Corso di Fisica Nucleare e Subnucleare II -

Erica M. Chiaverini

INTRODUZIONE

1950 Radiation damping : La radiazione di sincrotrone emessa da e⁺ e e⁻ ha effetti di Cooling sul fascio stesso

Stocastic Cooling (1972)

anni '60 e '70

AdA (1961)

Electron Cooling

Budker e Skrinsky, Sov. Phys. Usp 124, 1978

Schema dell'electron cooling (ECool)

Attenuazione della temperatura di un fascio "*caldo*" di ioni tramite il mescolamento con un "*fluido*" di elettroni "*freddo*"

Teorema di Liouville

Tempo di cooling

Ipotesi:

- ✓ Collisione coulombiana tra uno ione e un e⁻
- ✓ e⁻ fermo prima dell'urto, viene accelerato dal campo elettrico dello ione (B=0; P_{iniz} = P_{ione})
- e⁻ si muove lungo ρ
- \checkmark piccolo **p** trasferito (no deflessione)

$$\mathbf{p}_{\mathbf{e}} = \int \mathbf{e} \mathbf{E} \, d\mathbf{t} = \int \mathbf{e} \mathbf{E} \, \frac{d\mathbf{x}}{V} \approx \frac{\mathbf{e}}{V} \int \mathbf{E} \, d\mathbf{x}$$

durante l'urto

$$e^{-}$$

 $v_{e} | \rho$
 $v_{e} | \rho$
Ze

$$2\pi\rho d\rho$$

$$\Phi$$
 (**E**) = $2\pi\rho d\rho \int \mathbf{E} dx = \frac{Ze}{\varepsilon_0}$

$$\mathbf{p_e} = \frac{2Zr_ec^2}{\rho v}$$

Tempo di cooling

Contemporaneamente:
$$\Delta \rho \approx \frac{Zr_ec^2}{v^2}$$

La variazione media di
momento dello ione
nella direzione **v**,
è quindi: $\mathbf{n}_e:$ densità di e^{*} $\int_{\rho_{min}}^{\rho_{max}} \left(\frac{Zr_ec}{\rho v} - \frac{Zr_ec}{(\rho - \Delta \rho)v}\right) 2\pi\rho d\rho$
Sviluppando in potenze di $\Delta \rho$: $\rho_{min}:$ lunghezza di Debye
 $\rho_{min}:$ massimo impulso trasferito
 $L_c: \ln \frac{\rho_{max}}{\rho_{min}}$
 $\downarrow_c: \ln \frac{\rho_{max}}{\rho_{min}}$

Tempo di cooling

$$\tau = \frac{\gamma^2 M}{\eta m_e Z^2 r_e 2 c^4 n_L L_c} \begin{cases} \frac{1}{4\pi} v^3 & v >> v_e \qquad f(\mathbf{v}) = \delta \text{-Dirac} \\ \frac{3}{2\sqrt{2\pi}} \left(\frac{3/2 k_b T_e}{m_e}\right)^{3/2} v < v_e \qquad f(\mathbf{v}) = \text{Gaussiana} \\ \gamma^2 : f(v_e) PF - \text{lab; tempi} \\ \eta : L_{\text{CS}} / L_{\text{RING}} \end{cases}$$

In un tipico caso:

Apparato sperimentale per ECool

Gun : termocatodo (alto potenziale neg), schield Pierce, anodo ground per *accelerazione*

Magnete curvante

CS: Contenuta in un campo solenoidale (come l'intero apparato)

Magnete curvante

Collector: decelerazione e dump

Effetti di riduzione del tempo di cooling

✓ La tecnica di cooling tradizionale utilizza fasci di elettroni immersi in un campo magnetico longitudinale: il moto circolare trasverso, sovrapposto alla velocità di drift, rende piu' efficiente il cooling in termini di tempo.

✓ L'accelerazione longitudinale degli elettroni nel gun, porta ad un appiattimento della $f(v_e)$ e quindi ad una riduzione del tempo di cooling longitudinale

Fig. 6 Drag force on a proton in a flattened electron gas as function of projectile velocity. The dashed curves give the asymptotic behaviours derived in the text.

In un tipico caso: $T_e = 0.2 \text{ eV}$ $n_L = 3^* 10^8 \text{ cm}^{-3}$ $\gamma = 1$; Z=1 $\eta = 0.05$; $L_c = 10$

 $\tau = 40 \text{ s}$ viene ridotto di ~10 s

ECool di protoni a NAP-M (G.I.Budker, 1974)

Budker Institute of Nuclear Physics in Novosibirsk, Russia.

Storage ring NAP-M

Alcuni parametri dello Storage Ring NAP-M			
Energia dei protoni	50 Mev		
Corrente dei protoni	50 µA		
Lunghezza del perimetro	47 m		
Raggio di curvatura	3 m		
Frequenza delle oscillazioni di beta	atrone $\beta_x = 1.2$; $\beta_z = 1.4$		
Durata del ciclo di accelerazione	30 s		
Pressione media di gas residui	5*10 ⁻¹⁰ torr		
(con elettroni circolanti)			

Budker e Skrinsky, Sov. Phys. Usp 124, 1978

Alcuni parametri del sistema di Electron Cooling			
η		2*10 ⁻²	
Energia degli elettroni nell'esperimento		45 KeV	
Corrente elettroni		100 mA	
Temperatura degli elet	ttroni		
trasversa		0,2 eV	
longitudinale		10 ⁻⁴ e∨	
Campo magnetico long	gitudinale	1 kG	

Distribuzione della densità del fascio di protoni:

dopo accelerazione

cooling OFF dopo 200 s

Tevatron

Collider Protoni - Antiprotoni (980 GeV)

Tevatron e recycler

I Pbar(8.9 GeV) prodotti hanno uno spettro in energia molto largo

L'ECool viene utilizzato a Tevatron per aumentare la densità dello spazio delle fasi longitudinale dei Pbar

Recycler

Table 1: Electron cooler main parameters					
Parameter	Symbol	Value	Unit		
Electron kinetic energy	Eb	4.34	MeV		
Beam current	I_b	0.1-0.5	Α		
High voltage ripple, rms	δU	250	V		
CS length	L	20	m		
Solenoid field in CS	B_{cs}	105	G		
Beam radius in CS	R_b	3-4.5	mm		

FermilabTevatron Accelerator With Main Injector

Effetti di ECool

Luminosità integrata

Luminosità di picco

ECool: quando è utile

Le figure di merito che individuano l'efficienza di un metodo di cooling sono diverse $(\sigma_E, J_{CS}...)$ e una di queste è il tempo di cooling

$$\tau = \frac{\gamma^2 M}{\eta \ m_e Z^2 r_e 2 \ c^4 n_L L_c} \begin{cases} \frac{1}{4\pi} \ v^3 & v >> v_e \\ \frac{3}{2\sqrt{2\pi}} \left(\frac{3/2 \ k_b T_e}{m_e}\right)^{3/2} \\ v < v_e \\ \frac{3}{2\sqrt{2\pi}} \left(\frac{1}{2\sqrt{2\pi}} \left(\frac{3}{2\sqrt{2\pi}} + \frac{1}{2\sqrt{2\pi}} + \frac{1}{2$$

✓ È sfavorito per γ >>1 (in questo modello)

- Lunga CS (η)
- ✓ Fascio denso (n_L)
- ✓ Sfavorito per ioni molto caldi (prop a v³) per ioni freddi non dipende da v ma da T_e

Confronti

Stochastic cooling (SC) e electron cooling (EC) sono universali, al contrario del rad. damp.	technique	stoch.	electron	synchr. rad.
	species	all	ions	e^+e^-
 Tra loro sono complementari: SC lavora meglio con fasci caldi* ma il tempo di cooling è prop a N EC lavora fin quando c'è bisogno ma è efficiente a temperature dei 	favored beam velocity	high	$\begin{array}{l} \text{medium} \\ 0.01 < \beta < 0.1 \end{array}$	very high $\gamma > 100$
fasci piu' basse	beam intensity	low	any	any
Combinazione tra i due: SC trasverso EC longitudinale	cooling time	$N\cdot 10^{-8}~{ m s}$	$1 - 10^{-2}$ s	$\sim 10^{-3}~{\rm s}$
La scelta è principalmente influenzata dalle velocità degli ioni: SC alte v. EC basse v	favored temp.	high	low	any

* l'efficienza peggiora man mano che raffredda il fascio?

ECool: passato, presente e futuro

Il sistema di Electron Cooling è stato utilizzato:

- a LEAR (CERN) : scoperta sperimentale della regola di Okuba-Zweig-Iizuka, nell'interazione a bassa energia p-pbar, che dimostra la struttura complicata dei nucleoni
- Nella fisica dei nuclei radioattivi, di isotopi rari e nuclei esotici (ESR e SIS)
- a LEAR per la formazione di antidrogeno in volo (2003)

Energie degli elettroni per ECool

 $T_e = 2 - 300$ KeV : fiorenti dagli anni '80 $T_e = 1 - 10$ MeV : Nagaitsev (FNAL)

T_e ≥ 50 MeV : RHIC (Relativistic Heavy Ion Collider)

REFERENZE

- -S.P. Moller Cooling Techniques
- -J.Bosser, 4th Advanced Accelerator Physics Course, Proc. 1991 CERN Accelerator School, Ed.Turner, CERN 92-01 (1992) 157
- **-D. Möhl** *Beam Cooling: Past, present and future* Beam Cooling and Related Topics Workshop
- -Igor Meshov *Electron cooling: remembering and reflecting* Proceeding of EPAC, Lucerne, Switzerland
- *-Status of high energy electron cooling in FNAL's recycle ring* L.R. Prost, S. Nagaitsev et al
- -*A.V. Fedotov High energy electron cooling in a collider* New journal of physics -Budker e Skrinsky, Sov. Phys. Usp 124, **1978**
- -http://www-ecool.fnal.gov/ecool_rookie_book
- -C.Dionisi Fisica nucleare e subnucleare 1, cap 4 2004-2005