Ricerca dell'Higgs del Modello Standard nel canale $H \to b \bar{b}$

Lorenzo Capriotti

Supervisori: Dott. Andrea Messina Dott. Marco Rescigno

Introduzione

Importanza del canale $H ightarrow bar{b}$

Il canale $H \rightarrow b\bar{b}$ nella regione a bassa massa (da 115 GeV/c², limite imposto da LEP, a 130-135 GeV/c²) presenta presenta numerosi punti di interesse:

- \blacktriangleright è il canale con più alto BR (70% per 115 GeV/c², 49% per 130 GeV/c²)
- ► rispetto ad altri canali rilevanti, quali $H \rightarrow \gamma \gamma$, $H \rightarrow WW$ e $H \rightarrow ZZ$, questo canale presenta un accoppiamento tra il campo di Higgs e un campo fermionico: può essere quindi sfruttato per misurare la costante di accoppiamento delle interazioni di Yukawa ($\mathcal{L} = -g\bar{\psi}\phi\psi$)
- ▶ è il canale fondamentale per poter misurare tutti i BR dell'Higgs in questo range di massa (in quanto BR($H \rightarrow b\bar{b}$)>50%). Inoltre, dato che $\sigma(H \rightarrow xx) = \sigma(pp/p\bar{p} \rightarrow H) \cdot BR(H \rightarrow xx)$ in collisioni pp o $p\bar{p}$, se ne deduce che una misura accurata di BR($H \rightarrow b\bar{b}$) è fondamentale per calcolare tutte le costanti di accoppiamento

Tuttavia, mentre al Tevatron questo canale è caratterizzato da un'ottima sensibilità, ad LHC la segnatura di $H \rightarrow b\bar{b}$ è molto difficile da risolvere rispetto al fondo di QCD, dato che la sezione d'urto di produzione di coppie $b\bar{b}$ è molto elevata: $\sigma_{b\bar{b}}$ è dell'ordine dei μ b, ossia circa 8 ordini di grandezza in più.

Risultati 0000000

Meccanismi di produzione dell'Higgs

I processi con più alta sezione d'urto di produzione dell'Higgs in collisioni adroniche si dividono in quattro categorie:

≣ ¢) ⊄ (¢ 4/31

Figura : Sezione d'urto della produzione dell'Higgs (in collisioni p
p̄) in funzione della massa m_H al Tevatron,
 $\sqrt{s}=1.96~{\rm TeV}$

Figura : Sezione d'urto della produzione dell'Higgs (in collisioni pp) in funzione della massa m_H ad LHC, $\sqrt{s} = 7$ TeV

	Tevatron (1,96 TeV)									
m _H	σ(WH)	σ(ZH)	$\sigma(W->l\nu)$	σ(Z->ll)	σ(W->lvjj)	σ(Z->lljj)	σ(W->lv+2b-jet)			
GeV/c ²	pb	pb	pb	pb	pb	pb	pb			
125	0,130	0,079	2000	200	36	0,6	0,13			

	LHC (7 TeV)								
m _H	σ(WH)	σ(ZH)	$\sigma(W->l\nu)$	σ(Z->ll)	σ(W->lvjj)	σ(Z->lljj)	σ(W->lv+2b-jet)		
GeV/c ²	pb	pb	pb	pb	pb	pb	pb		
125	1,243	0,662	18000	1000	1100	20	0,64		

Rapporti LHC/Tevatron								
9,6	8,4	9,0	5,0	30,6	33,3	4,9		

Figura : Sezioni d'urto di produzione dell'Higgs e dei W/Z per il Tevatron ed LHC e loro rapporti, per un Higgs di $m_H=125~{\rm GeV/c^2}$

Produzione associata

È conveniente focalizzare l'analisi sulla produzione associata di un Higgs con un W o uno Z, dal momento che, quando si considera il decadimento $H \rightarrow b\bar{b}$, il decadimento dei W/Z in leptoni costituisce un ottimo segnale di trigger che contribuisce ad aumentare il rapporto segnale/rumore; ovviamente, tutto ciò a discapito della sezione d'urto del processo.

Tramite il canale H \rightarrow bb è possibile cercare un Higgs a bassa massa, da 115 Gev (limite imposto da LEP) fino a 135 GeV, in quanto per masse superiori il canale di decadimento privilegiato diventa H \rightarrow WW e il branching ratio di H \rightarrow bb diminuisce rapidamente di diversi ordini di grandezza.

Figura : BR dei decadimenti dell'Higgs in funzione della massa M_H

Selezione degli eventi e analisi del fondo

Selezione degli eventi nel canale $ZH \rightarrow l^+ l^- b\bar{b}$

- ▶ sono richiesti due leptoni di segno opposto nello stato finale corrispondenti al decadimento dello Z. Soglia (per elettroni - muoni): $E_T = 18 - 22 \text{ GeV} \text{ (CDF II)}$ $p_T = 20 - 18 \text{ GeV/c (ATLAS)}$
- ▶ sono richiesti due jet centrali, contenuti ognuno in un cono di raggio R ≤ 0.4 nello spazio $\eta \phi$, misurabile tramite un algoritmo che combina l'energia depositata nei calorimetri. Soglia:

$$E_T = 25 \text{ GeV} \text{ (CDF II)}$$

 $p_T = 25 \text{ GeV/c} \text{ (ATLAS)}$

$$p_T = 25 \text{ GeV/C}$$
 (ATEA)

$$|\eta| \leq 2.0 (CDF II)$$

$$|\eta| \leq 2.5$$
 (ATLAS)

Selezione degli eventi nel canale $WH ightarrow l u b ar{b}$

- ▶ è richiesto un leptone carico con la stessa soglia del precedente canale
- ▶ è richiesta una missing energy trasversa con soglia: $\not{\!\!\!E}_T = 10 - 25$ GeV, varia con energia e sapore del leptone rivelato (CDF II) $\not{\!\!\!E}_T = 25$ GeV (ATLAS)
- stesse restrizioni sui jet

Selezione degli eventi nel canale $ZH ightarrow u u b ar{b}$

- > è richiesta l'assenza di leptoni carichi nello stato finale
- ▶ è richiesta una missing energy trasversa con soglia: $\not{\!\!\!E}_T = 35 \text{ GeV} \text{ (CDF II)}$ $\not{\!\!\!E}_T = 120 \text{ GeV} \text{ (ATLAS)}$
- stesse restrizioni sui jet

Caratteristiche del processo di b-tagging

Un jet derivante dal decadimento di un quark b presenta diversi aspetti peculiari:

- i mesoni B a velocità relativistiche possiedono una lunghezza di decadimento di qualche millimetro (ben risolubile dai rivelatori a semiconduttore)
- data l'elevata massa del quark b, i prodotti di decadimento di un B formano una massa invariante maggiore rispetto a quelli derivanti dal decadimento di un adrone che non contiene un quark b
- per lo stesso motivo il numero di particelle costituenti il jet è maggiore rispetto ad altri jet adronici
- i b-jet presentano inoltre diversi vertici secondari

Un esempio di b-tagger: HOBIT

HOBIT (Higgs Optimized b-Identification Tagger) è un b-tagger in uso a CDF II. Consiste in una rete neurale costruita sulla base di altri algoritmi di b-tagging precedentemente utilizzati, ottimizzata per la ricerca di un Higgs a bassa massa.

HOBIT richiede in input diverse variabili in grado di caratterizzare il jet (energia rilasciata, posizione del vertice...) e restituisce un valore compreso tra -1 e 1. Si distinguono quindi tre regioni di output:

- output maggiore di 0.98: tight b-tag (T)
- output compreso tra 0.72 e 0.98: loose b-tag (L)
- ▶ output minore di 0.72: jet generato da quark leggeri, quark c o gluoni

Combinando i primi due output in eventi a 2 o più jet si dividono gli eventi in 4 categorie con diverso rapporto segnale/rumore e diverse incertezze sistematiche; andranno quindi trattate separatamente.

Figura : Efficienza e mistag rate di HOBIT in funzione di E_T e η

Figura : Trade-off tra purezza (1 - efficienza del fondo) del bed efficienza per HOBIT ed algoritmi precedenti a CDF. Il pallino verde indica efficienza del 50%, quindi reiezione \approx 200. Il pallino verde indica efficienza del 70%, quindi reiezione \approx 17.

Confronto con il b-tagger di ATLAS (MV1)

Figura : Efficienza vs reiezione del fondo (1/efficienza del fondo): confronto tra MV1 e per eventi $t\bar{t}$ simulati

Analisi del fondo ad ATLAS

Figura : Distribuzioni delle grandezze rilevanti per i tre canali di decadimento, ad ATLAS, con tagli sulle regioni utilizzate per stimare il fondo $\mathbb{P} \times \mathbb{C} = \mathbb{P} \times \mathbb{C}$

18/31

臣

Bin	$ZH \rightarrow \ell^+ \ell^- b \bar{b}$				$WH \rightarrow \ell \nu b \bar{b}$				$ZH \rightarrow v\bar{v}b\bar{b}$		
	$p_{\rm T}^{\rm Z}[{\rm GeV}]$				$p_{\rm T}^W[{\rm GeV}]$				$E_{\rm T}^{\rm miss}[{\rm GeV}]$		
	0-50	50-100	100-200	>200	0-50	50-100	100-200	>200	120-160	160-200	>200
Number of events for $80 < m_{b\bar{b}} < 150 [\text{GeV}]$											
Data	139	164	62	13	622	597	276	15	103	22	24
Signal	1.4 ± 0.2	2.0 ± 0.3	1.7 ± 0.3	0.4 ± 0.1	4.7 ± 0.9	5.2 ± 1.0	4.1 ± 0.9	1.4 ± 0.3	2.3 ± 0.5	1.3 ± 0.3	1.8 ± 0.5
Top	18	25	7	0	260	383	219	8.6	42	9	4
W+jets	-	-	-	-	285	181	72	12	13	7	4
Z+jets	132	126	58	5.6	0.4	0.3	0.1	0.0	33	12	7
Diboson	8	6	4	1	13	13	8	1	5	5	4
Multijet	-	-	-	-	64	42	4	1	1.2	0.2	0.4
Total Bkg	157 ± 15	157 ± 11	70 ± 7	6 ± 2	625 ± 36	620 ± 24	303 ± 13	23 ± 4	94 ± 10	33 ± 5	20 ± 5
Components of the Background Systematic Uncertainties [%]											
B-tag Eff	3.1	2.8	2.2	7.7	1.4	1.7	2.5	11.3	4.1	9.2	15.6
Bkg Norm	5.2	5.0	5.2	5.6	4.0	2.8	2.7	5.5	3.1	3.9	4.2
$Jets/E_T^{miss}$	1.0	2.8	3.5	3.1	2.1	1.6	1.6	6.4	8.2	10.7	16.9
Leptons	0.4	0.5	1.1	3.6	1.0	0.4	0.7	6.1	-	-	-
Luminosity	0.2	0.1	0.2	0.4	0.1	0.1	0.1	0.2	0.2	0.5	0.8
Pile Up	0.7	1.8	1.5	6.9	0.6	0.7	1.1	2.5	0.7	2.6	1.9
Theory	7.3	1.7	7.2	23.4	3.1	1.0	1.1	11.9	3.7	6.3	11.1
Total Bkg	9.6	6.9	10.0	26.6	5.8	3.9	4.4	19.6	10.4	16.1	26.0
		(Compone	nts of the	Signal Sys	stematic U	Incertaint	ies [%]			
B-tag Eff	10	11	13	16	10	11	13	15	13	16	21
JES/MET	6.5	4.6	4.0	3.7	6.7	6.8	7.8	4.7	11.0	5.4	9.9
Leptons	1.1	1.5	1.5	3.6	3.2	4.2	5.0	5.5	-	-	-
Luminosity	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9
Pile Up	0.7	1.2	2.4	3.4	1.4	3.9	3.2	3.4	0.5	0.8	2.1
Theory	5	5	5	5	13	13	13	13	13	13	13
Total Signal	13.6	13.3	14.9	18.3	18.5	19.4	21.4	21.5	21.8	21.7	26.8

 Figura : Dati sperimentali, stima del segnale e del fondo e incertezze sistematiche ad <code>ATLAS</code>

Analisi del fondo a CDF II

La massa invariante dei due jet degli eventi b-tagged, nel canale $ZH \rightarrow l^+ l^- b\bar{b}$, viene corretta da un opportuno algoritmo che tiene conto della missing energy dovuta a neutrini (prodotti principalmente dai decadimenti semileptonici dei B) o particelle non rivelate; successivamente tali eventi vengono catalogati da reti neurali dedicate.

Figura : Distribuzione di massa invariante dei due jet $m_{b\bar{b}}$, prima e dopo la correzione energetica, per il canale $ZH \rightarrow b\bar{b}$ a CDF II

Classificazione degli eventi a CDF II

Figura : Schema logico della classificazione degli eventi secondo gli output di reti neurali dedicate (a CFD II)

イロト イロト イヨト イヨト 二日

Figura : Risultato dell'applicazione dei discriminanti agli eventi b-tagged (CDF II) per il canale $ZH \rightarrow l^+l^-b\bar{b}$

	-Two Jets-								
Process	TT	TL	Tx	LL					
$t\overline{t}$	20.1 ± 2.8	21.5 ± 2.8	36.1 ± 4.7	6.1 ± 0.8					
Diboson	4.7 ± 0.6	6.5 ± 0.9	19.6 ± 1.8	3.9 ± 0.4					
$Z + b\overline{b}$	19.1 ± 8.0	26.8 ± 11.3	81.5 ± 34.2	10.2 ± 4.4					
$Z + c\overline{c}$	1.5 ± 0.6	6.9 ± 2.9	39.0 ± 16.8	7.3 ± 3.1					
Z + l.f.	0.7 ± 0.3	8.3 ± 2.0	124.9 ± 27.5	27.5 ± 6.6					
mis-ID Z	0.1 ± 0.0	5.1 ± 2.6	7.7 ± 3.9	1.1 ± 0.6					
Total Bkg.	46.2 ± 8.6	75.2 ± 12.4	309.2 ± 47.4	56.1 ± 8.6					
$ZH(120)~{\rm GeV/c^2}$	1.1 ± 0.1	1.1 ± 0.1	1.6 ± 0.2	0.3 ± 0.03					
Data	45	83	352	66					

Figura : Dati sperimentali, stima del segnale e del fondo e incertezze sistematiche a CDF II (per il canale $ZH \rightarrow l^+l^-b\bar{b}$)

Risultati

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ の Q (~ 24/31

Analisi della distribuzione di massa invariante $m_{b\bar{b}}$

La ricerca di un Higgs nel canale $H \rightarrow b\bar{b}$ si svolge attraverso l'analisi della distribuzione di massa invariante dei due jet, $m_{b\bar{b}}$.

Il processo di correzione energetica precedentemente accennato porta ad un miglioramento della risoluzione della massa invariante: a CDF II, per esempio, si passa dal 18% all'11% applicando il suddetto algoritmo. La risoluzione della massa invariante ad ATLAS, al netto delle correzioni, risulta essere di circa 11-12%.

Ad ATLAS, inoltre, si è scelto di suddividere l'analisi in quattro categorie rappresentanti quattro intervalli di impulso trasverso dello Z o del W ricostruito: ci si aspetta, infatti, che per $\sqrt{s} = 7$ TeV l'impulso trasverso dell'Higgs sia in media più alto del fondo. Per cui il rapporto segnale/rumore sarà migliore per quegli eventi con p_T ricostruito maggiore.

Selezione degli eventi e analisi del fondo 000000000000

Figura : Distribuzione di massa invariante $m_{b\bar{b}}$, per 4 intervalli di impulso trasverso dello Z ricostruito, ad ATLAS

Figura : Distribuzione di massa invariante $m_{b\bar{b}}$, combinazione dei dati per i tre canali, ATLAS

Risultati 000●000

Figura : Limiti di esclusione per il canale $ZH\to I^+I^-\,b\bar{b}$, espressi come rapporto $\sigma(H\to b\bar{b})/\sigma_{SM}$

◆□ → < 部 → < 差 → < 差 → 差 < う へ (~ 28/31 Selezione degli eventi e analisi del fondo 000000000000 Risultati 0000●00

Figura : Dati combinati di CDF e D0 per il canale $H
ightarrow b ar{b}$

Figura : Limiti di esclusione per i tre canali di produzione associata e dati combinati (ATLAS), espressi come rapporto $\sigma(H \rightarrow b\bar{b})/\sigma_{SM}$

Figura : Limiti di esclusione, dati combinati di tutti i canali osservati ad ATLAS (2011)