Cuoricino: decadimento $0\nu\beta\beta$

Alessandro Calandri - Tutor: Prof. Fabio Bellini

16 giugno 2011

Alessandro Calandri - Tutor: Prof. Fabio Bell Cuoricino: decadimento $0\nu\beta\beta$

• Oscillazione dei neutrini (cenni);

- Oscillazione dei neutrini (cenni);
- distinzione tra neutrino di Dirac e neutrino di Majorana;

- Oscillazione dei neutrini (cenni);
- distinzione tra neutrino di Dirac e neutrino di Majorana;
- che cosa e' il decadimento $\beta\beta$;

- Oscillazione dei neutrini (cenni);
- distinzione tra neutrino di Dirac e neutrino di Majorana;
- che cosa e' il decadimento $\beta\beta$;
- analisi dati relativa all'esperimento di Cuoricino.

Nel MS, ν e' stato introdotto come fermione a massa nulla (autostato di elicita' e chiralita' definito). In realta' i neutrini cambiano flavour durante il moto (*oscillazione*), quindi hanno una massa.

Nel MS, ν e' stato introdotto come fermione a massa nulla (autostato di elicita' e chiralita' definito). In realta' i neutrini cambiano flavour durante il moto (*oscillazione*), quindi hanno una massa.

Si introduce una matrice unitaria di mescolamento (PMNS) che lega gli autostati di massa agli autostati di flavour con la relazione:

$$\nu_I = \sum_i U_{li} \nu_i$$

dove $I = e, \mu, \tau$ e i = 1, 2, 3.

Nel MS, ν e' stato introdotto come fermione a massa nulla (autostato di elicita' e chiralita' definito). In realta' i neutrini cambiano flavour durante il moto (*oscillazione*), quindi hanno una massa.

Si introduce una matrice unitaria di mescolamento (PMNS) che lega gli autostati di massa agli autostati di flavour con la relazione:

$$\nu_I = \sum_i U_{li} \nu_i$$

dove $I = e, \mu, \tau$ e i = 1, 2, 3.

Caso semplice: combinazione di soli due neutrini \implies U diventa una matrice di rotazione U(θ), in funzione dell'angolo di mixing.

Nel MS, ν e' stato introdotto come fermione a massa nulla (autostato di elicita' e chiralita' definito). In realta' i neutrini cambiano flavour durante il moto (*oscillazione*), quindi hanno una massa.

Si introduce una matrice unitaria di mescolamento (PMNS) che lega gli autostati di massa agli autostati di flavour con la relazione:

$$\nu_I = \sum_i U_{li} \nu_i$$

dove $I = e, \mu, \tau$ e i = 1, 2, 3.

Caso semplice: combinazione di soli due neutrini \implies U diventa una matrice di rotazione U(θ), in funzione dell'angolo di mixing. La probabilita' di osservare un neutrino di flavour β , a distanza L dal punto di produzione con sapore α e':

$$P(L) = \sin^2 2\theta \sin^2(\frac{\Delta m_{12}^2 L}{4E})$$

I neutrini

Possono interagire solo mediante processi deboli.

I neutrini

Possono interagire solo mediante processi deboli.

- Non possiedono carica di colore;
- sono elettricamente neutri;

Possono interagire solo mediante processi deboli.

- Non possiedono carica di colore;
- sono elettricamente neutri;

Come possiamo distinguere un neutrino dalla sua antiparticella?

Possono interagire solo mediante processi deboli.

- Non possiedono carica di colore;
- sono elettricamente neutri;

Come possiamo distinguere un neutrino dalla sua antiparticella?

• Elicita': ogni neutrino puo' essere distinto dall'antineutrino tramite l'elicita', cioe' la proiezione dello spin nella direzione del moto. $h(\nu) = -1 e h(\overline{\nu}) = +1$.

Possono interagire solo mediante processi deboli.

- Non possiedono carica di colore;
- sono elettricamente neutri;

Come possiamo distinguere un neutrino dalla sua antiparticella?

• Elicita': ogni neutrino puo' essere distinto dall'antineutrino tramite l'elicita', cioe' la proiezione dello spin nella direzione del moto. $h(\nu) = -1 e h(\overline{\nu}) = +1$.

Ma i neutrini hanno massa, quindi l'elicita' non li distingue piu'!

Possono interagire solo mediante processi deboli.

- Non possiedono carica di colore;
- sono elettricamente neutri;

Come possiamo distinguere un neutrino dalla sua antiparticella?

- Elicita': ogni neutrino puo' essere distinto dall'antineutrino tramite l'elicita', cioe' la proiezione dello spin nella direzione del moto. $h(\nu) = -1 e h(\overline{\nu}) = +1$.
- Ma i neutrini hanno massa, quindi l'elicita' non li distingue piu'!
 - Numero leptonico: si ha: $L(\nu)=-1 \in L(\overline{\nu})=+1$.

I neutrini

Possono interagire solo mediante processi deboli.

- Non possiedono carica di colore;
- sono elettricamente neutri;

Come possiamo distinguere un neutrino dalla sua antiparticella?

• Elicita': ogni neutrino puo' essere distinto dall'antineutrino tramite l'elicita', cioe' la proiezione dello spin nella direzione del moto. $h(\nu)$ = -1 e $h(\overline{\nu})$ = +1.

Ma i neutrini hanno massa, quindi l'elicita' non li distingue piu'!

• Numero leptonico: si ha: $L(\nu)=-1 \in L(\overline{\nu})=+1$.

In realta' esistono processi del tipo:

$$\overline{\nu_e} + n \longrightarrow p + e^-$$

che non si sono osservati rispetto ad altri processi del tipo:

$$\overline{\nu_e} + p \longrightarrow n + e^+$$

$$\mathcal{L}_{\prime} = \overline{\psi} i \gamma_{\mu} \partial^{\mu} \psi$$

$$\mathcal{L}_{\prime} = \overline{\psi} i \gamma_{\mu} \partial^{\mu} \psi$$

Introduciamo un campo R, in modo tale che il meccanismo di Higgs generi un termine di massa per i ν :

$$\mathcal{L}_{\prime} = \overline{\psi} i \gamma_{\mu} \partial^{\mu} \psi$$

Introduciamo un campo R, in modo tale che il meccanismo di Higgs generi un termine di massa per i ν :

$$\mathcal{L}^{D} = m_{D}(\overline{\nu_{R}}\nu_{L} + \overline{\nu_{L}}\nu_{R})$$

con $m_D = \frac{yv}{\sqrt{2}}$

$$\mathcal{L}_{\prime} = \overline{\psi} i \gamma_{\mu} \partial^{\mu} \psi$$

Introduciamo un campo R, in modo tale che il meccanismo di Higgs generi un termine di massa per i ν :

$$\mathcal{L}^D = m_D(\overline{\nu_R}\nu_L + \overline{\nu_L}\nu_R)$$

con $m_D = \frac{yv}{\sqrt{2}}$ dove y e' un coefficiente di accoppiamento (Yukawa); e $\frac{v}{\sqrt{2}}$ e' il valore di aspettazione nel vuoto del campo di Higgs.

$$\mathcal{L}_{\prime} = \overline{\psi} i \gamma_{\mu} \partial^{\mu} \psi$$

Introduciamo un campo R, in modo tale che il meccanismo di Higgs generi un termine di massa per i ν :

$$\mathcal{L}^D = m_D(\overline{\nu_R}\nu_L + \overline{\nu_L}\nu_R)$$

con $m_D = \frac{yv}{\sqrt{2}}$ dove y e' un coefficiente di accoppiamento (Yukawa); e $\frac{v}{\sqrt{2}}$ e' il valore di aspettazione nel vuoto del campo di Higgs.

• Particella di Dirac $\nu \neq \overline{\nu}$.

Neutrino di Majorana

Consideriamo la condizione di Majorana

 $\psi=\psi^{\mathbf{c}}$

Particella di Majorana *ν* = *ν*.⇒ Tale condizione viola la conservazione del numero leptonico.

Neutrino di Majorana

Consideriamo la condizione di Majorana

$$\psi = \psi^{c}$$

Particella di Majorana *ν* = *ν*.⇒ Tale condizione viola la conservazione del numero leptonico.

$$\mathcal{L}_M = \frac{1}{2} \overline{N_L}^C \mathcal{M} N_L + h.c.$$

dove

$$\mathcal{M} = \left(\begin{array}{cc} m_L & 0\\ 0 & m_R \end{array}\right)$$

е

$$\mathcal{N}_L = \left(\begin{array}{c} \nu_L \\ \nu_R^C \end{array}\right)$$

Neutrino di Majorana

Consideriamo la condizione di Majorana

 $\psi=\psi^{\mathbf{c}}$

Particella di Majorana *ν* = *ν*.⇒ Tale condizione viola la conservazione del numero leptonico.

$$\mathcal{L}_{M} = \frac{1}{2} \overline{N_{L}}^{C} \mathcal{M} N_{L} + h.c.$$

dove

$$\mathcal{M} = \left(\begin{array}{cc} m_L & 0\\ 0 & m_R \end{array}\right)$$

 $\mathcal{N}_L = \left(\begin{array}{c} \nu_L \\ \nu_D^C \end{array} \right)$

е

 \implies Bisogna quindi ricercare un processo che implichi la non conservazione del numero leptonico per indagare sulla condizione di Majorana. **Per** esempio il decadimento $0\nu\beta\beta$.

Decadimento β : $n \rightarrow p + e^- + \overline{\nu_e}$;

Decadimento β : $n \rightarrow p + e^- + \overline{\nu_e}$;

- Doppio decadimento β permesso MS ($\Delta L = 0$) $2n \rightarrow 2p + 2e^- + 2\overline{\nu_e}$;
- Doppio decadimento β NON permesso MS ($\Delta L = 2$) $2n \rightarrow 2p + 2e^{-}$

Decadimento β : $n \rightarrow p + e^- + \overline{\nu_e}$;

- Doppio decadimento β permesso MS ($\Delta L = 0$) $2n \rightarrow 2p + 2e^- + 2\overline{\nu_e}$;
- Doppio decadimento β NON permesso MS ($\Delta L = 2$) $2n \rightarrow 2p + 2e^{-}$

Transizione debole semi-leptonica (vita media $\tau = 10^{18} - 10^{22}y$):

• $2\nu \text{DBD}$: $(A, Z) \longrightarrow (A, Z + 2) + 2e^{-} + 2\overline{\nu_e}$.

Transizione debole semi-leptonica (vita media $\tau = 10^{18} - 10^{22} y$):

• $2\nu \text{DBD}$: $(A, Z) \longrightarrow (A, Z + 2) + 2e^{-} + 2\overline{\nu_e}$. Il decadimento e' a 4 corpi: spettro continuo.

- $2\nu \text{DBD:} (A, Z) \longrightarrow (A, Z + 2) + 2e^{-} + 2\overline{\nu_e}$. Il decadimento e' a 4 corpi: spettro continuo.
- $0\nu \text{DBD}$: $(A, Z) \longrightarrow (A, Z+2) + 2e^{-}$.

- $2\nu \text{DBD}$: $(A, Z) \longrightarrow (A, Z + 2) + 2e^{-} + 2\overline{\nu_e}$. Il decadimento e' a 4 corpi: spettro continuo.
- 0*ν*DBD: (*A*, *Z*) → (*A*, *Z* + 2) + 2*e*⁻.
 II decadimento e' a 2 corpi: i due *e* prodotti possiedono tutta l'energia cinetica disponibile (trascurabile il rinculo nucleare). Singola delta monocromatica piccata al valore della differenza di massa fra i due nuclei.

- $2\nu \text{DBD}$: $(A, Z) \longrightarrow (A, Z + 2) + 2e^{-} + 2\overline{\nu_e}$. Il decadimento e' a 4 corpi: spettro continuo.
- 0*ν*DBD: (*A*, *Z*) → (*A*, *Z* + 2) + 2*e*⁻.
 II decadimento e' a 2 corpi: i due *e* prodotti possiedono tutta l'energia cinetica disponibile (trascurabile il rinculo nucleare). Singola delta monocromatica piccata al valore della differenza di massa fra i due nuclei.

Alcuni elementi importanti

• La probabilita' di decadimento:

Alcuni elementi importanti

• La probabilita' di decadimento:viene espressa secondo la regola d'oro di Fermi

$$rac{1}{ au_{0
u}}=G(Q,Z)|M_{nucl}|^2rac{|m_{etaeta}|^2}{m_e^2}$$

dove G(Q, z) e' il contributo dello spazio delle fasi; $|M_{nucl}|^2$ e' l'elemento di matrice nucleare e $m_{\beta\beta}$ e' la massa effettiva del neutrino tale che
• La probabilita' di decadimento:viene espressa secondo la regola d'oro di Fermi

$$rac{1}{ au_{0
u}}=G(Q,Z)|M_{nucl}|^2rac{|m_{etaeta}|^2}{m_e^2}$$

dove G(Q, z) e' il contributo dello spazio delle fasi; $|M_{nucl}|^2$ e' l'elemento di matrice nucleare e $m_{\beta\beta}$ e' la massa effettiva del neutrino tale che

$$|m_{etaeta}| \propto (rac{1}{ au_{0
u}})^{1/2}$$

• La probabilita' di decadimento:viene espressa secondo la regola d'oro di Fermi

$$rac{1}{ au_{0
u}}=G(Q,Z)|M_{nucl}|^2rac{|m_{etaeta}|^2}{m_e^2}$$

dove G(Q, z) e' il contributo dello spazio delle fasi; $|M_{nucl}|^2$ e' l'elemento di matrice nucleare e $m_{\beta\beta}$ e' la massa effettiva del neutrino tale che

$$|m_{etaeta}| \propto (rac{1}{ au_{0
u}})^{1/2}$$

• La ricerca del decadimento $0\nu\beta\beta$:

• La probabilita' di decadimento:viene espressa secondo la regola d'oro di Fermi

$$rac{1}{ au_{0
u}}=G(Q,Z)|M_{nucl}|^2rac{|m_{etaeta}|^2}{m_e^2}$$

dove G(Q, z) e' il contributo dello spazio delle fasi; $|M_{nucl}|^2$ e' l'elemento di matrice nucleare e $m_{\beta\beta}$ e' la massa effettiva del neutrino tale che

$$|m_{etaeta}| \propto (rac{1}{ au_{0
u}})^{1/2}$$

• La ricerca del decadimento $0\nu\beta\beta$:si puo' dire di avere osservato un decadimento se $N_{\beta\beta} > n \cdot \sqrt{B}$ dove *B* rappresenta il numero di eventi del fondo e *n* e' il livello di confidenza.

• La probabilita' di decadimento:viene espressa secondo la regola d'oro di Fermi

$$rac{1}{ au_{0
u}}=G(Q,Z)|M_{nucl}|^2rac{|m_{etaeta}|^2}{m_e^2}$$

dove G(Q, z) e' il contributo dello spazio delle fasi; $|M_{nucl}|^2$ e' l'elemento di matrice nucleare e $m_{\beta\beta}$ e' la massa effettiva del neutrino tale che

$$|m_{etaeta}| \propto (rac{1}{ au_{0
u}})^{1/2}$$

• La ricerca del decadimento $0\nu\beta\beta$:si puo' dire di avere osservato un decadimento se $N_{\beta\beta} > n \cdot \sqrt{B}$ dove *B* rappresenta il numero di eventi del fondo e *n* e' il livello di confidenza.

$$N_{\beta\beta} = \lambda_{\beta\beta} N t \epsilon$$

dove $\lambda_{\beta\beta}$ e' la probabilita' del decadimento; t e' il tempo di misura; ϵ e' l'efficienza del rivelatore e N il numero di atomi candidati.

10 / 27

La formula della sensitivita'

La formula della sensitivita'

• Il numero medio di conteggi del background intorno al Q-value e':

 $B = b \cdot M \cdot \Delta E \cdot t$

dove *b* e' la rate del bkg; *M* e' la massa del detector; ΔE e' la risoluzione in energia del detector, e *t* e' il tempo di presa dati.

• Il numero medio di conteggi del background intorno al Q-value e':

 $B = b \cdot M \cdot \Delta E \cdot t$

dove *b* e' la rate del bkg; *M* e' la massa del detector; ΔE e' la risoluzione in energia del detector, e *t* e' il tempo di presa dati.

• Il numero aspettato di eventi $0\nu\beta\beta$ e':

$$S = rac{MN_A a}{W} \cdot ln(2) rac{t}{ au_{0
u}} \cdot \epsilon$$

dove *a* e' l'abbondanza isotopica dell'isotopo considerato; *W* e' la massa molecolare, $\tau_{0\nu}$ e' il tempo di vita media di $0\nu\beta\beta$.

• Possiamo quindi definire la sensitivita' nel seguente modo:

$$\frac{S}{\sqrt{B}}$$

• la particella colpisce il rilevatore;

- la particella colpisce il rilevatore;
- il mezzo assorbente si riscalda;

- la particella colpisce il rilevatore;
- il mezzo assorbente si riscalda;
- il sensore di temperatura converte l'innalzamento di temperatura del cristallo in un segnale elettrico.

- la particella colpisce il rilevatore;
- il mezzo assorbente si riscalda;
- il sensore di temperatura converte l'innalzamento di temperatura del cristallo in un segnale elettrico.

 \implies

- la particella colpisce il rilevatore;
- il mezzo assorbente si riscalda;
- il sensore di temperatura converte l'innalzamento di temperatura del cristallo in un segnale elettrico.

 \implies

Sistema di acquisizione dei dati raccolti.

- Termistore
- Preamplificatore: preleva il segnale ai capi del termistore;

- Termistore
- Preamplificatore: preleva il segnale ai capi del termistore;
- Filtro passa basso ($\nu_{taglio} = 12 Hz$): filtra il segnale;

- Termistore
- Preamplificatore: preleva il segnale ai capi del termistore;
- Filtro passa basso ($\nu_{taglio} = 12 Hz$): filtra il segnale;
- **Trigger**: scatta se il segnale e' sopra una certa soglia per un certo intervallo temporale;

- Termistore
- Preamplificatore: preleva il segnale ai capi del termistore;
- Filtro passa basso ($\nu_{taglio} = 12 \text{Hz}$): filtra il segnale;
- **Trigger**: scatta se il segnale e' sopra una certa soglia per un certo intervallo temporale;
- ADC(18 bit; 0 10V): converte i segnali analogici in digitali e scrive i dati su buffer (la *rate di campionamento* e' ν = 125Hz).

Il segnale bolometrico

Segnale lento($\sim s$) adatto per un basso rate di eventi.

Rise time: 50 ms;

Il segnale bolometrico

Segnale lento($\sim s$) adatto per un basso rate di eventi.

- Rise time: 50 ms;
- Decay time 200ms.

Alessandro Calandri - Tutor: Prof. Fabio Bell

Calibrazione Iniziale

Calibrazione Iniziale \Longrightarrow Presa dati

 $\textbf{Calibrazione Iniziale} \Longrightarrow \textbf{Presa dati} \Longrightarrow \textbf{Calibrazione finale}.$

$\textbf{Calibrazione Iniziale} \Longrightarrow \textbf{Presa dati} \Longrightarrow \textbf{Calibrazione finale}.$

Si puo' procedere con l'analisi offline utilizzando la tecnica del *filtro ottimo*. Consente di stimare al meglio l'energia della particella rivelata a partire da una stima dell'ampiezza del segnale elettrico misurato data da una componente pura e una componente di rumore.

$\textbf{Calibrazione Iniziale} \Longrightarrow \textbf{Presa dati} \Longrightarrow \textbf{Calibrazione finale}.$

Si puo' procedere con l'analisi offline utilizzando la tecnica del *filtro ottimo*. Consente di stimare al meglio l'energia della particella rivelata a partire da una stima dell'ampiezza del segnale elettrico misurato data da una componente pura e una componente di rumore.

$$R(t) = E \cdot S_0(t) + N(t)$$

filtrato mediante una funzione di trasferimento del tipo

$\textbf{Calibrazione Iniziale} \Longrightarrow \textbf{Presa dati} \Longrightarrow \textbf{Calibrazione finale}.$

Si puo' procedere con l'analisi offline utilizzando la tecnica del *filtro ottimo*. Consente di stimare al meglio l'energia della particella rivelata a partire da una stima dell'ampiezza del segnale elettrico misurato data da una componente pura e una componente di rumore.

$$R(t) = E \cdot S_0(t) + N(t)$$

filtrato mediante una funzione di trasferimento del tipo

$$H(\omega) = K \frac{S_0(\omega)}{N(\omega)} e^{-i\omega t}$$

dove E e' l'energia rilasciata nel bolometro; $S_0(t)$ e' la forma del segnale (**funzione di risposta**); N(t) e' il rumore che si sovrappone al segnale (assunto stocastico); $N(\omega)$ e' la potenza spettrale di rumore ed $S_0(\omega)$ e' la trasformata di Fourier del segnale.

Stima dell'impulso medio:

Stima dell'impulso medio:

- Scelta dei migliori segnali all'interno del run considerato in basi ad alcuni parametri di scarto (forma segnale, differenza valore massimo e minimo);
- si calcola la trasformata di Fourier su questi segnali.

Stima dell'impulso medio:

- Scelta dei migliori segnali all'interno del run considerato in basi ad alcuni parametri di scarto (forma segnale, differenza valore massimo e minimo);
- si calcola la trasformata di Fourier su questi segnali.

Stima dello spettro di potenza del rumore:

Stima dell'impulso medio:

- Scelta dei migliori segnali all'interno del run considerato in basi ad alcuni parametri di scarto (forma segnale, differenza valore massimo e minimo);
- si calcola la trasformata di Fourier su questi segnali.

Stima dello spettro di potenza del rumore:

- Si acquisiscono campionamenti casuali (*random trigger*) della tensione del rilevatore;
- si calcola la trasformata di Fourier che viene mediata su tutti gli eventi di questo tipo.

Stabilita' del guadagno

Il guadagno, e quindi l'ampiezza del segnale dipendono dalle fluttuazioni di temperatura del criostato.

Variazione della baseline nel tempo:

Processo di stabilizzazione in CUORICINO

Resistenza (*impulsatore*) sottoposta a impulsi brevi di tensione ($\simeq 1 ms$) che inietta energia fissa ogni 300*ms*.

Alessandro Calandri - Tutor: Prof. Fabio Bell

Calibrazione apparato

Alessandro Calandri - Tutor: Prof. Fabio Bell Cuoricino: decadimento $0\nu\beta\beta$

크
Calibrazione apparato

Traduzione in termini di energia rilasciata delle ampiezze di segnali acquisiti dall'ADC.

Calibrazione apparato

Traduzione in termini di energia rilasciata delle ampiezze di segnali acquisiti dall'ADC.

Calibrazione apparato

Traduzione in termini di energia rilasciata delle ampiezze di segnali acquisiti dall'ADC.

Cuoricino: decadimento $0\nu\beta\beta$

Alessandro Calandri - Tutor: Prof. Fabio Bell Cuoricino: decadimento $0\nu\beta\beta$

크

크

- Oriteri scelti a priori (p.e. rumore di fondo eccessivo) ⇒ introducono tempo morto ~ 5 percento;
- Reiezione di eventi di pile-up.

- Oriteri scelti a priori (p.e. rumore di fondo eccessivo) ⇒ introducono tempo morto ~ 5 percento;
- Reiezione di eventi di pile-up.

Event Based Cuts:

- Oriteri scelti a priori (p.e. rumore di fondo eccessivo) ⇒ introducono tempo morto ~ 5 percento;
- Reiezione di eventi di pile-up.

Event Based Cuts:

- Tagli di forma del segnale (pulse shape cuts);
- Tagli di coincidenza.

Contributi all'efficienza del segnale

Source	Signal efficiency (%)
Energy escape	87.4±1.1 (big crystals) 84.2±1.4 (small crystals)
Pulse-shape cuts	98.5±0.3
Anti-coincidence cut	99.3 ± 0.1
Noise	99.1 ± 0.1
Pile-up with reference pulses	97.7
Total	82.8±1.1 (big crystals) 79.7±1.4 (small crystals)

$$\mathcal{P}_{pileup} = \Delta t \cdot \nu_{bol} \sim 0.6 \text{ percento}$$

 ΔT e' la finestra di coincidenza (6s); ν_{bol} la rate di singolo bolometro($\nu_{bol}=1mHz$).

Contributi all'efficienza del segnale

Source	Signal efficiency (%)
Energy escape	87.4±1.1 (big crystals) 84.2±1.4 (small crystals)
Pulse-shape cuts	98.5 ± 0.3
Anti-coincidence cut	99.3 ± 0.1
Noise	99.1 ± 0.1
Pile-up with reference pulses	97.7
Total	82.8±1.1 (big crystals) 79.7±1.4 (small crystals)

$$\mathcal{P}_{\textit{pileup}} = \Delta t \cdot \nu_{\textit{bol}} \sim 0.6 \ \mathrm{percento}$$

 ΔT e' la finestra di coincidenza (6s); ν_{bol} la rate di singolo bolometro($\nu_{bol}=1mHz$). La probabilita' di coincidenze casuali fra diversi cristalli e':

$$\mathcal{P}_{cas} = \Delta t \cdot \nu_{all} \sim 1.1 \text{ percento}$$

dove $\nu_{all} = \sum_i \nu_i$ e $\Delta T = 100$ ms.

Pulse shape cuts: efficienza

Fit relativo allo spettro del ²⁰⁸ *TI* per determinare l'efficienza associata ai tagli di forma. In alto: eventi accettati; in basso: eventi rifiutati. L'efficienza e' data da un fit simultaneo dei due spettri.

Anticoincidence cuts: efficienza

Fit relativo allo spettro del ${}^{40}K$ per determinare l'efficienza associata ai tagli sulle anticoincidenze. In alto: eventi accettati; in basso: eventi rifiutati. L'efficienza e' data da un fit simultaneo dei due spettri.

• Si sommano gli spettri calibrati in energia di tutti i canali dell'acquisizione;

- Si sommano gli spettri calibrati in energia di tutti i canali dell'acquisizione;
- si analizza la regione compresa tra 2400KeV e il picco del ²⁰⁸*TI* a 2615KeV.

- Si sommano gli spettri calibrati in energia di tutti i canali dell'acquisizione;
- si analizza la regione compresa tra 2400 ${
 m KeV}$ e il picco del 208 T/ a 2615 ${
 m KeV}.$
- In tale finestra si esegue un fit applicando il metodo della massima verosimiglianza usando una funzione costituita di N gaussiane (N e' il numero di canali disponibili) aventi stesso valor medio fissato all'energia di picco del $0\nu\beta\beta$ (2527KeV).

- Si sommano gli spettri calibrati in energia di tutti i canali dell'acquisizione;
- si analizza la regione compresa tra 2400 ${
 m KeV}$ e il picco del 208 T/ a 2615 ${
 m KeV}.$
- In tale finestra si esegue un fit applicando il metodo della massima verosimiglianza usando una funzione costituita di N gaussiane (N e' il numero di canali disponibili) aventi stesso valor medio fissato all'energia di picco del $0\nu\beta\beta$ (2527KeV).
- Ogni gaussiana ha una larghezza a mezza altezza uguale a quella calcolata nel rispettivo canale sul picco del Tallio ($\sim 6 {
 m KeV}$).

- Si sommano gli spettri calibrati in energia di tutti i canali dell'acquisizione;
- si analizza la regione compresa tra 2400 ${
 m KeV}$ e il picco del 208 T/ a 2615 ${
 m KeV}.$
- In tale finestra si esegue un fit applicando il metodo della massima verosimiglianza usando una funzione costituita di N gaussiane (N e' il numero di canali disponibili) aventi stesso valor medio fissato all'energia di picco del $0\nu\beta\beta$ (2527KeV).
- Ogni gaussiana ha una larghezza a mezza altezza uguale a quella calcolata nel rispettivo canale sul picco del Tallio ($\sim 6 {
 m KeV}$).
- Si inserisce anche una (N+1)-esima gaussiana che rappresenta gli eventi del picco del ^{60}Co a 2505KeV.

Spettro somma nella regione di interesse

Riga (con una larghezza non nulla a causa della risoluzione non infinita in energia) piccata al Q (spazio fasi) della reazione ${}^{130}Te \rightarrow {}^{130}Xe + 2e^{-}$:

Spettro somma nella regione di interesse

Riga (con una larghezza non nulla a causa della risoluzione non infinita in energia) piccata al Q (spazio fasi) della reazione $^{130}Te \rightarrow ^{130}Xe + 2e^{-}$:

 $Q=|m_{Te}-m_{Xe}|=2527{\rm KeV}$

• La collaborazione Cuoricino ha preso dati dal Gennaio 2003 fino al Giugno 2008 (due diversi RUN).

- La collaborazione Cuoricino ha preso dati dal Gennaio 2003 fino al Giugno 2008 (due diversi RUN).
- Ha operato per una corrispondente esposizione di $5.47 \cdot 10^{25} kg \cdot y$ senza ottenere osservazioni di eventi di decadimento doppio β senza neutrini.

- La collaborazione Cuoricino ha preso dati dal Gennaio 2003 fino al Giugno 2008 (due diversi RUN).
- Ha operato per una corrispondente esposizione di $5.47 \cdot 10^{25} kg \cdot y$ senza ottenere osservazioni di eventi di decadimento doppio β senza neutrini.
- Si e' ottenuto il seguente risultato:

$$\tau_{1/2}^{0\nu} \ge 2.8 \cdot 10^{24} y$$
 (90 percento C.L.);

- La collaborazione Cuoricino ha preso dati dal Gennaio 2003 fino al Giugno 2008 (due diversi RUN).
- Ha operato per una corrispondente esposizione di $5.47 \cdot 10^{25} kg \cdot y$ senza ottenere osservazioni di eventi di decadimento doppio β senza neutrini.
- Si e' ottenuto il seguente risultato:

$$au_{1/2}^{0
u} \geq 2.8 \cdot 10^{24} y \ (90 \ \text{percento} \ C.L.);$$

 dato il tempo di dimezzamento, e' possibile ottenere il limite superiore della massa del neutrino di Majorana:

$$m_{\nu} = rac{m_e}{\sqrt{F_N \cdot \tau_{1/2}^{0\nu}}} < 0.3 \div 0.7 eV$$