Corso di Fisica Nucleare e Subnucleare II Prof. Carlo Dionisi

LO SPETTROMETRO MAGNETICO DI PLASMONX Francesco Collamati

28-05-2010

Tutor: Prof. Riccardo Faccini

ACCELERAZIONE IN PLASMA

 $\Delta t = 30 fs$ *E*≈*5J I_{peak}=166TW*

ACCELERAZIONE IN PLASMA

RADIO-FREQUENCY (RF)

 Accelerating gradient: 10-100 MV/m

breakdown

LASER-PLASMA

Accelerating gradient:

 $E_0(V/m) \cong 96\sqrt{n_0(cm^{-3})}$ $\approx 100 \, GV/m$

• Berkeley \rightarrow 1 GeV in 3.3 cm

- Invece dei 64 m del Linac di SLAC
- SLAC \rightarrow 42 GeV in 82 cm

Definizione requisiti

- Setup
- Posizione fascio e rivelatori
- Scelta rivelatore
- Elettronica lettura
- Risultati

Principali task di PLASMONX

• Spread in energia degli elettroni (10 MeV-1 GeV)

- 10⁸ elettroni contemporaneamente nel magnete
- **Spread** angolare (~ 2mrad)

→domina l'interazione elettromagnetica tra el →elettroni "indipendenti" da sorgente puntiforme \approx 1m

SPETTROMETRO

► Una particella con velocità v all'interno di un campo magnetico costante nel tempo ha una traiettoria che dipende dalla sua stessa velocità → impulso

→ Pc[MeV] = 0.03 B[t] R[cm]

- se campo uniforme
- Campo non uniforme → integrazione numerica Runge Kutta

Definizione requisiti

Setup

- Posizione fascio e rivelatori
- Scelta rivelatore
- Elettronica lettura
- Risultati

SET UP SPERIMENTALE

SET UP SPERIMENTALE

Magnete da *0.5T*, gap fra i poli *6cm*

SET UP SPERIMENTALE

Definizione requisiti

Setup

Posizione fascio e rivelatori

- Scelta rivelatore
- Elettronica lettura
- Risultati

Dispersione angolare iniziale

→ sovrapposizione di tracce relative a momenti differenti

Cerchiamo i fuochi

 Con 0.57 si possono trovare punti di convergenza fino a momenti di circa 150MeV

- Per migliorare la risoluzione e risolvere il problema degli alti impulsi
 - Studio del *"cammino efficace"* nel c. magnetico

$$R_{eff} = \int dx \frac{B_z(x, y, 0)}{B_z(0, 0, 0)}$$

- Integrando su x e minimizzando in y si ricava la posizione che rende massimo il raggio di curvatura $\rightarrow Y = -80mm$
- Per il momento però ci si occupa di bassi impulsi (altri limiti x alti imp.),
 →si sceglie y=-130mm

X

Y

- Lavorando al bordo, il campo B non è più totalmente uniforme
- Conoscenza comunque soddisfacente se confrontata con la risoluzione spaziale (1mm) imposta dal rivelatore

RIASSUMENDO

Alti impulsi

• Rivelatore alla *massima distanza* dal magnete

Bassi impulsi

• Rivelatore segue la *posizione* dei fuochi (trovata tramite integrazione)

Definizione requisiti

- Setup
- Posizione fascio e rivelatori

Scelta rivelatore

- Elettronica lettura
- Risultati

RIVELATORE ed ELETTRONICA

Bremsstrahlung

$$\left(-\frac{dE}{dx}\right)_{rad} \cong \frac{E}{X_0}$$
$$\frac{1}{X_0} = 4r_e^2 \frac{N_A Z^2 \rho}{A} \ln\left(183 Z^{-1/3}\right)$$

 e di 20 MeV → in aria Xo=30.5 m; per 1m → dE≈0.7Mev
 →Trascurabile!

RIVELATORE ed ELETTRONICA

Multiple Scattering

• Per piccoli angoli di deviazione, distrib. Gauss.

$$\bar{\theta} = \sqrt{\langle \theta^2 \rangle} = 21 MeV \frac{z}{c\beta p} \sqrt{\frac{x}{X_0}}$$

 $E=20 \text{ MeV} \rightarrow \text{ in aria } \theta_{max}=60 \text{ mrad } (3^{\circ})$

• Non trascurabile \rightarrow vuoto

• 10⁻⁴ per avere $\theta_{max}=2mrad$

SCELTA DEL RIVELATORE

- ► Vuoto → esclusione rivelatori elettronici e cavi elettrici
 - La potenza generata per effetto Joule $W = RI^2$ non potrebbe essere dissipata per convezione nel mezzo

 \rightarrow fusione

• Elettronica \rightarrow Ottica

Definizione requisiti

- Setup
- Posizione fascio e rivelatori
- Scelta rivelatore
- Elettronica lettura

Risultati

$\mathsf{ELETTRONICA} \rightarrow \mathsf{OTTICA}$

• Posizione \rightarrow Schermi LANEX

- Pellicole di materiale scintillante che assorbono energia ed emettono fotoni
- **CCD** (Charged Couple Device)
 - Rielabora il segnale all'esterno della camera a vuoto
 - È formato da elementi (*Si* drogato con *Ga*, *In*..) che accumulano una carica elettrica proporzionale all'intensità della radiazione elettromagnetica che li colpisce

LANEX + CCD

PRO

Risoluzione molto alta: (100/200µm)

CONTRO

- Vasta area da controllare
- Calibrazioni costanti per il disallineamento CCD
- Saturazione dovuta alle grandi cariche in gioco
- Radiazione da sincrotrone

$$P = \frac{2e^4c^2E^2B^2}{3(m_0c^2)^4}$$

• $E \approx 200 \text{MeV} \rightarrow P_{sinc} \approx 5.6 \text{Gev/s} \rightarrow E \approx 5.6 \ 10^{-6} \text{Gev} \rightarrow \text{Etot} \approx 600 \text{MeV}$

FIBRE SCINTILLANTI

PRO

- Non sensibili alla radiazione da sincrotrone
- Ottima flessibilità \rightarrow + copertura, calibrazione
- Lavorano nel vuoto

CONTRO

- Risoluzione spaziale non molto alta
- 800 fibre → molti canali → €

Fisica Nucleare e Subnucleare II, A.A. 2009-2010

Vacuum chamber

electrons

FIBRE SCINTILLANTI

- Tubicini di polimero platisco drogato, core (nucleo) e cladding (mantello) ed eventuale rivestimento per isolare
 - I due strati hanno diverso indice di rifrazione,
 - Le riflessioni incanalano la radiazione in un cono *(angolo di trapping)*

$$n_{core} = 1.59, N_{cladding} = 1.42, \theta_{TR} = 27^{\circ}$$

 Banda di emissione del polisitirene: 400-500 nm, con massimo in 437 nm

RIVELATORI DI LUCE

- La luce è trasportata dalle fibre per circa *50cm*
 - Attenuazione trascurabile in quanto $\lambda \approx 3m$ → Arriva quindi al fotomoltiplicatore

FOTOMOLTIPLICATORE

• Efficienza quantica $\epsilon(\lambda)$

- # fotoelettroni rilasciati / # fotoni incidenti
- $\lambda = 437$ nm $\rightarrow \epsilon \approx 30\%$
- Secondary Emission Factor K
 - Guadagno di ogni elettrodo
- \rightarrow Numero di elettroni sull'anodo $N=nK^d$
 - 10<d<14, 3<K<4 \rightarrow gain <u>10⁵<K^d<10⁷</u>
 - d numero dinodi, n numero fotoelettroni

RIVELATORI DI LUCE

- Nuova generazione di PMT, *Hamamatsu H7546*
 - Legge 64 canali i 2x2cm
 - Costo elevato → merging delle fibre per bassi impulsi → 300 canali di el.

ACCOPPIAMENTO FIBRE-PMT

Bassi impulsi

 → 3 fibre scintillanti
 per canale di PMT

allineamento

ELETTRONICA di READ-OUT

- Per leggere i 64 canali uscenti dai PMT si utilizza un circuito integrato detto MAROC
 2.0, *Multi Anod ReadOut Chip*
- Fornisce:
 - 1 segnale prop. alla carica di uno degli input
 - 64 outputs di trigger
 - 1 segnale che riproduce i 64 input digitalizzati e serializzati nel tempo

Fisica Nucleare e Subnucleare II, A.A. 2009-2010

MAROC

▶ PMT \rightarrow preamp \rightarrow shapers (fast & slow)

- Fast-shaper. confronta in modo veloce ma poco preciso il segnale con uno "discriminatore" per capire se è solo rumore → 64 outputs di trigger
- Slow-shaper. elaborazione accurata → Sample & Hold, conservano carica trasportata e baseline del segnale

• S&H \rightarrow multiplexaggio e digitalizzazione

Inserimento regolare di un ritardo temporale:

PROBLEMA!

Saturazione!

Q_{tot}

Q_{riv}

SATURAZIONE

Possibili effetti → Fibra:

• Scintillatore \rightarrow Cherenkov $\rightarrow \in$

 ρ_{pol} =1.032 g/cm³ V= $\pi^* r^{2*} h = \pi (0.05 \text{ cm})^{2*} 1 \text{ cm} = 0.0$ 079 cm³ M= $\rho_{pol}^* \text{V} = 8.11^* 10^{-3} \text{ g}$ M_{C8H8}=104.15 uma N_{scint}=M/M_{C8H8}≈4.6*10¹⁸ → OK! 1pC → 10⁷ electr

SATURAZIONE

Possibili effetti

→ fotocatodo → corrente anodica → filtri ottici 0.4%

34

Definizione requisiti

- Setup
- Posizione fascio e rivelatori
- Scelta rivelatore
- Elettronica lettura

Risultati

RIASSUNTO

- Nuova tecnica di accelerazione LASER-PLASMA
 - "A GeV accelerator in a tabletop"
 - Possibili applicazioni in ricerca e fisica medica (*adroterapia*)
- Rivelatore necessario
 - Spread energia
 - Spread angolare
 - Flusso

RISULTATI

Unfolding Bayesiano

Fibre accese → spettro di energia del fascio

Risoluzione totale

- <200MeV → <1% 📢
- $<500MeV \rightarrow \approx 5\%$ (
- >500MeV → >10% 🙂
 - Domina la divergenza angolare iniziale del fascio
 - Servirebbe >B

