

OPERA

Oscillation Project with Emulsion tRacking Apparatus

Perché nasce:

• un flusso isotropo rispetto a θ

Invece...

Perché nasce:

Osservazione:

Attenuazione del flusso di V_{μ} ma non del flusso di V_{e} dipendente da E_{ν} e da θ (e quindi da L)

Spiegazione:

Oscillazione $\mathcal{V}_{\mu} \rightarrow \mathcal{V}_{\tau}$

con $\, {\cal V}_{ au} \,$ sotto la soglia di creazione del $\, {\cal T} \,$

Perché nasce:

Oscillazione $v_{\mu} \rightarrow v_{\tau}$ con la seguente probabilità: $P_{\nu_{\mu} \rightarrow \nu_{\tau}} = \sin^2(2\theta) \sin^2(1.27 \times (L/E) \times \Delta m^2)$ L in Km, E in GeV, Δm^2 in eV^2

Esperimenti di V_{μ} disappearance su neutrini atmosferici e da acceleratori (K2K, MINOS) confermano tale teoria

Sperimentalmente determinati i valori: $\sin^2(2\theta) \approx 1$ $\Delta m^2 = m_2^2 - m_3^2 = (2.5 \pm 0.4) \cdot 10^{-3} eV^2$

Novità di OPERA:

Esperimento di $V_{\mu} \rightarrow V_{\tau}$ appearance: creazione di fascio di V_{μ} e osservazione diretta di V_{τ} dopo un certo L Identificare V_{τ} tramite interazione CC: $V_{\tau}N \rightarrow \tau X$ su apposito bersaglio Identificare $\, \mathcal{T} \,$ tramite i suoi decadimenti

Problema:

 $v_{\tau}N \rightarrow \tau X$:reazione con soglia a 3.5GeV Causa: $m_{\nu} \approx 0$ mentre $m_{\tau} = 1.78GeV$ Serve E grande per poter rivelare V_{τ} Essendo $P_{\nu_{\mu} \rightarrow \nu_{\tau}} = \sin^2(2\theta) \sin^2(1.27 \times (L/E) \times \Delta m^2)$ serve L abbastanza grande, almeno L=100Km Scelta CERN --------------------------------GS (732Km)

Ottimizzazione di N_{τ}

$$N_{\tau} \propto M_{b} \int_{3.5 GeV}^{E \max} (E) \cdot P_{\nu_{\mu} \to \nu_{\tau}}(E) \cdot \sigma_{\nu_{\tau}}(E) \cdot \varepsilon(E) \cdot dE$$

Per poter rivelare i $\ \mathcal{T}$ occorre:

- un fascio intenso (CERN)
- una massa del bersaglio elevata
- una buona efficienza
- scegliere E in modo da massimizzare $\phi_{\nu_{\mu}}(E) \cdot P_{\nu_{\mu} \to \nu_{\tau}}(E) \cdot \sigma_{\nu_{\tau}}(E)$

Ottimizzazione di N_{τ}

Per massimizzare $\phi_{\nu_{\mu}}(E) \cdot P_{\nu_{\mu} \rightarrow \nu_{\tau}}(E) \cdot \sigma_{\nu_{\tau}}(E)$: E=17GeV per $\Delta m^2 = 2.5 \cdot 10^{-3} eV^2$ e $\sin^2(2\theta) \approx 1$: picco di $P_{\nu_{\mu} \rightarrow \nu_{\tau}}$ a L/E=515 Km/GeV: se E=17 GeV \rightarrow L=8755 km CNGS: L/E= 43 Km/GeV fuori dal picco

Per L=8775 Km $\longrightarrow P_{\nu_{\mu} \to \nu_{\tau}} = \max \mod \phi_{\nu_{\mu}} = 0$ Per E<=3.5 GeV $\longrightarrow P_{\nu_{\mu} \to \nu_{\tau}}$ grande ma $\sigma_{\nu_{\tau}} = 0$ Per E=100 GeV $\longrightarrow \sigma_{\nu_{\tau}}$ grande ma $P_{\nu_{\mu} \to \nu_{\tau}} \approx 0$

Come rivelare i τ

Bersaglio di grande massa per far avvenire la reazione:

 $\nu_{\tau}N \to \tau X$

Decadimenti possibili:

- $\tau^- \rightarrow \mu^- + \overline{\nu}_{\mu} + \nu_{\tau} \qquad BR: 17.36 \pm 0.06$
- $\tau^- \rightarrow h + \nu_{\tau}$ (uno o tre adroni)
- $\tau_{\tau} = (290.6 \pm 1.1) \cdot 10^{-15} s \quad : \text{ per } E \approx 12 GeV \rightarrow \quad \lambda \approx 600 \,\mu m$

Emulsioni: unica tecnica di rivelazione con risoluzione del micron

Come rivelare i τ

Decadimento caratteristico: kink

• Leptonico: $\tau^- \rightarrow l^- + \nu_l + \nu_{\tau}$

Facile da rivelare, necessario saper localizzare il kink ed identificare I (µ,e)

• Adronico: $\tau^- \rightarrow h + \nu_{\tau}$

Difficile da distinguere, molto fondo: interazioni adroniche

OPERA detector

Struttura ripetuta due volte per avere M grande e contemporaneamente efficienza di rivelazione (due spettrometri a muoni)

Brick:

Brick: componente base del detector

(ECC: emulsion cloud chamber)

56 strati di Pb (1mm) intervallati da 57 emulsioni

Pb: massa necessaria per far interagire v

EMULSIONI: rivelano la traccia delle particelle che lasciano bolle di ~1 micron per dE/dx

Peso di un brick: 8.3 kg

Bricks totali: 206336 Peso totale: 1.35kton

Cosa non può fare un ECC:

- Identificare segno e momento delle particelle
 Spettrometri a µ in B (per e non posso capire la carica)
- Trigger evento di interazione $v \rightarrow tracker elettronico per predire in che brick cercare (scintillatori)$

ANALISI: rimozione con apposito robot (brick manipulator system) dei soli brick candidati, sviluppo e osservazione al microscopio delle emulsioni

Tipi di decadimento

Long decays:

Produzione e disintegrazione τ in strati differenti di Pb

facilmente identificabili per tutti i canali

 $\theta_{kink} > 20mrad$: taglio per eliminare fondi

Short decays:

Produzione e disintegrazione τ nello stesso strato di Pb Identificabili solo per canali leptonici con efficienza limitata $θ_{kink}$ non identificato Decadimento individuato tramite il parametro

d'impatto:

 $I.P. > 5 / 20 \mu m$

Background

•Decadimento di mesoni con charm (su tutti i canali)

$$\tau_{D^+} = (1040 \pm 7) \cdot 10^{-15} \, s \to \lambda_{D^+} \approx \lambda_{\tau}$$

 μ primario non identificato (P ~ 5%)

errore di segno nel prodotto secondario (carica di e e h non misurata)

- •Reinterazioni adroniche in Pb (su canali µ e h)
 - h primario interpretato come t
- canale μ : μ identificato per errore con traccia che si connette all'h Eliminazione: p_T^{miss} troppo alto nel vertice primario (c'è v)

•Ampio angolo di scattering coulombiano del μ (su canale μ)

	τ→ e	$\tau \rightarrow \mu$	τ→h	τ→3h	Total
Charm background	.173	.008	.134	.181	.496
Large angle μ scattering		.096			.096
Hadronic background		.077	.095		.172
Total per channel	.173	.181	.229	.181	.764

Background stimato con simulazioni e confronto con precedenti esperimenti (CHORUS e NOMAD)

Efficienza

Calcolo dell'efficienza del canale principale: $\tau \rightarrow \mu~~{\rm long}~{\rm decay}$

$ au ightarrow \mu$ efficiency breakdown							
BR	<u>Long</u> decay	<u>e Localization</u>	<u>Kink+</u> <u>kinematics</u>	$\frac{\text{Id } \mu + \text{ECC}}{\text{connection}}$	<u>Others</u>		
0.176	0.39	0.73	0.73	0.80	0.96		
6.8%							
2.8%							

Efficienza totale per tutti i canali:

τ decay channels	Efficiency	Signal ÷ (∆ <i>m</i> ²	Background	
		$\Delta m^2 = 2.5 \times 10^{-3}$ eV ²	$\Delta m^2 = 3.0 \times 10^{-3}$ eV ²	Background.
$\tau^{-} \rightarrow \mu^{-}$	3.74%	2.9	ainary 4.2	0.17
τ- → e ⁻	3.08%	3.5 otell	5.0	0.17
$\tau^{-} \rightarrow h^{-}$	3.19%	3.1	4.4	0.24
τ- → 3h	1.05%	0.9	1.3	0.17
ALL	11.06%	10.4	15.0	0.76

Un po' di dati

Funzionamento SPS: 200 days/year 4.5x10¹⁹ pot / year Energia media v_{μ} :17 GeV 5 year run massa del bersaglio: 1.35 kton (considerando la riduzione di massa causata dalla rimozione dei brick per l'analisi)

Interazioni aspettate ~ 30000 v_{μ} NC+CC ~ 150 v_{τ} CC a $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$ e pieno angolo di mixing rivelate ~15

background ~1

Primi run: 18-30 agosto 2006

Intensità integrata del fascio SPS: $7.6 \cdot 10^{17} pot$ (inferiore a quella prevista a regime) Pacchetti di protoni ogni 50ms.

OPERA: brick non posizionati, interazioni da neutrino in roccia circostante, spettrometri e materiale passivo della struttura

Rivelazione µ tramite gli spettrometri

319 interazioni (in accordo con le aspettative:300±5%)

 $<\theta>=(3.4\pm0.3)^{\circ}$ (in accordo con le aspettative:3.3°) causa:curvatura terrestre

Tempo in accordo con quello del CERN entro 600ns

considerando Time Of Flight = 2.4ms

Primi run: 18-30 agosto 2006

Ricostruzione eventi:

Tramite tracker elettronico (target tracker TT), spettrometri e due fogli di emulsioni (per verificare accordo tra tracce in emulsioni e in TT)

Importante risultato raggiunto: ottimo accordo tra tracce in emulsioni e in TT, con angoli minori di 10mrad. Ottimo passaggio da risoluzione centimetrica dei TT (strisce scintillanti di 26.3mm) a risoluzione micrometrica delle emulsioni

Prospettive: Completare l'installazione dei brick e iniziare la presa dati della durata di 5 anni a fine giugno 2008.

Bibliografia

- J.Marteau "OPERA first events from the CNGS neutrino beam" arXiv:0706.1699v1 [hep-ex]
- <u>http://operaweb.web.cern.ch/operaweb/index.shtml</u>
- <u>http://www-opera.desy.de/</u>
- New Journal of Physics 8 (2006) 303 (http://www.njp.org/) First events from the CNGS neutrino beam detected in the OPERA experiment
- Yves Declais for the OPERA collaboration, 45th international school of subnuclear physics ERICE 29 Agosto-7settembre 2007
- Michela Cozzi for the OPERA Collaboration, 20th RENCONTRES DE BLOIS – Challenges in Particle Astrophysics, Chateau de Blois (France) 18th - 23rd May 2008
- G.Acquistapace et al., The CERN neutrino beam to Gran Sasso, CERN 98-02 19/5/1998