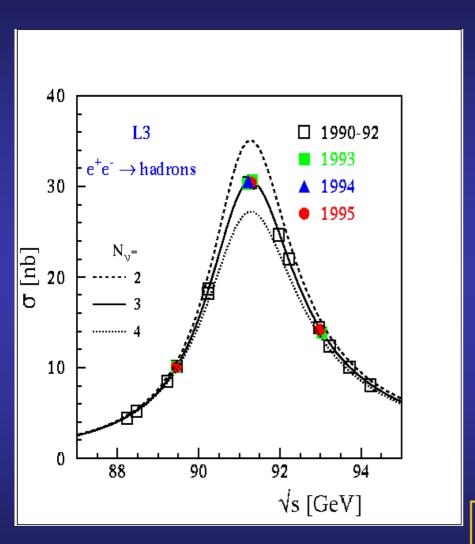
Misura diretta al LEP del numero di famiglie di neutrini

Quanti tipi diversi di neutrino esistono?

Spettro continuo del decadimento β


$$\pi^{+} \longrightarrow \mu^{+} + \nu_{\mu}$$

$$\nu_{\mu} + n \longrightarrow p + \mu^{-}$$

Scoperta del leptone τ

Il quadro è completo?

Misura indiretta di N_v al LEP

$$\Gamma_{\text{inv}} = \Gamma_{\text{tot}} - \Gamma_{\text{vis}}$$

 $SM: \Gamma_v$ = 166.8 ± 1.5 MeV

$$N_{v} = \Gamma_{inv} / \Gamma_{v}$$

ALEPH

DELPHI

L3

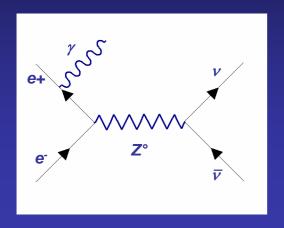
OPAL1

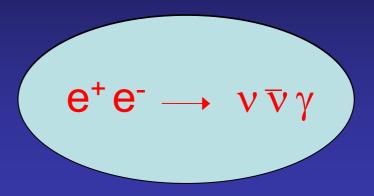
 $N_v = 2.9840 \pm 0.0082$

Misura diretta di N_v

1981: G. Barbiellini, B. Richter and J. L. Siegrrist Physics Letters B 106 (1981) 414

Radiative Z⁰ production: A method for neutrino counting in e⁺e⁻ collisions

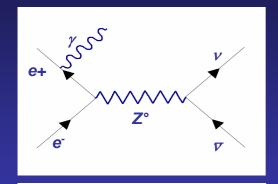

Radiative Z^0 production in e⁺e⁻ collisions is analyzed as a method of measuring the partial width of the Z^0 for decay into neutrinos and thus determining if there exist low mass neutral leptons beyond the three now known $(\nu_e, \nu_\mu, \nu_\tau)$. The conditions for observing the $Y^{\nu \overline{\nu}}$ final state are analyzed and background cross sections are determined. We conclude that the experiment is feasible and requires relatively modest apparatus.

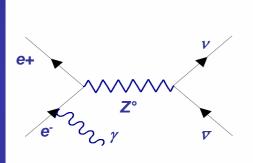

1988: M. Chen, C. Dionisi, M. Martinez and X. Tata Physics Reports 159 (1988) 201

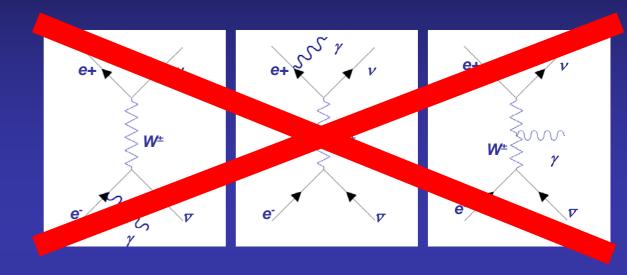
Signals from non-strongly interacting supersymmetric particles at LEP energies

L'idea base

- Forte segnatura: un solo fotone con $E_{\gamma} = \sqrt{s} - M_{Z^{\circ}}$
- Possibilità di osservare un gran numero di eventi in prossimità di M_{z°}
- La misura è diretta!


Vantaggi di una misura diretta


Il valore di Γ_{inv} potrebbe essere dovuto non solo ai neutrini ma anche ad altre particelle stabili e debolmente interagenti con m<M_{z°}/2
N_v>3


Il valore di Γ_{inv} potrebbe anche essere più piccolo del previsto a causa, ad esempio, di accoppiamenti non previsti dallo SM N.<3

Una misura diretta della Γ_{inv} risulta allora fondamentale

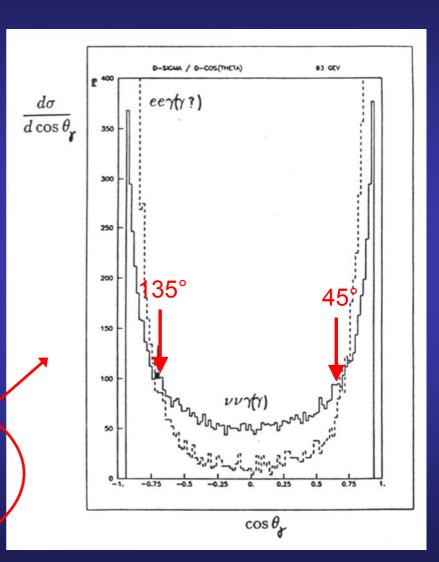
Processi caratteristici

$$\frac{d^2\sigma}{dE_{\gamma}d\cos\theta_{\gamma}} = H(E_{\gamma},\cos\theta_{\gamma},s)\sigma_0(s')$$

Se √s è prossima a M_{z°} questi contributi sono trascurabili

$$\sigma_0(s') = \frac{12\pi}{M_{Z^0}^2} \frac{s' \Gamma_e N_\nu \Gamma_{\nu\bar{\nu}}}{\left(s' - M_{Z^0}^2\right)^2 + s'^2 \Gamma_{Z^0}^2 / M_{Z^0}^2}$$

$$s' = s \left(1 - 2E_{\gamma} / \sqrt{s} \right)$$

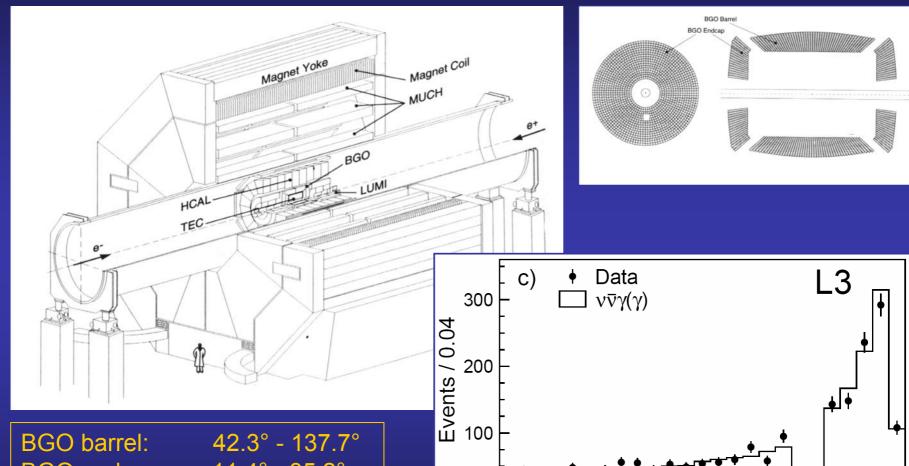

II background

$$\bullet e^+e^- \longrightarrow \gamma \gamma \gamma$$

$$\bullet e^+e^- \longrightarrow e^+e^-X$$

con X = I⁺ I⁻
$$\gamma$$
, π^0 , η , η '....


e⁺e⁻→ e⁺e⁻γ
 Radiative
 Bhabha scattering


Strategia della misura

- Misurare un singolo fotone di bassa energia (~100 MeV)
- Assicurarsi che l'evento non sia di background
- Conoscendo la luminosità della macchina, dal numero di eventi si ricava la sezione d'urto
 - Dalla sezione d'urto si ricava il valore di N,

L'apparato sperimentale: L3 al LEP

L'apparato sperimentale: L3 al LEP

0.25

0.5

 $|\cos\theta_{\nu}|$

0.75

BGO endcaps: 11.4° - 35.2°

144.8° - 168.6°

HCAL: 6° - 174°

MUCH: 36° - 144°

LUMI: 1.4° - 3.9°

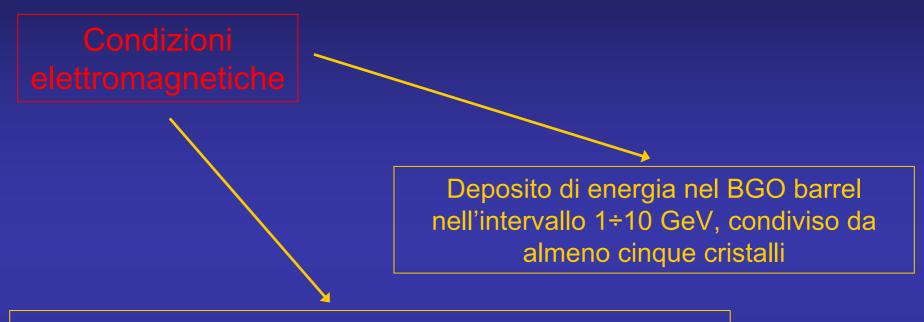
Il trigger di primo livello

- Si sommano gli output del BGO barrel in 256 segmenti da 30 cristalli ciascuno
- Vengono sommati i segmenti per θ costante e ϕ costante: si ottengono 32 somme Σ_{θ} ed 8 somme Σ_{ϕ}
 - Condizioni del trigger:

$$\sum_{\theta}^{\max} e \sum_{\phi}^{\max} > 900 MeV$$

$$\sum_{\theta}^{\max} e \sum_{\phi}^{\max} > 0.8 \sum_{tot}$$

Rate ~1 Hz (essenzialmente dovuto al rumore elettronico!!!)

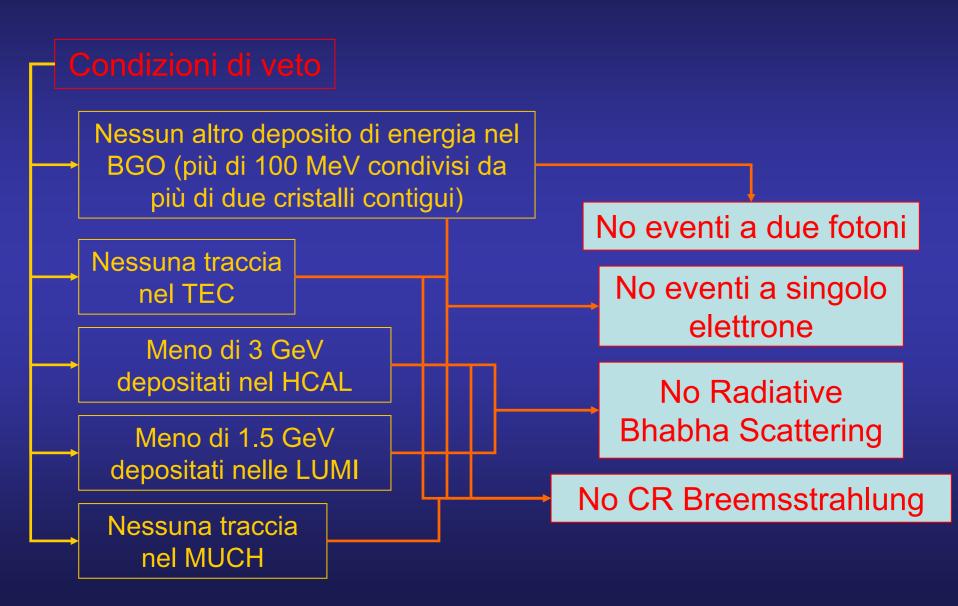

Il trigger di terzo livello

 Nuova condizione di trigger: un UNICO cluster nel BGO barrel con un'energia totale maggiore di 500 MeV

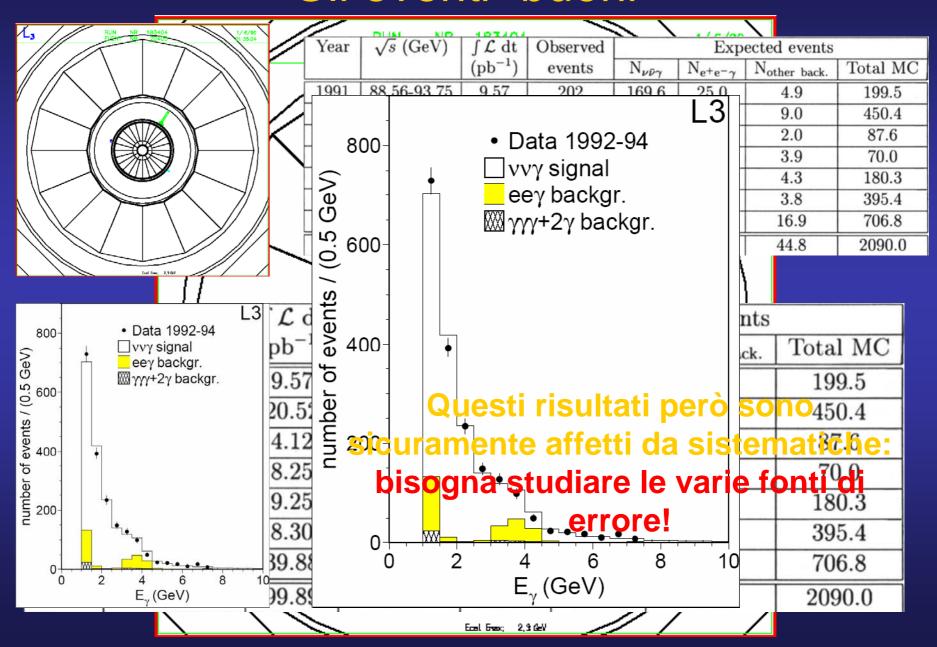
Il cluster deve essere formato da un numero di cristalli che va da 2 a 80.

Il rate totale di eventi in uscita dal trigger si riduce ~ 0.01 Hz

La selezione degli eventi

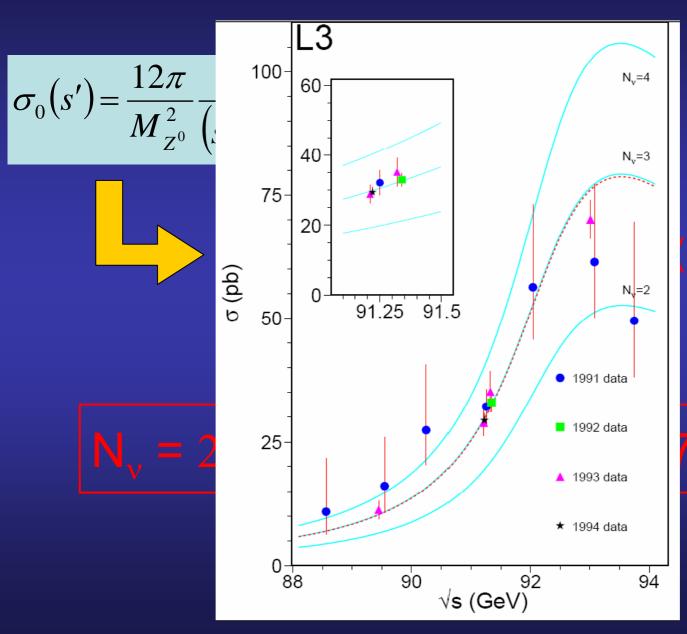


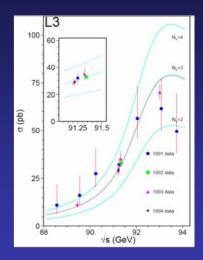
Distribuzione laterale dell'energia depositata compatibile con quella ottenibile da una singola particella elettromagnetica proveniente dal punto d'interazione



In questo modo diminuisce la probabilità di includere eventi di bremsstrahlung da raggi cosmici

La selezione degli eventi

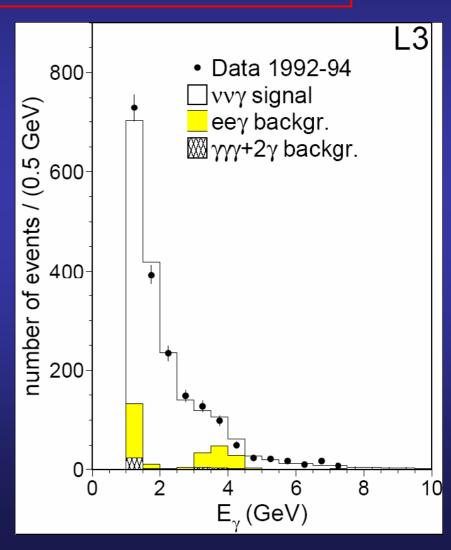

Gli eventi "buoni"



Studio degli errori sistematici

Syst		Systematic	error source	$\Delta\Gamma_{\rm inv}$ (Mev)	ΔN_{ν}		
	Effic Trigger efficiency			8.4	0.050		
		Background subtraction		4.8	0.029		
		Selection efficiency		4.0	0.024		
		Energy scale		4.0	0.024	enza di zione del	
Efficienza di s		Monte Carlo generators		3.5	0.021		
condizio		Cosmic ray background		1.7	0.010		
elettromagn		Luminosity error		1.8	0.011	ground	
		$\Gamma_{\nu\nu}$ theoretical error		_	0.004		
		Fit procedure		2.5	0.015		
Efficienza di		Total error		12.3	0.073		
СО	Year	\sqrt{s} (GeV)	Efficiency	σ (pb)		Ray	
	1992	91.34	0.572	$32.9 \pm 1.8(\text{stat}) \pm 0.6(\text{sys})$		(sys) und	
F	1993	91.32	0.594	$35.2 \pm 4.1(\text{stat}) \pm 0.6(\text{sys})$		s(sys)	
Erro	1993	89.45	0.578	$11.2 \pm 1.8(stat) \pm 0.3(sys)$			
	1993	91.21	0.570	$28.8 \pm 2.5(\text{stat}) \pm 0.5(\text{sys})$			
	1993	93.04 0.602		$70.1 \pm 3.9(\text{stat}) \pm 1.1(\text{sys})$, ,	
	1994	91.22 0.505		$29.4 \pm 1.3(\text{stat}) \pm 0.5(\text{sys})$		(sys)	

Risultati


sys) MeV

(sys)

Conclusioni

$$N_v = 2.98 \pm 0.07 \text{ (stat)} \pm 0.07 \text{ (sys)}$$

- Sicuramente non è una misura precisa come si sperava
- Se anche si avesse a disposizione una statistica maggiore resterebbe il problema delle sistematiche
 - Con le conoscenze attuali non è possibile una misura di questo tipo molto più precisa

