<u>Misura della sezione d'urto σ_{tī} dal decadimento dileptonico</u> dei bosoni W

di Chiara Farinelli

Punti principali

- Studio dell'apparato sperimentale:

CDF (collision detector at Fermilab): calorimetri, muon detectors, trigger systems

- Topologia: sistemi di coordinate
- Selezione degli eventi:

→ scelta di elettroni e muoni

- Discussione sul background
- Calcolo della $\sigma_{t \, \overline{t}}$

<u>Importanza di una misura precisa di σ_{t t} :</u>

Si cercano verifiche del Modello Standard (SM)

Essendo M_{top} molto maggiore rispetto alle masse di altri quark o leptoni, il contributo del Top alle correzioni radiative di osservabili dello SM è dominante

Conoscere con precisione M_{top} , data M_W , permette di mettere delle restrizioni su M_{Higgs} , che è il tassello mancante dello SM

Una misura precisa della sezione d'urto porta ad una conoscenza maggiore delle caratteristiche del quark Top

Studio della sezione d'urto per diversi processi

Alcune misure della sezione d'urto fatte a CDF:

3.
$$\sigma(W \rightarrow Iv) \sim 1.4 \text{ nb}$$

Descrizione processo:
$$p \neq t t$$

Tevatron $rightarrow (s = 1.96 \text{ TeV})$
 $f = \frac{f \cdot N_p \cdot N_p \cdot B}{4\pi\sigma_T^2} = (1.10^{32} \text{ cm}^2 \text{ s}^2)$
 $con \begin{bmatrix} N_p = 18 \cdot 10^{12} \\ N_p = 6 \cdot 10^{11} \\ B = 1.4 \text{ T} \\ \sigma_T = 30 \text{ µm} \end{bmatrix}$
 $reverting the second se$

Topologia

sistemi di coordinate usati a CDF:

1.) coordinate cilindriche:

 z: asse orientato lungo direzione nominale fascio con origine nel centro del rivelatore angolo azimutale φ, definito come

φ = arctan (p_y/p_x)

coordinata r (misurati nel piano trasverso che passa per il vertice di interazione

2.) coordinate cartesiane: l'asse x e l'asse y formano con l'asse z un sistema levogiro, l'angolo polare θ si misura rispetto all'asse z (0< θ < π).

definisco la pseudorapidità come:

η = -log (tan
$$\frac{\theta}{2}$$
)

Selezione degli elettroni nel decadimento dileptonico di W

<u>Trigger</u>: regione $|\eta| < 1$, deposito di E di 8GeV per torre e a questa torre deve puntare una traccia con p_T > 8 GeV/c ; l'efficienza è stimata a (96.6 ± 0.2)%

deve essere:

E_T(cono) < 10% di E_T(cluster)

perchè un evento sia considerato buono

Selezione dei muoni nel decadimento dileptonico di W

Trigger:

→ regione $|\eta| < 1$, eventi trovati nella CMU, CMP, e CMX formano dei segmenti con cui deve coincidere una traccia con p_T >18GeV/c

efficienza stimata a (92.5 ± 1.1)%

Selezione:

gli eventi buoni sono quelli per i quali si ha:

E_T(cono) < 10% di p_T(traccia)

Tre modi di decadimento del bosone W (1)

decadimento:

$$t \overline{t} \longrightarrow W^- b W^+ b$$

t non si accoppia perché ha $\tau \sim 10^{-25}$ s mentre per un accoppiamento forte serve t $\sim 10^{-22}$ s

Canale	B.R.	,Ĕ _τ
adronico	44%	~ 0
Leptoni+jets	30%	>20 GeV
Dileptonico	5%	>40 GeV
Altro	21%	

→ La presenza nello stato finale di neutrini porta ad una apparente non conservazione dell'energia-impulso ↓ Misurando l'energia mancante \not{E}_T si può determinare il tipo di decadimento

Tre modi di decadimento del bosone W (2)

Branching Ratios:

Decadimento dileptonico del bosone W

Gli stati finali possibili sono tre:

$$e^{\pm} + \mu^{\mp} + v_e + v_{\mu}$$

12

Decadimento del t-t in un e⁻ e un µ⁺

Effetti di background

- Produzione Drell-Yan: annichilazione di q e q in un fotone massivo che decade in due leptoni → è l'errore sistematico dominante
- 2) <u>QCD background</u>: eventi del tipo W → I v + jets in cui un jet viene scambiato per un leptone

→ Stimato a partire da dati presi sui jets

3) <u>Produzione di dibosoni:</u> WW, WZ, ZZ

> →Stimato da simulazioni Monte Carlo da predizioni teoriche NNLO (Next to Next Leading Order)

Calcolo della sezione d'urto (1)

sezione d'urto sperimentale:

- → servono due leptoni carichi con grande p_T: il primo è sottoposto a restrizioni calorimetriche e tracciamento, il secondo solo a una selezione della traccia
- eventi con 0 o 1 jet vengono utilizzati per fare ipotesi sul background, eventi con due o più jet vengono usati per calcolare la sezione d'urto.

La sezione d'urto sperimentale è poi confrontata con quella teorica:

$$\sigma_{t \, t} = 6.7 {}^{+0.9}_{-0.7} \text{ pb}$$

Per verificare la validità del Modello Standard

Calcolo della sezione d'urto (2)

	<u>N</u>	numero totale eventi
$\sigma_{exp} = \frac{L}{L} =$	luminosità integrata	

quindi

$$\sigma_{exp} = \frac{N_{obs} - N_{bkg}}{A \cdot L}$$
 (N_{bkg} = 19.3 ± 4.3 eventi)
(A = 0.074)

→ A è un parametro che comprende diversi effetti tra cui quello sul trigger, quello sulla selezione, e quello sull'accettanza.

L dipende dal tipo di rivelatore, ma và poi calcolato nell'intervallo temporale entro il quale viene fatta la misura

si trova:

$\sigma_{t \bar{t}} = 8.3 \pm 1.5$ (stat) ± 1.0 (syst) ± 0.5 (lumi) pb

Calcolo della sezione d'urto (3)

<u>Incertezze su σ_{t t}:</u>

1. incertezza dovuta all'accettanza: (direttamente proporzionale a σ)

$$\delta \sigma = \sigma \frac{\delta A}{A}$$

2. incertezza dovuta al background:

$$\delta \sigma = \frac{\delta b}{A \cdot L} = \frac{4.3 \text{ eventi}}{A \cdot L} = 0.8 \text{ pb}$$

3. incercertezza sistematica; indipendente dal valore di $\boldsymbol{\sigma}$

<u>Referenze</u>

- [1] Proceedings of Science. R. Rossin, "Measurement of Top quark pair production cross section and Search for Resonances at Tevatron" (2006)
- [2] D. Whiteson, "Precision Measurements of the Top Quark Mass at Tevatron". (2006)
- [3] The Tevatron Electroweak Working Group, and The CDF and D0 collaborations, hep-ex/ 0604053
- [4] The CDF collaboration, CDF note 8148.
- [5] A. Bhatti, F. Canelli, B. Heinemann, "Determination of the Jet Energy Scale at the Collider Detector at Fermilab". (2005)
- [6] H. Bachacou, "A Measurement of the Production Cross Section of t-tbar Pairs in p-pbar Collisions at √s= 1.96 TeV Using Secondary Vertex btagging". (2004)
- [7] J.F. Arguin, "Measurement of the Top Quark Mass with In Situ Jet Energy Scale Calibration Using Hadronic W Boson Decays at CDF-II". (2006)

B1 – Spettri di energia ed impulso

(a) (b)

B2 – Spettri di energia ed impulso

B3 – Spettri di energia ed impulso

