

Misura della sezione d'urto $e^+e^- \rightarrow \pi^+\pi^-\gamma$ con il detector KLOE

Corso di Fisica Nucleare e Subnucleare II

Studente: Francesco Micheli Tutor: Prof.Cesare Bini

08.06.2010

Introduzione

L'anomalia magnetica del muone è data da 3 contributi:

$$a_{\mu}=a_{\mu}^{QED}+a_{\mu}^{weak}+a_{\mu}^{had}$$

A KLOE si misura la sezione d'urto $e^+e^- \rightarrow \pi^+\pi^-\gamma$ per stimare il contributo adronico.

Il contributo QED

Include i loop fotonici e leptonici (tutte e tre le famiglie). È calcolato analiticamente fino al 3° ordine, i termini del 4° e 5° ordine sono stati stimati numericamente.

 $a_{\mu}^{QED} = 116584718.09(0.14)_{5^{th}order}(0.08)_{\delta\alpha} \times 10^{-11}$

Termine dovuto all'incertezza sulla costante di struttura fine.

Il contributo debole

Include i contributi dati dai bosoni Z, W e del bosone di Higgs. Si considerano i termini fino al 2° ordine poiché il terzo termine è già $O(10^{-12})$.

Il contributo adronico

Dovuto a loop di quark e gluoni. Non si può utilizzare la QCD perturbativa. Necessità di misure SPERIMENTALI di precisione. Il contributo all'ordine più basso è modellizzato da un integrale di dispersione.

$$a^{had,LO} = rac{1}{3} rac{lpha^2}{\pi^2} \int_{m_\pi}^\infty ds R^{(0)}(s) K(s)$$

Sezione d'urto in funzione dell' energia del cdm.

 $K(s) \sim \frac{1}{s}$ K(s) è la funzione di kernel. L'andamento come 1/s dà peso alla parte a bassa energia dell'integrale. • 91% del contributo accumulato per energie nel cdm minori di 1.8 GeV.

• 73 % di a_{u} coperto dallo stato finale in due pioni.

Necessità di misure sperimentali per determinare più precisamente questo contributo — KLOE

Risultati Sperimentali

Experiment	$N_{ m data}$	Energy range (GeV)	$\delta({ m stat.})$	$\delta({ m syst.})$
$DM1 (1978)^{22}$	16	0.483 - 1.096	(6.6 - 40)%	2.2%
TOF $(1981)^{23}$	4	0.400 - 0.460	(14-20)%	5%
OLYA (1979, 1985) ^{24 25}	2+77	0.400 - 1.397	(2.3-35)%	4%
$CMD (1985)^{25}$	24	0.360 - 0.820	(4.1 - 10.8)%	2%
DM2 (1989) 26	17	1.350 - 2.215	(17.6-100)%	12%
$CMD2 (2003)^{27}$	43	0.611 - 0.962	(1.8 - 14.1)%	0.6%
KLOE (2005) ²⁸	60	0.600 - 0.970	(0.5-2.1)%	(1.2 - 3.8)%
SND $(2006)^{29}$	45	0.390 - 0.970	(0.5-2.1)%	(1.2-3.8)%
$CMD2_{low} (2006)^{30}$	10	0.370 - 0.520	(4.5-7)%	0.7%
$CMD2_{rho} (2006)^{31}$	29	0.600 - 0.970	(0.5-4.1)%	0.8%
$CMD2_{high} (2006)^{ 32 }$	36	0.980 - 1.380	(4.5 - 18.4)%	(1.2-4.2)%

Oltre a dati provenienti da annichilazioni e⁺ e⁻ si utilizzano per la stima di a_u anche i decadimenti deboli $\tau^{\pm} \rightarrow \nu_{\tau} \pi^{\pm} \pi^{0}$ confrontando i Branching Ratio aspettati dall' ipotesi CVC. Tuttavia si ha una discrepanza tra i due set di dati. Possibilità:

- •Dati e⁺e⁻errati oppure dati errati
- Sono entrambi corretti, ma ci sono effetti fisici non considerati
 - Importanza delle misure di precisione a bassa energia di KLOE

Il detector KLOE

- Opera a DAØNE, il collisore e⁺e⁻ di Frascati.
- •**Dimensioni**: 7 × 6 × 7 m

Camera a drift cilindrica

Diametro: 4 m Larghezza: 3.3 m
52000 fili, sorretti da due sottili piatti in fibra di carbonio

- •Miscela: 90 % He 10 % C₄H₁₀ •Campo magnetico: 6 KGauss
- •Risoluzione in impulso: $\frac{\sigma_{p\perp}}{p\perp} \sim 0.4\%$
- Risoluzione spaziale:
 0.15 mm r-Φ 2 mm z

Calorimetro Elettromagnetico

•Strati di fibre scintillanti (1mm diametro) e piombo (0.5mm spessore).

- •Risoluzione in energia: $\frac{\sigma_E}{E} \sim \frac{5.7\%}{\sqrt{E}}$
- •Eccellente risoluzione in tempo: $\sigma_t \sim \frac{54ps}{\sqrt{E(GeV)}} \oplus 100ps$

Strategia per la misura di $\sigma_{e^+e^- \rightarrow \pi^+\pi^-}$

DA ϕ NE è in funzione a un energia del centro di massa fissa, pari alla massa del mesone ϕ , circa 1020 MeV.

Dunque, invece di fare una misura della sezione d'urto al variare di \sqrt{s} , si utilizza la ISR, misurando la sezione d'urto del processo $e^+e^- \rightarrow \pi^+\pi^-\gamma$ in funzione della massa invariante dei due pioni $M_{\pi\pi}$. Si

usa poi la formula di deconvoluzione, dove H è il "radiatore":

6

$$srac{d\sigma(ee
ightarrow\pi\pi\gamma)}{dM_{\pi^2\pi}}=\sigma_{\pi\pi}(M_{\pi\pi}^2)H(M_{\pi\pi}^2,s)$$

Misura della sezione d'urto

Selezione degli eventi $e^+e^- \rightarrow \pi^+\pi^-\gamma$

Si selezionano eventi $e^+e^- \rightarrow \pi^+\pi^-\gamma$ con fotone (NON rivelato) e due pioni. La sezione d'urto ISR diverge per piccoli angoli del fotone come 1/ θ^4 , rendendo trascurabile il fondo eventi di FSR e decadimenti della φ .

Criteri di selezione:

1. Due tracce di segno opposto, riconoscibili dalla diversa curvatura, che soddisfano 50°< θ < 130° e p₁ > 160 MeV e $|p_z|$ >90 MeV, per assicurare una buona ricostruzione e efficienza.

2. La direzione del fotone, ricostruita tramite le due tracce $p_{\gamma} = -(p_+ + p_-)$ deve rispettare la condizione $|\cos\theta| < \cos(\pi/12)$ (15°).

 $e^+e^- \rightarrow \mu^+\mu^-\gamma$

3. Principali processi di fondo da rigettare: $e^+e^- \rightarrow e^+e^-\gamma$

4. Constraint cinematici.

Reiezione del fondo

Gli eventi di segnale sono distinti dagli eventi $e^+e^- \rightarrow e^+e^-\gamma$ usando una funzione di likelihood per ogni traccia L₊ e L₋

L è basata su tempo di volo, energia rilasciata e forma dei cluster associati alle tracce. Gli elettroni creano uno sciame nel calorimetro, mentre muoni e pioni perdono energia in modo pressoché uniforme. Gli eventi con L₊ e L₋ < o sono identificati come elettroni e rigettati.

L' efficienza per questa selezione è di circa il 99.95%. La probabilità che un evento con elettroni sia scambiato per uno con pioni è circa il 3%.

Constraint cinematici

Gli eventi devono soddisfare tagli sulla massa della traccia.

Assumendo la presenza di un fotone non osservato e che le tracce hanno la stessa massa si può applicare la conservazione dell'energia e dell'impulso.

$$\left(\sqrt{s} - \sqrt{|\mathbf{p}_{+}|^{2} + M_{\text{trk}}^{2}} - \sqrt{|\mathbf{p}_{-}|^{2} + M_{\text{trk}}^{2}}\right)^{2} - (\mathbf{p}_{+} + \mathbf{p}_{-})^{2} = 0$$

dove $p_{+} e p_{-}$ sono i momenti misurati della tracca positiva e negativa. Si risolve l'equazione e si ricava M_{trk} e si grafica in funzione M_{m} .

La richiesta M_{trk} > 130 MeV rigetta i muoni e sopprime la frazione di elettroni rimasti dopo la selezione con L. Si individuano anche gli eventi di $\pi^+\pi^-\pi^0$. Ulteriori selezioni vengono eseguite eseguendo un fit su M_{trk} utilizzando simulazioni MC.

Efficienza del detector

Viene stimata utilizzando campioni di controllo e simulazioni considerando:

- •Efficienza del trigger
- •Efficienza del tracking
- •Efficienza nell'identificazione dei pioni.

1.Trigger

L'efficienza si ottiene considerando un sottoinsieme di eventi $\pi^+\pi^-\gamma$ nei quali un singolo pione soddisfa i requisiti di trigger e si studia la risposta all'altro pione in funzione del momento e dell' angolo, confrontandola con simulazioni MC della distribuzione di eventi. $\longrightarrow \epsilon_{trigger}$ dipende da $M_{\pi\pi}$ e varia tra il 96% e il 99%.

2.Tracking

L' efficienza per un singolo pione è stimata in funzione del momento e dell' angolo usando eventi $\Phi \rightarrow \pi^+ \pi^- \pi^0$ identificati tramite EMC.

 $\rightarrow \epsilon_{tracking}$ costante in $M_{\pi\pi}$, circa 98%

3. Identificazione dei pioni nel calorimetro

Si richiedono tracce con un cluster che soddisfi $|r_{ent} - r_{clu}| < 90$ cm. r_{ent} = coordinata di ingresso della traccia r_{clu} = coordinata del centro del cluster Si utilizza la stessa strategia usata per l'efficienza del trigger, cioè si sceglie un campione di eventi $\pi^{+}\pi^{-}\gamma$ in cui una singola traccia è un pione (L>0) e si studia la probabilità dell'altra traccia di avere un pione (L>0).

 \bullet ϵ_{pionID} 99.9% e indipendente dal raggio.

Principali effetti sistematici

•Studio dell'efficienza sui tagli effettuati per M_{trk} tramite MC. \rightarrow differenza sistematica nello spettro degli eventi di 0.2%

- Effetti sistematici dovuti alla selezione angolare, studiati variando l'accettanza angolare di 1º attorno al valore nominale.
 - \rightarrow dipendenti da $M_{\pi\pi}$ e variabili tra 0.6% e 0.1%

Luminosità

Si usano processi di Bhabha scattering a largo angolo $(55^{\circ} < \theta < 125^{\circ})$. La sezione d'urto effettiva viene stimata tramite MC con un'incertezza dello 0.3 % dovuta soprattutto all'incertezza sperimentale sull'accettanza angolare.

La sezione d'urto è dominata dalla risonanza del mesone ρ . Dalla sezione d'urto è stata misurato anche il termine di interferenza ρ - ω .

Stima dell'integrale di dispersione

$$\Delta^{\pi\pi}a_{\mu} = \frac{1}{4\pi^3} \int_{s_{\min}}^{s_{\max}} ds \, \sigma^0_{\pi\pi(\gamma)}(s) K(s)$$

L' integrale è calcolato come somma dei valori di $\sigma_{e^+e^- \rightarrow \pi^+\pi^-}$ moltiplicati per il kernel nell'intervallo 0.35 GeV< $M^2_{\pi\pi}$ <0.95 GeV:

$$\Delta^{\pi\pi}a_{\mu} = (384.4 \pm 0.8_{stat} \pm 4.6_{sys}) \times 10^{-10}$$

Confronto con altri esperimenti

Si possono mettere a confronto i dari di KLOE con quelli di SND e CMD-2 nella regione di overlap delle energie e i risultati sono in buon accordo tra loro.

SND, 2006	$\Delta^{\pi\pi}a_{\mu} = (361.0 \pm 5.1) \times 10^{-10},$
CMD-2, 2007	$\Delta^{\pi\pi}a_{\mu} = (361.5 \pm 3.4) \times 10^{-10},$
this work	$\Delta^{\pi\pi}a_{\mu} = (356.7 \pm 3.1) \times 10^{-10}.$

Risultati complessivi

Conclusioni

- L' anomalia magnetica del muone è data da contributi di QED, da contributi deboli e da quelli adronici.
- I contributi adronici sono quelli più difficili da valutare teoricamente, quindi sono necessarie misure sperimentali di precisione.
- •Il contributo maggiore è quello dovuto al processo $e^+e^- \rightarrow \pi^+\pi^$ a basse energie
- A KLOE è stata effettuata la misura della sezione d'urto $\frac{d\sigma_{\pi\pi\gamma}}{dM_{\pi\pi}^2}$ e tramite essa si è ottenuta $\sigma_{e^+e^-\to\pi^+\pi^-}$
- Si è calcolato dunque il valore dell'integrale di dispersione.
- •Il valore ottenuto ha confermato la discrepanza dei dati basati su collisioni e⁺e⁻ e l'esperimento BNL-E821.