

Ricerca dell'Higgs nel canale H→WW* con 2.4 fb⁻¹ a CDF II

Presentazione : Valeria Di Biagio

Tutor : Prof. Stefano Giagu

Corso di Fisica Nucleare e Subnucleare II, Prof. Carlo Dionisi (AA 2007-2008)

Indice degli argomenti

- Caratteristiche del canale di decadimento
- Detector : calorimetri in CDF
- Selezione degli eventi
- Analisi dati :
 Metodo dell'Elemento di Matrice
 discriminante S/B

 Reti Neurali
- Risultati per $\sigma(p\overline{p} \to H \to WW^*)$

DECADIMENTO $gg \to H \to WW^* \to l^+ l^- \nu \overline{\nu}$

SEGNALE

2 leptoni isolati di segno diverso : $e^+e^-, e^\pm\mu^\mp, \mu^+\mu^-$

PROBLEMA : separare segnale da background

• Canale dominante per $m_H > 135 \text{ GeV/c}^2$

 $\sigma_{NNLL}(H \rightarrow WW^*) = 0.388 \, pb$ a m_H = 160 GeV/c² Tevatron : collisioni $p \, \overline{p}$ a $\sqrt{s} = 1.96 TeV$

 \mathcal{L} integrata = 2.4 fb⁻¹

BACKGROUND

- WZ $\rightarrow lll v$ ZZ $\rightarrow ll v v$
- WW $\rightarrow ll \nu \overline{\nu}$ W γ , W+jet
- $t\bar{t} \rightarrow b\bar{b}llv\bar{v}$ QCD
- Drell-Yan • raggi cosmici

Calorimetro a CDF : sistema di coordinate

 φ : angolo azimutale θ : angolo polare con l'asse del fascio **pseudorapidità** : $\eta = -\ln(\tan\frac{\theta}{2})$ $\eta = -1.0$ $\eta = -2.5$ $\eta = 2.5$

Calorimetri segmentati nel piano $\eta vs \phi$ in celle (o torri) in cui viene rilasciata l'energia E_T dalle particelle, rappresentata sotto forma di " cluster "

Display di eventi generici : lego plot

calorimetro EM calorimetro HAD

piano $\eta vs \phi$

Calorimetro a CDF : schema generale

Suddiviso in due serie di calorimetri :

CENTRALI $|\eta| < 1.1$

- **CEM** : Central Electromagnetic Calorimeter
- CHA : Central Hadronic Calorimeter
- WHA : Wall Hadron Calorimeter

FORWARD $1.1 < |\eta| < 3.64$

- **PEM** : Plug Electromagnetic Calorimeter
- **PHA** : Plug Hadronic Calorimeter

SMX : Shower Maximum Detector

Segmentazione dei calorimetri							
$ \eta $ Range	$\Delta \phi$	$\Delta \eta$					
0 1.1 (1.2 h)	15°	~ 0.1					
1.1 (1.2 h) - 1.8	7.5°	~ 0.1					
1.8 - 2.1	7.5°	~ 0.16					
2.1 - 3.64	15°	0.2 - 0.6					

Caratteristiche dei calorimetri

Тіро	Profondità	Risoluzione in en. in risp. a singola pticella	Spessore assorbitore	Spessore scintillatore	
CEM	19 X ₀ (1λ)	$\frac{\sigma(E)}{E} = \frac{13.5\%}{\sqrt{E}} \oplus 1.5\%$	(Pb) 0.6 X ₀	5 mm	
PEM	21 X_0 (1 λ)	$\frac{\sigma(E)}{E} = \frac{16\%}{\sqrt{E}} \oplus 1\%$	(Pb) 0.8 X ₀	4.5 mm	
СНА	4.5 λ	$\frac{\sigma(E)}{E} = \frac{50\%}{\sqrt{E}} \oplus 3\%$	(Fe) 4 cm	10 mm	
WHA	4.5 λ	$\frac{\sigma(E)}{E} = \frac{75\%}{\sqrt{E}} \oplus 4\%$	/	/	
РНА	7λ	$\frac{\sigma(E)}{E} = \frac{80\%}{\sqrt{E}} \oplus 5\%$	(Fe) 5 cm	6 mm	

SMX : Detector posto all'interno dei calorimetri EM a circa 6 X₀, in corrispondenza del massimo previsto per la cascata elettronica ; migliora le misure di posizione e la risoluzione dei cluster

Identificazione dei leptoni da decadimento dei W

ELETTRONI Rapporto E_{HAD}/E_{EM} compatibile con cascata e.m.

 \Box centrale : traccia COT ben misurata $p_T > 10 GeV/c$ accoppiata con cluster di energia EM centrale

- □ forward : elettroni fiduciali per SMX forward + deposizione della loro energia nel calorimetro e in SMX consistente con forma di cascata elettronica
- Soppressione fondo di γ : traccia in calorimetro accoppiata a traccia SVX

Display evento 2 elettroni centrali

MUONI

Identificati mediante traccia carica accoppiata a un segmento di traccia ("stub") ricostruito nelle camere a muoni

Per recuperare accettanza, si considerano anche i μ con traccia carica in COT e con deposito nei calorimetri compatibile con quello di MIP

- Soppressione fondo di raggi cosmici : traccia più vicina alla linea di fascio consistente con una traccia proveniente dal vertice primario di interazione
- Per escludere decadimenti in volo di K : richieste su qualità di traccia nella COT

Isolamento dei leptoni

 $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2} < 0.4$ intorno alla direzione del leptone

Missing Energy

Nel caso in esame è definita come :

$$\mathbb{E}_{T} = \left| \sum_{i} E_{T,i} \hat{n}_{T,i} \right|$$

dove $\hat{n}_{T,i}$: componente trasversa del versore che va dal punto di interazione alla torre *i* del calorimetro

Selezione degli eventi di segnale

 I_1

 1_{2}

Candidati Higgs $ll \nu \nu$ selezionati a partire da due leptoni isolati di segno opposto, $M_{l_1 l_2} > 16 \text{ GeV} / c^2$

• Almeno 1 leptone deve soddisfare il trigger :

• Per aumentare l'accettanza cinematica , la richiesta per il secondo leptone è limitata a : $E_T > 10 \text{ GeV}$ elettrone $p_T > 10 \text{ GeV/c}$ muone

Le posizioni lungo l'asse z dei leptoni in un candidato al punto più vicino della linea di fascio devono essere consistenti con la provenienza dallo stesso vertice

Sono stati osservati 661 candidati , con un valore aspettato per il segnale di 9 eventi e per il background di 626 eventi per $m_H = 160 \text{ GeV} / c^2$

Background riducibili : tagli cinematici

- WZ $\rightarrow lll \nu$ con un leptone perso \Rightarrow richiesta di 2 leptoni esatti
- W γ , W + jets dove un γ o un jet è scambiato per un leptone \Rightarrow isolamento dei leptoni all'interno del cono $\Delta R < 0.4$

Background irriducibile : correlazioni di spin

L'Higgs è una particella scalare ↓ i W avranno spin opposto

I leptoni carichi a causa della loro elicità opposta tendono ad avere la stessa direzione :

Modello di S, B (Data modeling)

L'accettanza geometrica e cinematica degli eventi è basata su

SIMULAZIONI

- collisione : calcolo MC
- pdf dei partoni : CTEQ5L
- risposta del detector : simulazione GEANT3-based
- WW (sia S che B) : generatore MC@NLO WZ , ZZ , t \bar{t} , W γ : PHYTIA

La verifica di tali modelli è affidata a

CROSS-CHECKS (basati sui dati)

Sono previste 4 regioni di controllo per testare :

- efficienza di identificazione dei leptoni
- efficienza di trigger
- contributi di γ e jet scambiati per leptoni
- modellizzazione di E_T
- ecc .

Analisi dati

$$LR(x_{obs}) = \frac{P_H(x_{obs})}{P_H(x_{obs}) + \sum_i k_i P_i(x_{obs})}$$

Classificatore ottimale per discriminare S/B : Rapporto di verosimiglianza (Likelihood Ratio) 0 < LR(x) < 1

 $P_{\alpha}(x)$: α parametro legato al modo di decadimento (H \rightarrow segnale , i \rightarrow fondo)

- H legato a ciascuna delle ipotesi di massa dell'Higgs (M_H)
- k_i frazione aspettata per ogni background t.c. $\sum_i k_i = 1$

 \square calcolo della prob. dell'evento x per S e per B

Metodo dell'elemento di matrice (ME) :

$$P_{\alpha}(x_{obs}) = \frac{1}{\langle \sigma(\alpha) \rangle} \int \frac{d\sigma_{LO}(y;\alpha)}{dy} \varepsilon(y) G(x_{obs}, y) dy$$

 x_{obs} informazioni cinematiche : $\vec{l}^+, \vec{l}^-, \boldsymbol{E}_{Tx}, \boldsymbol{E}_{Ty}$

 $\frac{d\sigma_{LO}(y;\alpha)}{dy}$

sezione d'urto differenziale a livello dei partoni (1°ordine)

 $\mathcal{E}(y)$ funzione di accettanza e di efficienza del detector

 $G(x_{obs}, y)$ funzione di trasferimento che rappresenta la risoluzione del detector

$$\frac{1}{\sigma(\alpha)}$$
 fattore di normalizzazione

Metodo dell'Elemento di Matrice (ME)

Calcolo della sezione d'urto

$$\boldsymbol{\sigma} = \sum_{a,b} \int dx_a dx_b f_a(x_a, Q^2) f_b(x_b, Q^2) \hat{\boldsymbol{\sigma}}_{ab}(x_a, x_b)$$

in cui :

somma su tutti gli stati iniziali dei partoni a, b $f_i(x,Q^2)$ funzione di distribuzione di probabilità dei partoni sezione d'urto hard scattering tra partoni $\hat{\pmb{\sigma}}_{\scriptscriptstyle ab}$ $\mathbf{F}_{A \rightarrow a}(\mathbf{x}_a, \mathbf{Q}^2)$ $D_c^h(x_c,Q^2)$ Nel nostro caso : $\hat{\sigma}_{ab}$ ottenuta con MC (LO) $\hat{d\sigma}(a+b\rightarrow c+d)/dt$ $D_d^h(z_d,Q^2)$ $F_{B \rightarrow b}(x_b, Q^2)$

Rapporto di verosimiglianza (Likelihood Ratio)

Risultati analoghi anche per le altre ipotesi di m_H

Ulteriore operazione di discriminazione S/B : reti neurali con LR tra gli input

† NOTA : grafici relativi a misure precedenti (2007) → inseriti perché più leggibili (stessi andamenti)

Reti neurali (Neural Networks)

- Per ogni hp di massa dell'Higgs è addestrata indipendentemente una NN NeuroBayes[®] con una combinazione pesata di S ed eventi B da MC
- Struttura della NN : 3 layers → 11 nodi input, 12 nodi nascosti, 1 output
- Variabili di input :

Variable	Meaning
LRHWW	Likelihood ratio - $H \to WW$
LRWW	LR - WW production
LRZZ	LR - ZZ production
LRWg	$LR - W\gamma$
LRWj	LR - W+jets
dimass	Dilepton invariant mass
Met	Missing Transverse Energy
dPhiLeptons	$\Delta \phi$ between the leptons
dRLeptons	ΔR between the leptons
MetDelPhi	$\Delta \phi$ between the $ec{E}_T$ and nearest lepton or jet
MetSpec	$\vec{E}_{Tspec} = \vec{E}_T \text{ if } \Delta \phi \ (\vec{E}_T, 1 \text{ or } j) > \frac{\pi}{2}$
	$\vec{E}_{Tspec} = \vec{E}_T \sin(\Delta \phi \ (\vec{E}_T, 1 \text{ or } j)) \text{ if } \Delta \phi \ (\vec{E}_T, 1 \text{ or } j) < \frac{\pi}{2}$

• Una volta addestrata la NN , vengono creati dei templates per S <u>e</u> B che saranno usati come discriminanti finali per il calcolo del 95% C.L. sulla $\sigma(pp \rightarrow H \rightarrow WW^*)$

Risultati

(Risultati analoghi per le altre ipotesi di m_H)

Possiamo solo stimare un limite superiore per la σ del processo considerato , assumendo i dati consistenti con le predizioni del fondo

Risultati

CDF Run II Preliminary							
II: mmg	Maga	$(C_{\alpha}V/c^2)$	110	190			

 $\int \mathcal{L} = 2.4 \, \text{fb}^{-1}$

Higgs Mass (GeV/c^2)	110	120	130	140	150	160	170	180	190	200
$-2\sigma/\sigma_{SM}$	31.2	10.1	4.9	3.1	2.2	1.3	1.5	2.1	3.3	4.4
$-1\sigma/\sigma_{SM}$	42.2	13.6	6.6	4.1	3.0	1.8	1.9	2.8	4.3	5.9
Median/ $\sigma_{\rm SM}$	59.6	19.1	9.2	5.8	4.2	2.5	2.7	3.9	6.1	8.3
$+1\sigma/\sigma_{SM}$	84.9	27.3	13.0	8.2	6.0	3.5	3.8	5.5	8.6	11.8
$+2\sigma/\sigma_{SM}$	118.7	37.6	18.2	11.4	8.2	4.9	5.3	7.6	11.8	16.3
Observed $/\sigma_{SM}$	53.4	15.8	5.3	3.2	2.4	1.6	1.8	2.8	5.2	10.0

HWW ME+NN

BIBLIOGRAFIA

- CDF note 9236 : "Search for H→ WW* Production with a Combined Matrix Element Method and Neural Network Tecnique at Tevatron Using 2.4 fb⁻¹ of Data", dated : March 13, 2008
- CDF note 9195 : "Search for H→ WW Production Using 2.4 fb⁻¹", dated : February 29, 2008
- CDF note 8719 : "Search for hww production with matrix element methods using 1.1 fb⁻¹" (2007)
- S. Giagu : "Discriminazione segnale-fondo in HEP", FNSN2, Roma 26-28 maggio 2008
- Burcham and Jobes : "Nuclear and Particle Physics", ed. Prentice Hall
- Dispense del Corso di Fisica nucleare e subnucleare II, Prof.Dionisi (2007-2008)
- Sito CDF : www-cdf.fnal.gov

