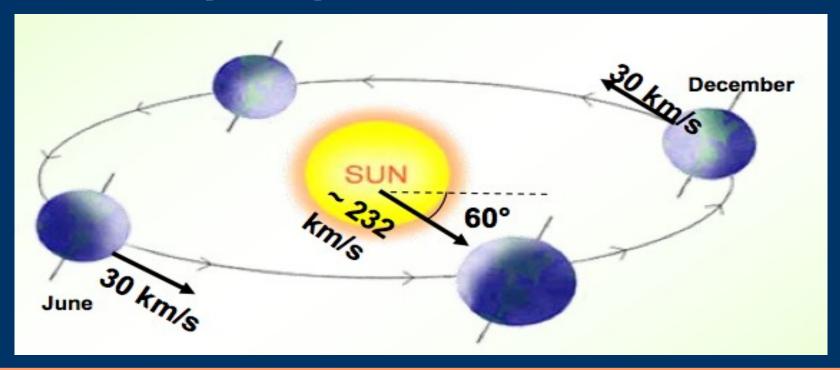


OSSERVAZIONE DI MATERIA OSCURA NELL'ALONE GALATTICO CON DAMA/LIBRA


Studente: Emanuele Ripiccini

Tutors
Dott. Fabio Cappella
Dott.sa Antonella Incicchitti

COME DAMA/LIBRA RIVELA LA PRESENZA DI MATERIA OSCURA

Ricerca di una segnatura indipendente dal tipo di candidato di particella di materia oscura presente nell'alone galattico: modello della modulazione annuale del flusso di WIMPs (particelle di natura non barionica che interagiscono con sezioni d'urto molto piccole tipiche dell'interazione nucleare debole)

Dama

MODELLO DELLA MODULAZIONE ANNUALE

Il flusso di WIMPs sul rivelatore dipende dalla combinazione del moto di rivoluzione della terra e del moto di rivoluzione del Sole intorno al centro della galassia. La velocità relativa assume questa espressione:

$$v_r(t) = v_{sun} + v_{orb} \cos \gamma \cos [\omega(t-t0)]$$

$$v_{sun}=232 \text{ km/s} \text{ } v_{orb}=30 \text{ km/s}$$

Si ha un massimo il 2 giugno quando le due velocità sono concordi e un minimo il 2 dicembre quando sono discordi.

Dama

MODELLO DELLA MODULAZIONE ANNUALE

La rate in unità di conteggi per giorno per unità di massa per intervallo di energia ΔE_k assume la seguente espressione:

$$S_k[\eta(t)] = \int_{\Delta E_k} \frac{dR}{dE_R} dE_R \cong S_{0,k} + S_{m,k} \cos[\omega(t - t_0)]$$

MODELLO DELLA MODULAZIONE ANNUALE

Caratteristiche del segnale

- La rate deve avere una componente modulata con una funzione coseno
- Periodo T=1 anno
- Fase to=152 giorni (2 giugno)
- Ci si aspetta un segnale della modulazione sia presente solo nella regione di bassa energia
- Ci aspettiamo una modulazione solo nei single hit events
- L'ampiezza di modulazione deve essere minore del 7% rispetto alla parte costante (dato legato al modello dell'alone galattico)

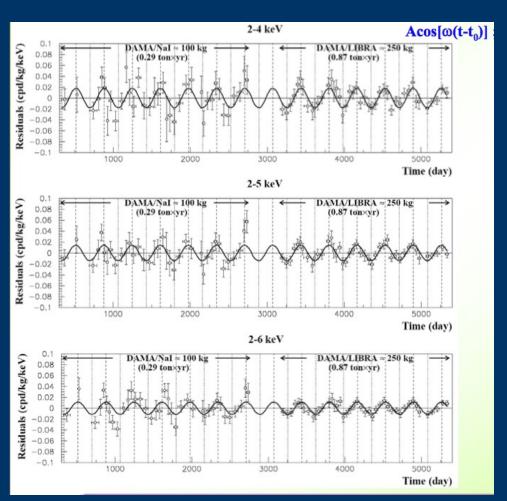
MODALITA' DI ANALISI DEI DATI

Vengono analizzati:

- Eventi di singolo rivelatore (single hit events)
- Eventi segnati da più rivelatori (multiple hits events).
- Eventi a bassa energia (tra 2-6 KeV)
- Eventi ad alta energia (al di sopra di 6 KeV)
- Eventuali effetti sistematici

La software threshold è fissata a 2 KeV.

RATE RESIDUA


La rate residua (parte modulata) è ottenuta sottraendo alla rate misurata di la parte costante:

$$< r_{ijk}$$
- $flat_{jk}>_{jk}$

dove rijk è la rate misurata nell'intervallo di tempo iesimo per il j-esimo cristallo nel k-esimo intervallo di energia e flat_{jk} la media temporale della rate misurata su tutto il ciclo. Il risultato viene infine mediato su tutti i detector e su tutti gli intervalli di energia.

RISULTATI SPERIMENTALI (SINGLE HIT EVENTS) FIT CON UN SOLO PARAMETRO LIBERO

2-4 keV

 $A=(0.0183\pm0.0022) \text{ cpd/kg/keV}$

 $\chi^2/dof = 75.7/79$ **8.3** σ **C.L.**

Absence of modulation? No

 $\chi^2/dof=147/80 \Rightarrow P(A=0) = 7 \times 10^{-6}$

2-5 keV

A=(0.0144±0.0016) cpd/kg/keV

 $\chi^2/dof = 56.6/79$ **9.0** σ **C.L.**

Absence of modulation? No

 $\chi^2/dof=135/80 \Rightarrow P(A=0) = 1.1 \times 10^{-4}$

2-6 keV

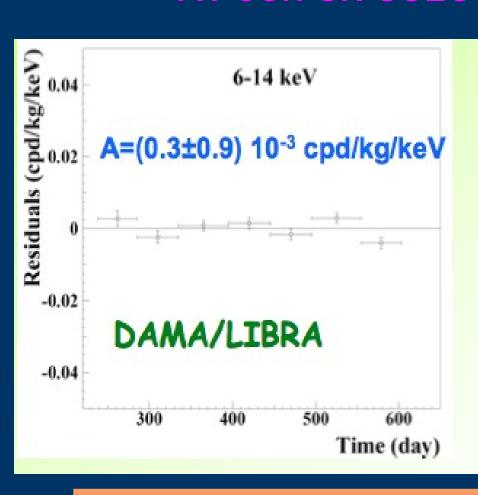
A=(0.0114±0.0013) cpd/kg/keV

 $\chi^2/dof = 64.7/79$ **8.8** σ **C.L.**

Absence of modulation? No

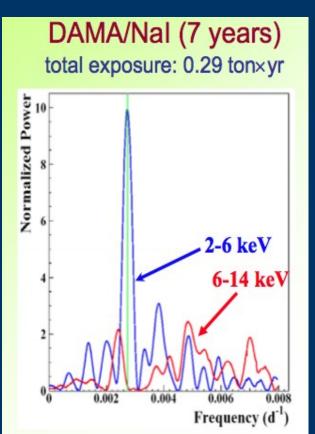
 $\chi^2/dof=140/80 \Rightarrow P(A=0) = 4.3 \times 10^{-5}$

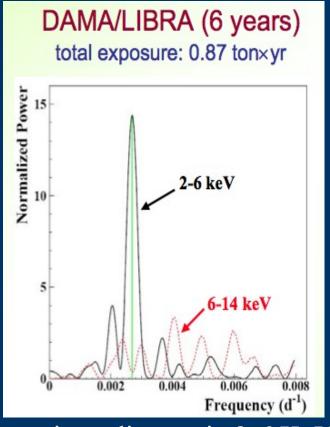
RISULTATI SPERIMENTALI (SINGLE HIT EVENTS)

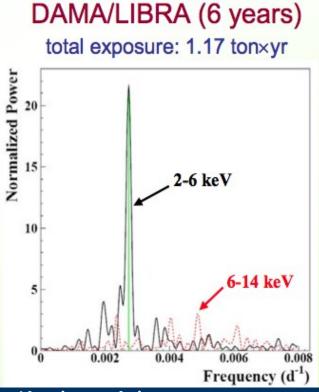

FIT CON TRE PARAMETRI LIBERI

	A (cpd/kg/keV)	T= 2π/ω (yr)	t ₀ (day)	C.L.
DAMA/Nal (7 years)				
(2÷4) keV	0.0252 ± 0.0050	1.01 ± 0.02	125 ± 30	5.0σ
(2÷5) keV	0.0215 ± 0.0039	1.01 ± 0.02	140 ± 30	5.5σ
(2÷6) keV	0.0200 ± 0.0032	1.00 ± 0.01	140 ± 22	6.3σ
DAMA/LIBRA (6 years)				
(2÷4) keV	0.0180 ± 0.0025	0.996 ± 0.002	135 ± 8	7.2σ
(2÷5) keV	0.0134 ± 0.0018	0.997 ± 0.002	140 ± 8	7.4σ
(2÷6) keV	0.0098 ± 0.0015	0.999 ± 0.002	146 ± 9	6.5σ
DAMA/Nai + DAMA/LIBRA				
(2÷4) keV	0.0194 ± 0.0022	0.996 ± 0.002	136 ± 7	8.8σ
(2÷5) keV	0.0149 ± 0.0016	0.997 ± 0.002	142 ± 7	9.3σ
(2+6) keV	0.0116 ± 0.0013	0.999 ± 0.002	146 ± 7	8.9σ

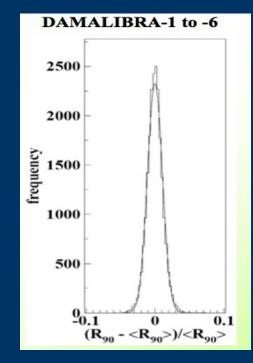
MODULAZIONE AL DI SOPRA DI 6 KeV


FIT CON UN SOLO PARAMETRO LIBERO




Mod. Ampl. (6-10 keV): cpd/kg/keV (0.0016 ± 0.0031) DAMA/LIBRA-1 $-(0.0010 \pm 0.0034)$ DAMA/LIBRA-2 $-(0.0001 \pm 0.0031)$ DAMA/LIBRA-3 $-(0.0006 \pm 0.0029)$ DAMA/LIBRA-4 $-(0.0021 \pm 0.0026)$ DAMA/LIBRA-5 (0.0029 ± 0.0025) DAMA/LIBRA-6 → statistically consistent with zero

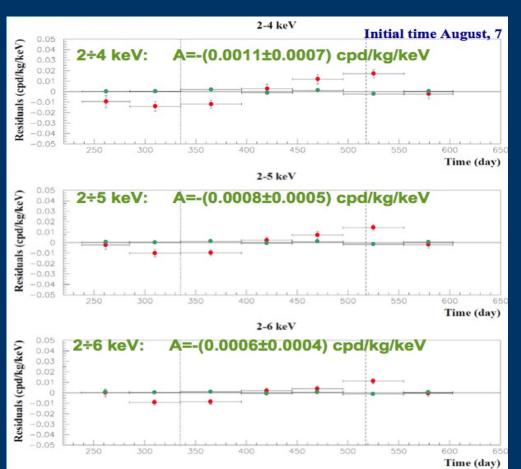
SPETTRO IN FREQUENZA DELLA RATE


DAMA/Nal (7 years) +

Notiamo che per la regione di energia 2-6 KeV c'è picco è in corrispondenza di 0,0027 giorni a meno uno che corrisponde a un anno alla meno uno, mentre per 6-14 KeV ci sono solo picchi di aliasing.

RISULTATI SULL'INTERO SPETTRO FIT CON UN SOLO PARAMETRO LIBERO

Dama


Period	Mod. Ampl.
	-(0.05±0.19) cpd/kg
DAMA/LIBRA-2	-(0.12±0.19) cpd/kg
DAMA/LIBRA-3	-(0.13±0.18) cpd/kg
DAMA/LIBRA-4	(0.15±0.17) cpd/kg
DAMA/LIBRA-5	(0.20±0.18) cpd/kg
DAMA/LIBRA-6	-(0.20±0.16) cpd/kg

Notiamo che i dati, perfettamente distribuiti gaussianamente, sono consistenti con un ampiezza di modulazione nulla.

RISULTATI SPERIMENTALI (MULTIPLE HITS EVENTS) UN SOLO PARAMETRO LIBERO

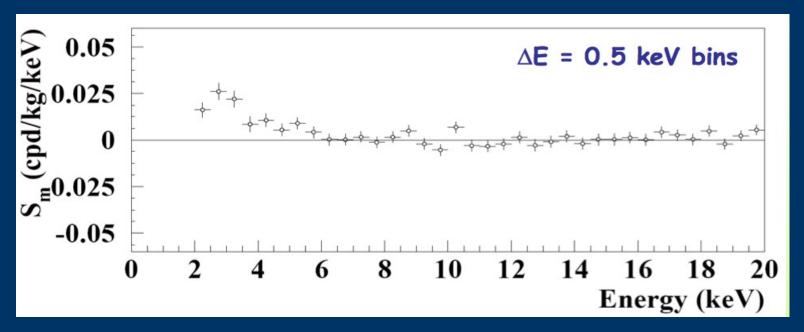
I punti del multiple hits events (in verde) sono messi a confronto quelli del single hit events (in rosso).

In entrambi i casi vengono utilizzati le stesse procedure hardware e software

AMPIEZZA DI MODULAZIONE IN FUNZIONE DELL'ENERGIA TEST DI MASSIMA VEROSIMIGLIANZA 1

La funzione di verosimiglianza per i single hit events nel k-esimo intervallo di energia è definita in questo modo:

$$L_k = \prod_{ij} e^{-\mu_{ijk}} \frac{\mu_{ijk}^{N_{ijk}}}{N_{ijk}!}$$

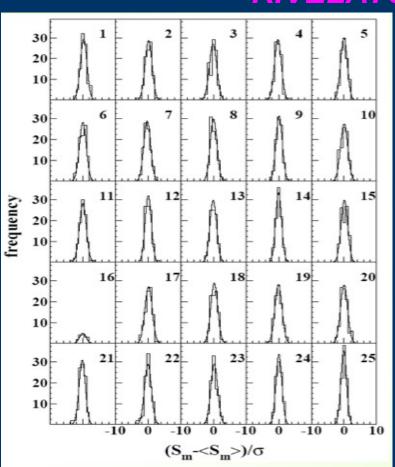

Dove N_{ijk} è il numero di eventi nell'i-esimo intervallo di tempo nel j-esimo detector nel k-esimo intervallo di energia, μ_{ijk} il valor medio di eventi aspettato per unità di massa energia e tempo:

$$\mu_{ijk} = \left[b_{jk} + R_k(t)\right] M_j \Delta t_i \Delta E \varepsilon_{jk} = \left[b_{jk} + S_{0,k} + S_{m,k} \cos \omega (t_i - t_0)\right] M_j \Delta t_i \Delta E \varepsilon_{jk}$$

Dove b_{jk} è il contributo di background e ϵ_{jk} è l'efficienza del rivelatore.

AMPIEZZA DI MODULAZIONE IN FUNZIONE DELL'ENERGIA

Applicando il metodo della massima verosimiglianza, avendo fissato T=1 anno e t0=152,5 giorni, determiniamo un estimatore dell'ampiezza di modulazione per ogni bin di energia:



Notiamo la presenza di una modulazione tra 2-6 KeV, mentre tra 6-20 KeV i valori sono oscillanti intorno allo zero.

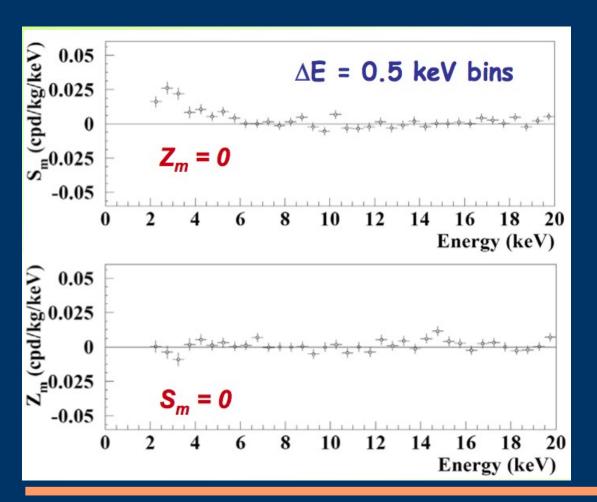
AMPIEZZA DI MODULAZIONE IN FUNZIONE DELL'ENERGIA

DISTRIBUZIONE STATISTICA DEI DATI DI SINGOLO
RIVELATORE

L'intervallo di energia considerato è 2-6 KeV (stavolta i bins hanno un'ampiezza di 0,25 KeV), la media <Sm> è fatta su un intero ciclo di presa dati e su tutti i detector.

Notiamo che le ampiezze per singolo detector sono distribuite gaussianamente e hanno tutte lo stesso valor medio <Sm>

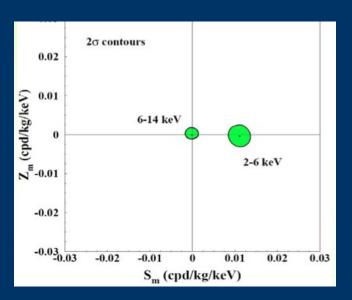
AMPIEZZA DI MODULAZIONE IN FUNZIONE DELL'ENERGIA CONTRIBUTO DI UNA MODULAZIONE DI TIPO SENO

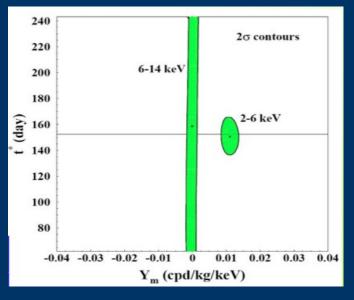

Potrebbe esserci un contributo di modulazione sinusoidale?

$$R(t) = S_0 + S_m \cos[\omega(t - t_0)] + Z_m \sin[\omega(t - t_0)]$$

Il massimo della modulazione seno si ha per t=t0+T/4 (il 1° settembre)

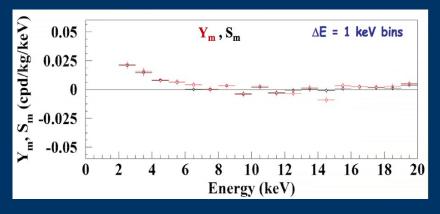
AMPIEZZA DI MODULAZIONE IN FUNZIONE DELL'ENERGIA TEST DI MASSIMA VEROSIMIGLIANZA 2

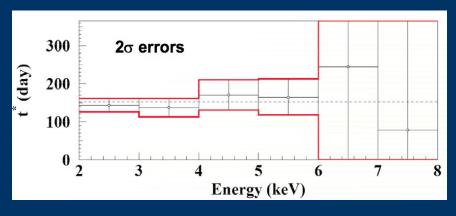



Notiamo che l'andamento di Zm è oscillante intorno allo zero in tutto lo spettro.

AMPIEZZA DI MODULAZIONE IN FUNZIONE DELL'ENERGIA FIT CON DUE PARAMETRI LIBERI

$$R(t) = S_0 + S_m \cos[\omega(t - t_0)] + Z_m \sin[\omega(t - t_0)] = S_0 + Y_m \cos[\omega(t - t^*)]$$




Nell'ipotesi in cui nell'alone siano presenti particelle di DM non termalizzate la fase potrebbe essere diversa da quella aspettata.

AMPIEZZA DI MODULAZIONE IN FUNZIONE DELL'ENERGIA VALORI FINALI DEI PARAMETRI

E (keV)	S _m (cpd/kg/keV)	Z _m (cpd/kg/keV)	Y _m (cpd/kg/keV)	t* (day)
2-6	0.0111 ± 0.0013	-0.0004 ± 0.0014	0.0111 ± 0.0013	150.5 ± 7.0
6-14	-0.0001 ± 0.0008	0.0002 ± 0.0005	-0.0001 ± 0.0008	

ANALISI DEI POSSIBILI EFFETTI SISTEMATICI

Effetti sistematici	Limiti superiori al 90% sull'ampiezza di modulazione
Radon	<2.5×10E-6 cpd/kg/keV
Temperatura	<10E-4 cpd/kg/keV
Background	<10E-4 cpd/kg/keV
Variazione del flusso di muoni misurata ai LNGS	<3×10E-5 cpd/kg/keV
Variazione di efficienza dei detectors	<10E-4 cpd/kg/keV
Non stabilità della scala di energia	<1-2 ×10E-4 cpd/kg/keV
Rumore dei fotomoltiplicatori	<10E-4 cpd/kg/keV

Notiamo che tutti questi fattori hanno un'nfluenza sull'ampiezza di modulazione al più dell'1%

CONCLUSIONI

I tredici anni di DAMA/NaI e DAMA/LIBRA hanno rivelato la segnatura della modulazione annuale nei single hit events con un livello di confidenza pari a 8,9 o.

I parametri finali della modulazione misurati fra 2-6 KeV sono:

A=(0.0116±0.0013) cpd/kg/keV

 $T=(0,999\pm0,002)$ anni

t₀=(146±7) giorni

Nessun effetto sistematico risponde ai requisiti della modulazione annuale. Ad ogni modo non rendono conto dell'ampiezza di modulazione osservata.

A settembre 2010 è prevista la sostituzione dei PMTs con nuovi dispositivi con efficienza quantica del 40% con il 30% degli attuali. In questo modo è possibile abbassare la threshold e quindi osservare l'andamento dell'ampiezza di modulazione per valori di energia più bassi.