

MISURA DELLA MASSA DEL TOP A CMS

Anno Accademico 2011/2012

Corso di Fisica Nucleare e Subnucleare II

Professore Carlo Dionisi Tutor Dott. Marco Rescigno Dott. Fabrizio Margaroli Studente Alessandro Cicchetti

Importanza della misura

A livello teorico la massa del top è importante per 4 motivi:

- 1) X = $f(\alpha,G,\alpha_s,M_z,m_t,m_H)$ completa il set di variabili dello S.M. 2) stretto legame con i loop delle correzioni radiative
- 3) pone un vincolo sulla massa dell'Higgs
- 4) L'accoppiamento di Yukawa $\lambda_t = \sqrt{2} \frac{M_t}{v} \approx 1$, possibilità di un ruolo privilegiato del top nei processi di creazione di massa

1

Produzione del Top

Alcuni diagrammi di Feynman per la produzione di tt:

Presenti anche fenomeni single top \rightarrow sezione d'urto

Produzione del Top 2

Sezione d'urto puntiforme:

$$\sigma(Q\bar{Q} \to t\bar{t}) = \frac{4\pi\alpha_s^2}{3\hat{s}}\frac{2}{9}$$

In collisioni ppbar, la soglia per la produzione dipende dalla frazione di momento trasportata dal quark

$$x_1 x_2 = \frac{\hat{s}}{s} \ge \frac{4m_t^2}{s}$$

Si può calcolare numericamente la sezione d'urto per produzione di coppie ttbar da ppbar in funzione della massa del top.

A CMS

```
per \ m_t {\sim} 173 GeV \quad \sigma {\sim} \ 160 \ pb
```


La Sapienza Università di Roma - Facoltà di Fisica

Canali di decadimento

$$\frac{BR(t \to Wb)}{BR(t \to Wq)} = \frac{|V_{tb}|^2}{|V_{tb}|^2 + |V_{td}|^2 + |V_{ts}|^2} = 0.99825 \pm 0.00005$$

Il top, con un $\tau_t = 0.5 \times 10^{-24}$ s è l'unico quark che non riesce ad adronizzare ($\tau_{strong} \approx 10^{-23}$) e decade in:

- bosone W \rightarrow qq 66% o lv 33%
- quark b, che forma B ($\tau = 1.6 \times 10^{-12}$ s)

Misura di riferimento

Al momento attuale la misura più accurata è stata realizzata al Tevatron (CDF) nel canale l+jets:

M_t=173.0±1.2 Gev

Dall'intera raccolta dati in tutti i canali e in entrambi gli esperimenti si ottiene:

M_t=173.2±0.9Gev

La Sapienza Università di Roma - Facoltà di Fisica

Caratteristiche Large Hadron Collider (LHC)

Struttura Compact Muon Solenoid (CMS)

Canale semileptonico a CMS

Data Sample

Per identificare il decadimento e per migliorare il S/Bkg sono richieste le seguenti caratteristiche:

precisione dello Events/GeV ₀01 0.2% ρ,ω φ J/ψ Y(1,2,3S) w 104 Ζ 10³ 10² CMS Preliminary 10 $\sqrt{s} = 7 \text{ TeV}, \ L_{int} = 40 \text{ pb}^{-1}$ 10² μ⁺μ⁻ mass (GeV/c²) 10

• muone isolato p_t > 30 Gev |η| < 2.1

•MissEnergyTransverse>20Gev

La Sapienza Università di Roma - Facoltà di Fisica

8

p₊ con una

Data sample (2)

- almeno 4 jet:
- 2 b-tagged
- 2 provenienti dai light quark

v pt > 30 Gev |η| < 2.4

Data Sample (3)

Nel decadimento leptonico il p_z del neutrino non può essere misurato.

Massa Trasversa:

$$M_t^W = \sqrt{2 \cdot p_t^l \cdot p_t^v} \cdot (1 - \cos \Delta \phi)$$

$$p_t^{v} = \left| \vec{p}_t^{l} + \vec{u} \right|$$

$$\Delta \phi : angolo \ nel \ piano \ trasverso$$

$$tra \ leptone \ e \ neutrino$$

Jet Energy Scale

Il Jet viene ricostruito attraverso il Particle Flow JES definito come:

$$JES = \frac{\langle p_t^{jet} - p_t^{\gamma} \rangle_{data}}{\langle p_t^{jet} - p_t^{\gamma} \rangle_{MC}} \approx 1$$

γ/Z+jet balance method usato per calibrarel'impulso trasverso, con precisione < 2%;

I jet di interesse per la misura hanno:
•un PV in |z|<24cm
con almeno 4 tracce riconducibili ad esso
•Distanza radiale dal beam ρ<2.0 cm

Per $30 < p_t < 120$, incertezza < 3%

b-tagging (SVX)

I tracker nei pressi del vertice di interazione devono eliminare una buona dose di informazioni e ricostruire solo gli eventi appartenenti al Jet.

Per adroni B cτ ~ 480μm.

Un altro parametro importante è la significanza, IP/ σ_{IP} <5 ,che è utilizzata per discriminare una parte degli eventi analizzati in particolare quelli provenienti da light quark.

Il b-tagging code prevede:

- numero totale di silicon hits ≥ 8
- transverse Impact Parameter d_{xy} < 0.2 cm
- longitudinal Impact Parameter d_z < 17 cm
- transverse momentum > 1.0 GeV/c
- distance to jet axis

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 0.5$$

Fit Cinematico

Viene utilizzato per selezionare gli eventi tt e attribuire l'assegnamento jet-quark.

Per ogni assegnamento vengono imposte tre restrizioni:

$$M_{lv}=M_{w}$$

$$M_{qq}=M_{w}$$

$$M_{lvb}=M_{qqb}$$

$$M_{lvb}=M_{qqb}$$

$$M_{lvb}=M_{qqb}$$

Si richiedono: •Buona misura del MET proveniente dal neutrino •Buona calibrazione dei Jet •Corretto B-tagging

La Sapienza Università di Roma - Facoltà di Fisica

Fit Cinematico (2)

- Inizialmente si hanno 12 permutazioni
- La terza costrizione richiede che $p_{v,z}$ sia tale che $m_t=m_{tbar} \rightarrow 24$ permutazioni
- Richiedendo 2 b-jets → 6 permutazioni
- Tre tipi di permutazioni:
 - -Correct permutations-Wrong permutations-Unmatched permutations
- Soglia di Pfit a 0.2

Fit Cinematico (2)

Da ogni i-esimo evento si estraggono:

Differenze tra $M_t e M_w$ prima e dopo il fit e il χ^2 cut. up e wp incidono soprattutto sulle code ad alta energia

•M;

• σ

• χ²

La Sapienza Università di Roma - Facoltà di Fisica

Ideogram Method

- 1. Si misurano M_t e JES tenendo conto di tutte le possibili permutazioni e del b-tagging information.
- 2. Per misurare M_t si usa come osservabile la $M_{t,fit}$
- 3. Come estimatore in-situ del JES si usa la M_{w,reco}
- 4. Si utilizza questo metodo per la sua velocità di calcolo (grande mole di dati da analizzare)

Ideogram Method (2)

La Likelihood per singolo data sample e in caso di bkg trascurabile è definita come:

$$\mathcal{L}(m_t, \text{JES}|\text{sample}) \sim \mathcal{L}(\text{sample}|m_t, \text{JES}) \\ = \prod_{\text{events}} \mathcal{L}(\text{event}|m_t, \text{JES})^{w_{\text{event}}} \\ = \prod_{\text{events}} \left(\sum_{i=1}^n P_{\text{fit}}(i) P\left(m_{t,i}^{\text{fit}}, m_W^{\text{reco}}|m_t, \text{JES}\right) \right)^{\sum_{i=1}^n P_{\text{fit}}(i)}$$

il parametro $w_{\text{event}} = \sum_{i=1}^{n} P_{\text{fit}}(i)$ è inserito per ridurre l'impatto di tutte le permutazioni che non sono corrette e la somma è normalizzata al numero di eventi.

Grazie alla restrizione sulla massa del W $M_{t,fit}$ e $M_{W,Reco}$ sono scorrelate e pertanto possiamo riscrivere le probabilità:

$$P\left(m_{t,i}^{\text{fit}}, m_{W}^{\text{reco}} | m_{t}, \text{JES}\right) = P\left(m_{t,i}^{\text{fit}} | m_{t}, \text{JES}\right) \cdot P\left(m_{W,i}^{\text{reco}} | m_{t}, \text{JES}\right)$$
$$= \sum_{j} f_{j} P_{j}\left(m_{t,i}^{\text{fit}} | m_{t}, \text{JES}\right) \cdot P_{j}\left(m_{W,i}^{\text{reco}} | m_{t}, \text{JES}\right)$$

f_i sono determinati dalle simulazioni

La Sapienza Università di Roma - Facoltà di Fisica

Ideogram Method (3)

Le distribuzioni di M_{t,fit} sono fittate diversamente in base al tipo di permutazione: cp→Breit-Wigner convoluta con una risoluione gaussiana wp,up→Crystal Ball

Minimizzando il paraboloide della Likelihood si estrae il valore di M_t e di JES La 1 σ è data dalla condizione -2ln{L}=1

Figure 7: (a) The 2D likelihood measured on 4.7 fb⁻¹ 2011 data. The contours correspond to 1σ , 2σ and 3σ uncertainty. (b) The uncertainty distribution obtained from 8000 pseudo-experiments is compared to the measured uncertainty in data.

18

La Sapienza Università di Roma - Facoltà di Fisica

Alessandro Cicchetti

La Sapienza Università di Roma - Facoltà di Fisica

Alessandro Cicchetti

Risultato

We select 2391 μ +jets events out of 4.7 fb⁻¹ of 2011 data taken by the CMS detector and measure:

 $m_t = 172.64 \pm 0.57 \text{ (stat+JES)} \pm 1.18 \text{ (syst) GeV}$ JES = $1.004 \pm 0.005 \text{ (stat)} \pm 0.012 \text{ (syst)}$

L'incertezza statistica può essere attenuata fino a ±0.4 utilizzando i dati globali delle esperienze di CMS.

La misura è dominata dall'incertezza sistematica

Incertezze sistematiche

Incertezze sistematiche (2)

CMS

Table 1: List of systematic uncertainties		
	δ_{m_t} (GeV)	δ_{JES}
Calibration	0.15	0.001
b-tagging	0.17	0.002
b-JES	0.66	0.000
p_T - and η -dependent JES	0.23	0.003
Jet energy resolution	0.21	0.003
Missing transverse energy	0.08	0.001
Factorization scale	0.76	0.007
ME-PS matching threshold	0.25	0.007
Non-tt background	0.09	0.001
Pile-up	0.38	0.005
PDF	0.05	0.001
Total	1.18	0.012

CDF

Systematic Source	Uncertainty (GeV/c^2)
Calibration	0.10
Monte Carlo Generator	0.37
ISR and FSR	0.15
Residual JES	0.49
b-JES	0.26
Lepton p_T	0.14
Multiple Hadron Interactions	0.10
PDFs	0.14
Background Modeling	0.33
Color Reconnection	0.37
Total	0.88

B-JES

Rappresenta l'incertezza dei modelli di b-jet. Jet provenienti dai light quark, da b, o dai gluoni portano differenti risposte in energia che vengono studiate dalle simulazioni.

 Factorization scale determinato dalla scarsa conoscenza dell'ISR, FSR (a CDF sono stati studiati i dati Z+jets)

 Pile-up energia in più associata ai jet

Attualmente al CMS non sono state calcolate tutte le sistematiche

Backup

Single Top

Analysis Calibration

Il bias è stato calcolato tramite le seguenti relazioni:

Mass bias = m_{t,meas} – m_{t,gen} JES bias=JES_{meas} –JES_{gen}

Il fit che dovrebbe uscire per diversi valori dei due parametri dovrebbe essere una retta a pendenza 0, ma si registra un:

> mass offset = -0,32±0.15 JES offset = -0.002±0.001

Offset

Pull

$$\text{pull} = \frac{m_{t,\text{meas}} - m_{t,\text{gen}}}{\sigma\left(m_{t,\text{meas}}\right)}$$

La Sapienza Università di Roma - Facoltà di Fisica

Dati CMS

La Sapienza Università di Roma - Facoltà di Fisica

Alessandro Cicchetti