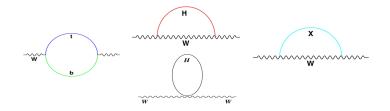
Measurement of the W Boson Mass using 2.2 fb⁻¹ of CDF II Data

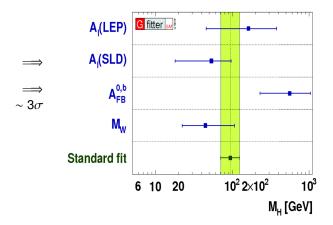
Prof. Titolare: Carlo Dionisi Prof. Referente: Marco Rescigno Studente: Vittorio Raoul Tavolaro

> "Sapienza" Università di Roma Dipartimento di Fisica


> > 15 Giugno 2012

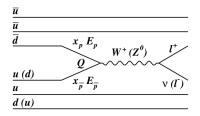
Contents

- Motivation
- W and Z boson production at Tevatron
- Experimental signatures
- Calibration
- Background analysis
- Fit and results

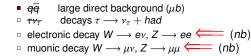

Motivation

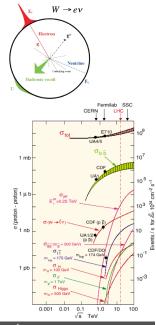
$$\rho \text{ parameter} \longrightarrow M_W^2 = \rho M_W^2_{tree}$$

 $\Delta \rho = \rho - 1 \sim M_{top}^2$
 $\Delta \rho \sim \ln M_H$


 M_W and M_{top} costrain M_H and possibly new particles beyond SM

Motivation

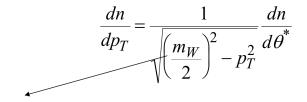



Other precision mesurements costrain M_H , equivalent to $\delta M_W = 15 \text{ MeV}$

Leading order annihilation

• $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV W and Z decay to lepton or quark pairs:

Measurement strategy


$$W \longrightarrow Iv$$

- transverse lepton momentum $\vec{p}_T(l)$
- total transverse recoil \vec{u}_T

Transverse Mass

As neutrino escapes detection and initial unknown partonic p_z precludes usage of p_z conservation:

$$m_T=\sqrt{2p_T(l)p_T(
u)[1-\cos(\phi_l-\phi_
u)]}$$

Peak for $p_T(l) = M_W/2$ and for $p_T(v) = M_W/2$

Very sharp for $p_T(W) = 0$

W has to be at rest

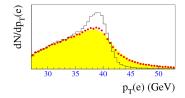


Figure 1: The effects of resolution and the finite p_T^W on $p_T(e)$ in W boson decay. The histogram shows p_T^W without detector smearing and for $p_T^W = 0$. The dots include the effects of adding finite p_T^W , while the shaded histogram includes the effects of detector resolutions. The effects are calculated for the DØ Run I detector resolutions.

Peak very sensitive to non zero $p_T(W)$

In hadronic colliders, m_T is preferred

$$\sigma^{-1}\frac{d\sigma}{d\mu} = \mu(1-\mu^2)^{-1/2}\sigma^{-1}\frac{d\sigma}{d\cos\theta}$$

where $\mu = m_T/m_W$.

Sharp peak at $\mu = 1$

Effect of a finite $p_T(W)$ determined by applying a boost along x axis

$$\sigma^{-1} \frac{d\sigma}{d\mu} = \mu \frac{(1-\mu^2)^{-1/2}}{(2\pi)} \int_0^{2\pi} d\varphi \, I(\mu,\varphi,\alpha) \sigma^{-1} \frac{d\sigma}{d\cos\theta} \,, \tag{5}$$

where the function I is

$$I(\mu, \varphi, \alpha) = (\mu^4 + \mu^4 \alpha^2 \cos^2 \varphi + 2\mu^2 \alpha^2 \sin^2 \varphi + \mu^4 \sin^2 \varphi)(\mu^2 + \alpha^2 \sin^2 \varphi)^{-1/2} (\mu^2 + \mu^2 \alpha^2 \cos^2 \varphi + \alpha^2 \sin^2 \varphi)^{-3/2}.$$
(6)

 $\alpha = (\gamma^2 - 1)^{1/2}$

At $\mu = 1$, $l(\mu, \phi, \alpha)$ is finite for all α

 m_T peak less sensistive to non zero $p_T(W)$

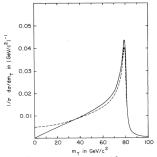


FIG. 1. $\sigma^{-1} d\sigma / dm_T$ for M = 80 GeV/ c^2 and $\Gamma = 2.5$ GeV/ c^2 . The solid line is for $p_T^{W} = 0$ GeV/c, while the dashed line is for $p_T^{W} = 50$ GeV/c.

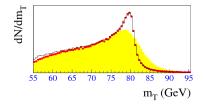
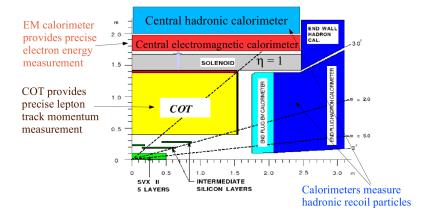


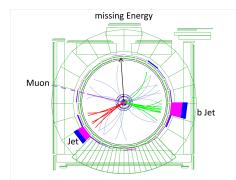
Figure 2: The effects of resolution and the finite p_T^W on M_T in $W \to e\nu$. The histogram shows M_T without detector smearing and for $p_T^W = 0$. The dots include the effects of adding finite p_T^W , while the shaded histogram includes the effects of detector resolutions. The effects are calculated for the DØ Run I detector resolutions.

- *m_T* fits are
 - most **insensitive** to $p_T(W) \neq 0$
 - worse resolution to hadron and electron response
- *p*_T fits are
 - most **sensistive** to $p_T(W) \neq 0$
 - better experimental resolution


With high statistics \rightarrow better cuts on hadronic recoil $\rightarrow p_T(W)$ model better controlled $\rightarrow p_T$ can compete with m_T

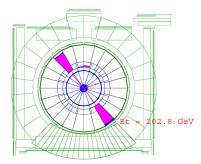
Measurement strategy

Monte Carlo simulation is used to predict shape of these distribution as a function of M_W , including:


- kinematic distributions
 - QED radiation
 - PDFs
- detector effects
 - external Bremsstrahlung
 - ionization energy loss in material
 - tracker momentum scale
 - calorimeter energy scale
 - resolutions
 - acceptance

CDF Detector

Inner silicon tracker, outer tracking drift chamber, COT, 1.4 *T* m. f. inside trackers, EM and Had calorimeters, muon system (CMU, CMP, CMX)


Experimental signatures: muon

Event selection

- minimum ionizing energy in calorimeter (< 2 GeV in EM, < 6 GeV in had)
- COT track, production vertex, $d_0 < 1 \text{ mm}$, $z_0 < 60 \text{ cm}$, $p_T > 30 \text{ GeV}$
- track segment in CMU and CMP or in CMX, compatible with COT track

Experimental signatures: electron

Event selection

- COT track: same for muon
- $E/p < 1.6, \frac{E_{had}}{E_{EM}} < 0.1$
- track matching with calorimeter energy and positions

Event Selection

Goal: select events with high $p_T(I)$ and small hadronic recoil activity $p_T(I)$ carries most of M_W information

For Z candidates:

• 66 $GeV < m_{\parallel} < 116 GeV$ for leptons of both flavors

For W candidates

- recoil energy in calorimeter < 15 GeV
- transverse missing energy > 30 GeV
- 60 $GeV < m_T < 100 GeV$

Data collected between February 2002 and September 2007 \mapsto 2.2 fb^{-1}

- 470 126 $W \rightarrow ev$ candidates \Leftarrow in 2007 only 63 964
- 624 708 $W \longrightarrow \mu \nu$ candidates \longleftarrow in 2007 only 51 128

High statistics from

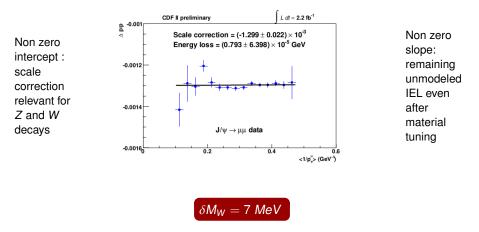
 $J/\psi \longrightarrow \mu\mu$ large cross section, precise mass, narrow width $\Upsilon(1s) \longrightarrow \mu\mu$ invariant mass 3 times larger than J/ψ , produced promptly

$$Z \longrightarrow \mu \mu$$

crosscheck

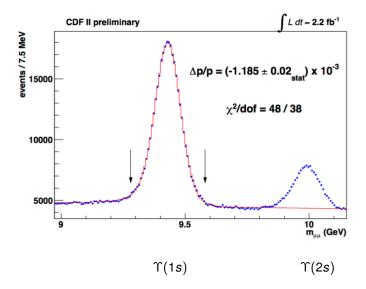
Momentum Calibration

A priori momentum scale: $mv^2/R = evB$, $p_T = eB/(2|c|)$ where $c \equiv q/(2R)$ AP scale $eB/2 = 2.11593 \cdot 10^{-3} GeV/cm$, 0.15% accuracy

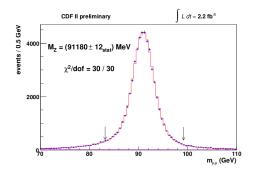

 J/ψ decays, fitting dimuon mass \implies 0.025% accuracy

Accurate modelling of muon ionization energy loss required $\implies \Delta p/p$ as a function of $< 1/p_T^{\mu} >$ to improve model

Each muon passing through silicon and COT detectors loses on average 9 $\ensuremath{\textit{MeV}}$


Momentum calibration

Measure of J/ψ mass as a function of inverse muon p_T


- non uniformities in tracker m.f. corrected removing dependence of J/ψ mass from muon mean polar angle
- scale dependence on $< 1/p_T >$ removed scaling tracker material

Momentum calibration

Momentum calibration

Combined momentum scale from J/ψ and $\Upsilon(1s)$ applied to Z and W samples

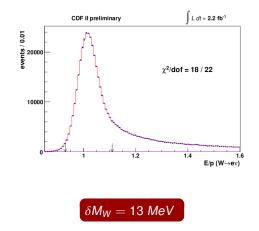
Consistent with world average $m_Z = 91188 \pm 2 MeV$

Overall momentum scale $\Delta p/p = (-129 \pm 9)10^{-5}$

In 2007 was $\Delta p/p = (-150 \pm 21)10^{-5}$

Energy calibration

- Electron's energy is measured from its shower in EM calorimeters
- E/p distribution would result, for calibrated data mesurement, of unity for non radiating electrons
- at this energy scale, Bremsstrahlung is favoured with photons collinear to the electron:

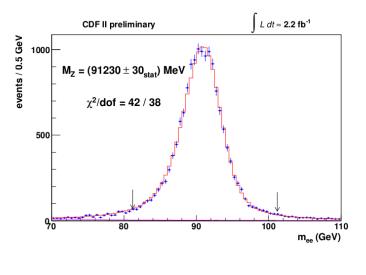

photons invisible in tracker: electron momentum softened

$$\implies E/p > 1$$
 (tails)

```
narrow EM shower: E completely reconstruted
```

Energy calibration

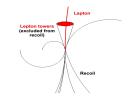
EM calorimeter energy scale is set using E/p electron distribution



- EM calorimeter non-linearity from E/p fits as a transverse energy
- tail to tune absolute number of X₀ in tracker

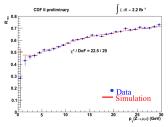
Same with $Z \longrightarrow ee$ samples

Energy calibration


 m_Z fit, crosscheck confirms consistency

 $\delta M_W = 10 MeV$

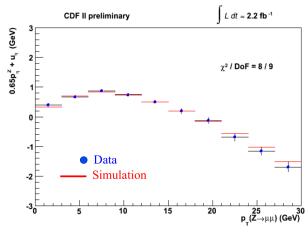
Recoil calibration


Recoil \vec{u} : vector sum of transverse energy over all EM and Had towers for $|\eta| < 2.4$, explicitly removing lepton towers.

Two components

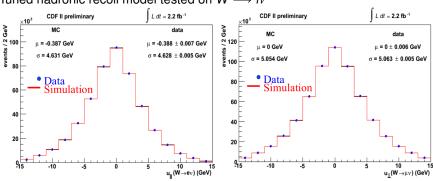
- soft "spectator interaction" component, randomly oriented → minimum bias event with tunable magnitude
- hard jet component, opposite to p_T(W) ⇒ p_T dependent, logarithmically increasing in p_T, following Z data

$$R \equiv u_{rec}/u_{true} = a \log(u_{true} + b)/\log(15 + b)$$



Recoil calibration

 $Z \longrightarrow II$ because we need to reveal both decay products


 η axis defined as the geometric bisector of two leptons, ξ axis $\perp \eta$

Mean and rms of recoil projection as a function of $p_T(II)$

Tuning of hadronic model parameters (minimum χ^2)

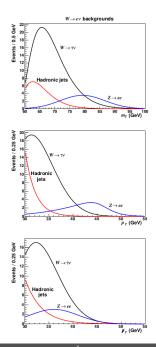
Recoil calibration

Tuned hadronic recoil model tested on $W \longrightarrow l_V$

Substantial improvement in model accuracy led to

 $\delta M_W = 7 MeV$

In 2007 was 20 MeV


Backgrounds

Both in $W \longrightarrow ev$ and in $W \longrightarrow \mu v$

- $Z/\gamma * \longrightarrow II$ with one I not detected
- $W \longrightarrow \tau \nu$ with τ decay products reconstructed as charged lepton
- multijet, where one jet is misreconstructed

In $W \longrightarrow \mu \nu$ sample

- cosmic rays, where a µ through COT is reconstructed on only one side
- long-lived hadrons $\longrightarrow \mu \nu X$, where μ misreconstructed

Backgrounds

2007

Muons

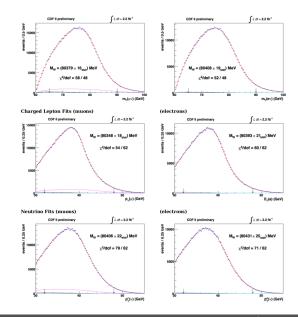
	% of	δn	w (MeV	7)
Background	$W \to \mu \nu$ data	m_T fit	p_T fit	p_T fit
$Z/\gamma^* \rightarrow \mu\mu$	6.6 ± 0.3	6	11	5
$W \rightarrow \tau \nu$	0.89 ± 0.02	1	7	8
Decays in flight	0.3 ± 0.2	5	13	3
Hadronic jets	0.1 ± 0.1	2	3	4
Cosmic rays	0.05 ± 0.05	2	2	1
Total	7.9 ± 0.4	9	19	11

Electrons

	% of	δm_W (MeV)		
Background	$W \to e \nu$ data	m_T fit	p_T fit	p_T fit
$W \rightarrow \tau \nu$	0.93 ± 0.03	2	2	2
Hadronic jets	0.25 ± 0.15	8	9	7
$Z/\gamma^* \rightarrow ee$	0.24 ± 0.01	1	1	0
Total	1.42 ± 0.15	8	9	7

2012

Muons


Background	$\%$ of $W \to \mu \nu$ data	δm_W (MeV)		
		m_T fit	p_T^{μ} fit	p_T^{ν} fit
$Z \rightarrow \mu \mu$	7.35 ± 0.09	2	4	5
$W \rightarrow \tau \nu$	0.880 ± 0.004	0	0	0
QCD	0.035 ± 0.025	1	1	1
DIF	0.24 ± 0.08	1	3	1
Cosmic rays	0.02 ± 0.02	1	1	1
Total		3	5	6

Electrons

De elemente d	% of $W \rightarrow e\nu$ data	δm_W (MeV)		
Dackground	γ_0 or $w \to e \nu$ data	m_T fit	p_T^e fit	p_T^{ν} fit
$Z \rightarrow ee$	0.139 ± 0.014	1	2	1
$W \rightarrow \tau \nu$	0.93 ± 0.01	1	1	1
QCD	0.39 ± 0.14	4	2	4
Total		4	3	4

Mass fits

Binned maximum-likelihood fit to $p_T(I)$, $p_T(v)$, m_T for each lepton channel

Mass fits

- Statistical correlation between fits measured through fits of simulated data to MC templates
- Different fits combined, calculating full covariance matrix for uncertainities

Combined m_T fitsCombined $p_T(l)$ fitsCombined $p_T(v)$ fits $M_W = 80390 \pm 20 \ MeV$ $M_W = 80366 \pm 22 \ MeV$ $M_W = 80416 \pm 25 \ MeV$ Combined m_T , $p_T(l)$, $p_T(v)$ for
electronCombined m_T , $p_T(l)$, $p_T(v)$ for muon
 $M_W = 80406 \pm 25 \ MeV$ Combined m_T , $p_T(l)$, $p_T(v)$ for muon
 $M_W = 80374 \pm 22 \ MeV$

Combination of all fits $M_W = 80387 \pm 19 \ MeV$ Most precise M_W measurement to date

Uncertainities 2007

m_T Fit Uncertainties					
Source	$W \rightarrow \mu \nu$	$W \rightarrow c \nu$	Correlation		
Tracker Momentum Scale	17	17	100%		
Calorimeter Energy Scale	0	25	0%		
Lepton Resolution	3	9	0%		
Lepton Efficiency	1	3	0%		
Lepton Tower Removal	5	8	100%		
Recoil Scale	9	9	100%		
Recoil Resolution	7	7	100%		
Backgrounds	9	8	0%		
PDFs	11	11	100%		
W Boson p_T	3	3	100%		
Photon Radiation	12	11	100%		
Statistical	54	48	0%		
Total	60	62			

p_T Fit Uncertainties					
Source	$W \rightarrow \mu \nu$	$W \rightarrow e \nu$	Correlation		
Tracker Momentum Scale	17	17	100%		
Calorimeter Energy Scale	0	25	0%		
Lepton Resolution	3	9	0%		
Lepton Efficiency	6	5	0%		
Lepton Tower Removal	0	0	0%		
Recoil Scale	17	17	100%		
Recoil Resolution	3	3	100%		
Backgrounds	19	9	0%		
PDFs	20	20	100%		
W Boson p_T	9	9	100%		
Photon Radiation	13	13	100%		
Statistical	66	58	0%		
Total	77	73	-		

p_T Fit Uncertainties					
Source	$W \rightarrow \mu \nu$	$W \to e \nu$	Correlation		
Tracker Momentum Scale	17	17	100%		
Calorimeter Energy Scale	0	25	0%		
Lepton Resolution	5	9	0%		
Lepton Efficiency	13	16	0%		
Lepton Tower Removal	10	16	100%		
Recoil Scale	15	15	100%		
Recoil Resolution	30	30	100%		
Backgrounds	11	7	0%		
PDFs	13	13	100%		
W Boson p_T	5	5	100%		
Photon Radiation	10	9	100%		
Statistical	66	57	0%		
Total	80	79	-		

2012

Systematic (MeV)	Electrons	Muons	Commor
Lepton Energy Scale	10	7	5
Lepton Energy Resolution	4	1	0
Recoil Energy Scale	5	5	5
Recoil Energy Resolution	7	7	7
$u_{ }$ Efficiency	0	0	0
Lepton Removal	3	2	2
Backgrounds	4	3	0
$p_T(W)$ Model (q_2, q_3, α_s)	3	3	3
Parton Distributions	10	10	10
QED Radiation	4	4	4
Total	18	16	15

TABLE II: Table of systematic uncertainties for the transverse mass fits.

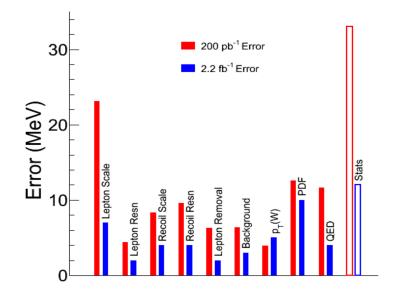

Systematic (MeV)	Electrons	Muons	Common
Lepton Energy Scale	10	7	5
Lepton Energy Resolution	4	1	0
Recoil Energy Scale	6	6	6
Recoil Energy Resolution	5	5	5
$u_{ }$ efficiency	2	1	0
Lepton Removal	0	0	0
Backgrounds	3	5	0
$p_T(W)$ model (q_2, q_3, α_s)	9	9	9
Parton Distributions	9	9	9
QED radiation	4	4	4
Total	19	18	16

TABLE III: Table of systematic uncertainties for the charged lepton p_T fits.

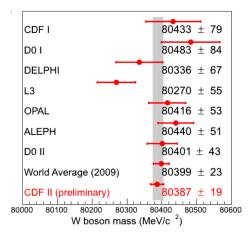
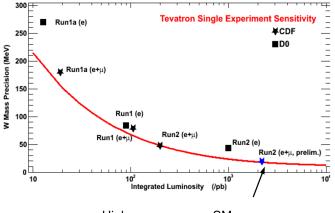
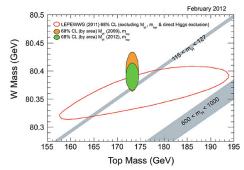

Systematic (MeV)	Electrons	Muons	Common
Lepton Energy Scale	10	7	5
Lepton Energy Resolution	7	1	0
Recoil Energy Scale	2	2	2
Recoil Energy Resolution	11	11	11
$u_{ }$ efficiency	3	2	0
Lepton Removal	6	4	4
Backgrounds	4	6	0
$p_T(W)$ model (g_2, g_3, α_s)	4	4	4
Parton Distributions	11	11	11
QED radiation	4	4	4
Total	22	20	18

TABLE IV: Table of systematic uncertainties for the missing transverse energy fits.

Uncertainities


Results

Results


Combining this result with previous CDF measurement \implies $M_W = 80394 \pm 18 \text{ MeV}$

New world average $M_W = 80390 \pm 16 \text{ MeV} \implies$ new input for Standard Model global fits

Higher pressure on SM

Results

New Higgs mass estimate $m_H = 90^{+29}_{-23}$ GeV, upper bound 145 GeV 95%C.L.

Excellent agreement with direct searches:

- *m_H* < 156 *GeV* (Tevatron)
- *m_H* < 127 GeV (LHC)

References

- First Run II Measurement of the W Boson Mass, 27 Aug 2007
- Measurement of the W Boson Mass using 2.2 fb-1 of CDF II Data, 23 Feb 2012
- Measuring the W Boson Mass at Hadron Colliders, U. Baur
- Transverse Mass and Width of the W Boson, J. Smith, W. L. van Neerven, J. A. M. Vermaseren
- A New Precise Measurement of the W Boson Mass by CDF, A. Kotwal