Università degli Studi di Roma "La Sapienza"

Misura dell'asimmetria del bosone W

Marco La Rosa

Tutor: prof. Marco Rescigno

Anno accademico 2010/2011 corso di fisica nucleare e

subnucleare II prof. Carlo Dionisi

28 giugno 2011

Obiettivi

Migliorare la conoscenza della Parton Density Function (P.D.F.) dei quark di tipo u e d a rapidità per cui esse non sono ben conosciute.

Anno accademico 2010/2011

L'apparato sperimentale

- Descrizione
- Selezione degli eventi

La misura dell'asimmetria del W

- Perché
- Accoppiamento V-A
- Correzioni

Anno accademico Conclusion di fisica nucleare e 2010/2011 prof. Carlo Dionisi

La misura dell'asimmetria del

TeVatron

Energiadel centro di massa $\sqrt{s} = 1,96 \,\text{TeV}$

Luminositäntegrata : $\int \mathcal{L} = 1 (fb)^{-1}$

Pseudorapidità : $|\eta_e| < 2,8$

Fasci di protoni ed anti-protoni ad un tempo di scontro tra bunch 396 ns

 Al TeVatron con il CDF si possono studiare le p.d.f. per pseudorapidità mai misurate, cioè in regioni di x in cui esse non sono ben conosciute

Misurando l'asimmetria del W

Anno accademico 2010/2011

duark (o gli anti-quark) di tipo u trasportano una frazione d' impulso maggiore di quelli di tipo d

il W viene dunque formato con un certo boost e quindi con una certa rapidità y_W .

Si definisce asimmetria di carica del W:

$$x_{1} = \frac{M_{W}}{\sqrt{s}} e^{y_{W}}$$

$$A(y_{W}) = \frac{d\sigma(W^{+})/dy - d\sigma(W^{-})/dy}{d\sigma(W^{+})/dy + d\sigma(W^{-})/dy}$$

$$x_{2} = \frac{M_{W}}{\sqrt{s}} e^{-y_{W}}$$

$$\approx \frac{u(x_{1})d(x_{2}) - u(x_{2})d(x_{1})}{u(x_{1})d(x_{2}) + u(x_{2})d(x_{1})}$$

Tale misura è sensibile alle differenze tra le p.d.f. di $u \in d$ nella regione $Q^2 \approx M_W^2$

dunque può essere utilizzata per ottenere informazioni sul rapporto d(x)/u(x) in tale dominio!

	corso di fisica nucleare e	
Anno accademico	subnucleare II	
2010/2011	prof. Carlo Dionisi	6

Canale elettronico del decadimento leptonico del bosone W

II W non può essere osservato direttamente: si cercheranno i suoi prodotti di decadimento

Perché non muoni?

I muoni non possono essere selezionati con grande successo con pseudorapidità grandi come quelle che caratterizzano questa misura al $CDF(|\eta_{det}| > 1)$ corso di fisica nucleare e

Anno accademico 2010/2011

subnucleare II

Non si può però ancora conoscere la rapidità del W perché non si può misurare la p_z del neutrino elettronico;

ma

poiché la carica del leptone di decadimento come si è visto è sempre la stessa del W

$$u \overline{d} \to W^+ \to e^+ v$$
 $d \overline{u} \to W^- \to e^- \overline{v}$

si può mettere nella definizione dell'asimmetria

e al posto di *W*:
$$A(y_e) = \frac{d\sigma(e^+)/dy - d\sigma(e^-)/dy}{d\sigma(e^+)/dy + d\sigma(e^-)/dy}$$

in quanto l'elettrone ha lo stesso boost del bosone W

corso di fisica nucleare e

Anno accademico 2010/2011

Ricordando la definizione di pseudorapidità:

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z} \xrightarrow[\beta \to 1]{m \to 0} \eta = -\ln \tan \frac{\theta}{2}$$

poiché gli elettroni vanno praticamente alla velocità della luce

la loro pseudorapidità η_e , con cui vengono rilevati nel CDF, e la loro rapidità y_e , dovuta al boost del W da cui provengono, coincidono:

$$y_e \simeq \eta_e$$

Si può dunque misurare l'asimmetria de W in funzione della pseudo-

rapidità elettronica:

$$A(\eta_e) = \frac{d\sigma(e^+)/d\eta_e - d\sigma(e^-)/d\eta_e}{d\sigma(e^+)/d\eta_e + d\sigma(e^-)/d\eta_e}$$

Anno accademico 2010/2011 corso di fisica nucleare e subnucleare II prof. Carlo Dionisi

 θ^* è l'angolo d'emission **e** el sistem *a* di riferimento del centro di massa

Le distribuzioni elettroniche sono modula-

te dall' accoppiamento V-A con un fattore

Anno accademico 2010/2011 corso di fisica nucleare e subnucleare II prof. Carlo Dionisi

$$\frac{1}{2}(1-Q\cos\theta^*)^2$$

Oltre ai quark del protone ed agli anti-quark dell' anti-protone bisogna considerare il contributo degli anti-quark del mare del protone e dei quark del mare dell' anti-protone. Quest' ultimi prevalgono importanti per alte rapidità di W Anno accademico 2010/2011 prof. Carlo Dionisi

Essendo l'asimmetria elettronica una convoluzione tra la distribuzione di rapidità del W e la modulazione del decadimento del W da parte dell'accoppiamento V-A

Per ricostruire la distribuzione di rapidità del W si può imporre che la massa invariante del sistema elettrone-neutrino sia pari alla massa del W

L'equazione quadratica da due soluzioni.

La scelta viene fatta pesando ogni soluzione, considerando, a basse rapidità, il contributo di V-A dei quark di valenza e, ad alte rapidità, la scarsa produzione di W ed il contributo di V-A dei quark del mare

Anno accademico 2010/2011

CDF (Collider Detector at Fermilab)

Beam Pipe

Magnete - solenoide superconduttore

Calorimetro EM

Calorimetro Adronico (HAD)

Assorbitore d'acciaio

Anno accademico 2010/2011

Tracciatori al Silicio

Layer 00: livello a contatto con il beam pipe

3

SVX-II: rilevatore dei vertici (Run II)

ISL: livello intermedio

- Risoluzione sul punto: ~ 10 μm
- N.° punti: 7

Risoluzione:

 $p_{T} = 0.3 \ q B r_{c}$

L' elevata precisione permette di individuare vertici molto vicini tra loro congiungendo i punti: **b-tagging**

 $|\eta_{det}| < 3$ $\Delta z \sim 90 \text{ cm}$ $L \sim 20 \text{ cm}$ B = 1,4 T

Anno accademico 2010/2011

Camera a drift tracciante centrale

Central Outer Tracker (COT)

Risoluzione sul punto: ~ 180 µm

punti: 96

 $p_{T} = 0.3 \ q B r_{c}$

 $|\eta_{det}| < 2$ $\Delta z \sim 150 \text{ cm}$ $L \sim 92 \text{ cm}$ B = 1,4 T

$$\frac{\Delta p}{p^2} = \frac{\varepsilon}{0.3BL^2} \sqrt{\frac{720}{N+4}} \sim 0.002 \text{ GeV}^{-1}$$

L'errore peggiora al crescere dell'impulso:

Anno accademico 2010/2011

 $\sigma(p) = \frac{\Delta \psi}{r^2} p$

N.°

Risoluzione:

corso di fisica nucleare e subnucleare II prof. Carlo Dionisi

Calorimetro EM calorimetro HAD

Strati di scintillatori di polistirene connessi a fotomoltiplicatori alternati a strati di assorbitore di piombo per EM ed acciaio per HAD

Selezione degli eventi

Elettroni centrali: $|\eta_e| < 1$

- Calorimetro elettromagnetico: $I\!\!E_T > 25 \, GeV$
- Energia del cono d'isolamento: $\mathbb{E}_{Iso} > 4 \text{ GeV}$ con raggio $R = \sqrt{(\Delta \varphi)^2 + (\Delta \eta)^2} < 0.4$
- Energia adronica: piccola rispetto a quella elettromagnetica
- COT: consistenza tra traccia e posizione nel calorimetro

Elettroni laterali: $|\eta_e| < 2,8$

- Calorimetro elettromagnetico: $E_T > 20 \text{ GeV}$
- Energia del cono d'isolamento: $\mathbb{E}_{Iso} > 4 \text{ GeV}$ con raggio $R = \sqrt{(\Delta \varphi)^2 + (\Delta \eta)^2} < 0.4$
- Energia adronica: piccola rispetto a quella elettromagnetica
- COT: consistenza tra traccia e posizione nel calorimetro per 1 < $|\eta_e|$ < 1,6
- SVX: consistenza tra tracce al vertice e posizione nel calorimetro per $|\eta_e|$ < 2,8
- **CES:** traccia la forma dello sciame elettromagnetico; si effettua un test del χ^2 sulla forma degli sciami candidati per distinguere gli elettroni

	corso di fisica nucleare e	
Anno accademico	subnucleare II	
2010/2011	prof. Carlo Dionisi	18

Selezione degli eventi

Fondo di QCD piccolo, fondi di $Z \rightarrow e^+e^-, \tau^+\tau \bar{\tau}$ iccolissimi

	central		plug	
samples	events	fraction (%)	events	fraction (%)
DATA	537858		176941	
$Z \rightarrow e^+ e^-$	3173.36	$0.59 \pm 0.02 \; ({\rm stat.})$	955.48	$0.54 \pm 0.03 \; ({ m stat.})$
$Z ightarrow au^+ au^-$	487.21	$0.09 \pm 0.00 \; ({\rm stat.})$	179.81	$0.10 \pm 0.01 \; ({ m stat.})$
QCD	6508.08	$1.21 \pm 0.14 \text{ (stat.)} \pm 0.15 \text{ (syst.)}$	1185.50	$0.67 \pm 0.12 \text{ (stat.)} \pm 0.14 \text{ (syst.)}$
W o au u	12370.73	$2.30 \pm 0.04 \; ({\rm stat.})$	3609.60	$2.04 \pm 0.05 \; ({ m stat.})$
Anno accad	lemico	subnucleare I	I	
2010/2011		prof. Carlo Dionisi		19

È cruciale per la misura il miglior riconoscimento possibile del segno della carica dell'elettrone di decadimento rilevato

Si definisce l'errore di riconoscimento del segno della

$$f_{err}(\eta) = \frac{N_{segno-errato}(\eta)}{N_{segno-errato}(\eta) + N_{segno-errato}(\eta)}$$

con cui si possono costruire i pesi per da aggiungere alla distribuzione del W in funzione della sua rapidità

	corso di fisica nucleare e	
Anno accademico	subnucleare II	
2010/2011	prof. Carlo Dionisi	20

Correzioni

Per conoscere la funzione d'errore si fanno dei conteggi di eventi $Z \rightarrow e^+e^-$

I due elettroni provenienti dallo Z devono avere segno opposto

L'errore cresce con il modulo della pseudorapidità ed è importante solo per alti valori

Anno accademico 2010/2011

Risultati

Risultati

Tracciatori in Si

Layer 00: Livello a contatto con il fascio

Risoluzione: 16 µm

• SVX-II: Rilevatore dei vertici in Silicio (Run II)

- Tre barili concentrici in Si altamente drogato "n" hanno delle micro-strisce di Si "p" su entrambe le facce connesse individualmente a dei conduttori in Al
- Copertura: circa 45 cm di lunghezza
- Diviso in 12 spicchi radialmente
- Molto sottile: 2,4 ÷ 10,7 cm
- Copertura angolare: $|\eta_{det}| < 2$
- Risoluzione: 12 µm

ISL: Tracciatore intermedio in Silicio

- Raggio: 20,2 ÷ 10,7 cm
- Risoluzione: 16 µm

B = 1.4 T uniforme allo Q.1%

Anno accademico 2010/2011

Camera a drift tracciante centrale

Central Outer Tracker (COT)

•B = 1,4 T uniforme allo 0,1%

per z , r < 150 cm

prof. Carlo Dionisi

- •8 super-strati con celle lunghe 310 cm
 - Raggio: 40 ÷ 132 cm
 - 4 paralleli al fascio
 - 4 a ± 2° con il fascio
 - ognuno con 12 strati di fili "di senso" alternati a fili "di campo"
- •Riempita con: 50% etano 50% Ar
 - velocità di deriva: <v> ~ 50 µm/ns
 - distanze massime di deriva: 0,88 cm
 - Tempi massimi di deriva: ~ 200 ns

 $\sigma_{p_T}/p_T^2 \simeq 1.7 \times 10^{-3} \,[\text{GeV/c}]^{-1}$

Anno accademico: 180 µm

2010/2011

Camere dei muoni

CMU: rilevatore di muoni centrale

- 2.304 camere con filo singolo disposte su 4 cilindri concentrici
- |η_{det}| ≤ 0,6
- Tempo di deriva: 800 ns

CMP: rilevatore di muoni centrale potenziato

- 1,076 camere con filo singolo
- |η_{det}| < 0,6
- Tempo di deriva: 1,8 µm

CMX: rilevatore di muoni esteso

- 1,536 camere con filo singolo
- |η_{det}| < 1
- Tempo di deriva 1,8 µm

Anno accademico 2010/2011

corso di fisica nucleare e subnucleare II prof. Carlo Dionisi

Correzioni

Distribuzione di W in funzione della rapidità e della V-A:

$$P_{\pm}(\cos\theta^{*}, y_{W}, p_{T}^{W}) = (1 \mp \cos\theta^{*})^{2} + Q(y_{W}, p_{T}^{W})(1 \pm \cos\theta^{*})^{2}$$

La * indica il sistema di riferimento del W a riposo

Si ottiene la distribuzione del peso di ogni soluzione modulata per la sezione d'urto del W in funzione della sua rapidità y_W :

$$wt_{1,2}^{\pm} = \frac{P_{\pm}(\cos\theta_{1,2}^{*}, y_{1,2}, p_{T}^{W})\sigma_{\pm}(y_{1,2})}{P_{\pm}(\cos\theta_{1}^{*}, y_{1}, p_{T}^{W})\sigma_{\pm}(y_{1}) + P_{\pm}(\cos\theta_{2}^{*}, y_{2}, p_{T}^{W})\sigma_{\pm}(y_{2})}$$

La dipendenza della grandezza dalle distribuzioni delle sezioni d'urto comporta l'iterazione del processo di calcolo

Anno accademico
2010/2011

corso di fisica nucleare e subnucleare II prof. Carlo Dionisi