Misura della sezione d'urto della produzione di coppie t-tbar

Valentina Liberati

$$\sigma = rac{\textit{N}_{\textit{obs}} - \textit{N}_{\textit{bkg}}}{\textit{A} imes \epsilon imes \int \textit{Ldt}}$$

$$\sigma = \frac{\textit{N}_{obs} - \textit{N}_{bkg}}{\textit{A} \times \epsilon \times \int \textit{Ldt}}$$

- N_{obs} : numero eventi osservati;
- N_{bkg} : eventi di fondo;
 - A : accettanza (rivel.);
 - ϵ : efficienza (rivel.);
- ∫ Ldt : luminosita' integrata (accel.).

$$\sigma = rac{\textit{N}_{obs} - \textit{N}_{bkg}}{\textit{A} imes \epsilon imes \int \textit{Ldt}}$$

Alcune misure

- $\sigma_{TOT} \sim 60 mb$
- 2 $\sigma(b\overline{b}) \sim 10 \mu b$
- 3 $\sigma(W \rightarrow l\nu) \sim 2.7$ nb
- $\sigma(t\bar{t}) \sim 8pb$

Ievatron

• collider $p\overline{p}$ • $\sqrt{s} = 1.96 \, TeV$ • luminosita' di disegno $3 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

Produzione Decadimento

annichilazione $q\overline{q}$

85*%

(* queste percentuali valgono solo per Cdj)

▲□▶▲圖▶▲重▶▲重▶ 重 めへで

Produzione Decadimento

fusione $g\overline{g}$

15*%

(* queste percentuali valgono solo per CdJ)

● BR ~ 100%

 4 principali modi di decadimento

Produzione Decadimento

tt decay modes

all hadronic

tau + jets

ud

Valentina Liberati

cs

BR

5%

30%

45%

1

• Per la misura della sezione d'urto si considerano due canali di decadimento: dileptonico (entrambi i W decadono in leptone+neutrino) e leptone+jets (un W in leptone e l'altro in adroni).

Per entrambi i canali di decadimento si analizzano

- Le selezioni effettuate sugli eventi
- Le principali fonti di background

Collider Detector at Fermilab, costruito in uno dei due punti di incrocio dei fasci. Lungo 15m; Largo 10m; a simmetria assiale e avanti-indietro.

Detector di **8** strati di microstrips al Si per ricostruire le tracce. Risoluzione di **28**µm (**17**µm per il Layer**00**) (z, θ, φ) in funzione della
 pseudorapidità η = -ln[tan(^θ/₂)]
 tracciatore al silicio

Alcune specifiche

Central Outer Tracker multifili, fatta da 96 layers, lunga 3.1m,in una regione tra 0.40m e 1.37m dall'asse del fascio. Identifica le particelle cariche con una risoluzione sulla posizione di ~ 140 μ m e sulla curvatura della traiettoria di $\frac{\sigma_{P_t}}{p_t^2}$ ~ 0.17% GeV/c

• (z, θ, ϕ) in funzione della pseudorapidità $\eta = -ln[tan(\frac{\theta}{2})]$

- tracciatore al silicio
- Camera a drift, COT

(z, θ, φ) in funzione della pseudorapidità η = -In[tan(^θ/₂)]
tracciatore al silicio
Camera a drift, COT

Calorimetro Centrale (CEM,CH)
Calorimetro EndPlug (CEM,CH)

Alcune specifiche

I Calorimetri sono segmentati in $\eta \in \phi$. Ogni elemento copre 15° in ϕ e tra 0.10 – 0.13 unità in η . Sono realizzati piombo-scintillatore (CEM) e ferro-scintillatore (CHA).

- (z, θ, ϕ) in funzione della pseudorapidità $\eta = -\ln[tan(\frac{\theta}{2})]$
- tracciatore al silicio
- Camera a drift, COT
- Calorimetro Centrale (CEM,CH)
- Calorimetro EndPlug (CEM,CH)

• (z, θ, ϕ) in funzione della pseudorapidità $\eta = -\ln[tan(\frac{\theta}{2})]$

- tracciatore al silicio
- Camera a drift, COT
- Calorimetro Centrale (CEM,CH)
 Calorimetro EndPlug (CEM,CH)

Alcune specifiche

La camera per μ è posta al di fuori dei calorimetri. È costituita da 4 sistemi di rivelatori indipendenti, costituiti da camere a drift.

- (z, θ, ϕ) in funzione della pseudorapidità $\eta = -\ln[\tan(\frac{\theta}{2})]$
- tracciatore al silicio
- Camera a drift, COT
- Calorimetro Centrale (CEM,CH)
- Calorimetro EndPlug (CEM,CH)
- Solenoide (B=1.4T)
- $\bullet\,$ Camera a drift per μ

Canale Dileptonico

$t\bar{t} \rightarrow b l^+ \nu_l \overline{b} l' \overline{\nu}_{l'}$

- 2 leptoni con alto P_t
- 3 2 jets (adronizzazione dei b)

Canale Dileptonico

$t\overline{t} \rightarrow b l^+ \nu_l \overline{b} l' \overline{\nu}_{l'}$

- 2 leptoni con alto P_t
- 3 2 jets (adronizzazione dei b)

Selezione

- 🕚 2 leptoni di carica opposta
- **2** $e^- : E_T > 20 \text{GeV} e P_T > 10 \text{ GeV}$
- MET> 25GeV
- ${f 6}$ minimo 2 jets con ${f E}_{\mathcal{T}}>15{f GeV}$

$$\begin{array}{l} \mathbf{\mathfrak{G}} \quad \mathbf{H}_{\mathcal{T}} > \mathbf{200GeV} \\ \left(\begin{array}{c} \mathbf{H}_{\mathcal{T}} = \sum_{i} \mathbf{E}_{\mathcal{T}i} + \mathbf{MET} + \mathbf{E}_{ijet} \end{array} \right) \end{array}$$

9 / 22

Tutti i processi che "simulano" lo stato finale che stiamo studiando. Si determinano combinando l'analisi dei dati (eventi con 0 e 1 jet, *regioni di controllo*) e simulazioni MonteCarlo.

Tutti i processi che "simulano" lo stato finale che stiamo studiando. Si determinano combinando l'analisi dei dati (eventi con 0 e 1 jet, *regioni di controllo*) e simulazioni MonteCarlo.

		NJets				
Source	0j	1j	$\geq 2j$	H_T , OS		
WW	42.37 ± 2.59	10.86 ± 0.89	4.68 ± 0.74	2.70 ± 0.42		
WZ	4.11 ± 0.30	$3.94{\pm}0.24$	1.71 ± 0.26	0.93 ± 0.15		
$DY \rightarrow \tau \tau$	0.69 ± 0.08	3.88 ± 0.67	3.12 ± 0.91	1.60 ± 0.38		
$DY \rightarrow ee + \mu\mu$	22.35 ± 4.96	21.77 ± 7.20	13.15 ± 6.89	7.83 ± 3.15		
Fakes	35.02 ± 8.50	22.48 ± 5.61	13.96 ± 3.59	6.29 ± 1.53		
Total background	$104.54{\pm}11.12$	62.93 ± 10.36	36.61 ± 9.39	19.34 ± 4.26		
$t\bar{t} \ (\sigma = 6.7 \text{ pb})$	0.16 ± 0.01	4.74 ± 0.17	38.34 ± 1.31	36.09 ± 1.24		
Total SM expectation	104.71 ± 11.12	67.67 ± 10.45	$74.96{\pm}10.27$	55.43 ± 5.11		
750 pb ^{−1} Candidates	101	71	93	64		

		NJets				
Source	0j	1j	$\geq 2j$	H_T , OS		
WW	42.37 ± 2.59	10.86 ± 0.89	4.68 ± 0.74	2.70 ± 0.42		
WZ	4.11 ± 0.30	$3.94{\pm}0.24$	1.71 ± 0.26	0.93 ± 0.15		
$DY \rightarrow \tau \tau$	0.69 ± 0.08	3.88 ± 0.67	3.12 ± 0.91	1.60 ± 0.38		
$DY \rightarrow ee + \mu\mu$	22.35 ± 4.96	21.77 ± 7.20	13.15 ± 6.89	7.83 ± 3.15		
Fakes	35.02 ± 8.50	22.48 ± 5.61	13.96 ± 3.59	6.29 ± 1.53		
Total background	$104.54{\pm}11.12$	62.93 ± 10.36	36.61 ± 9.39	19.34 ± 4.26		
$t\bar{t} \ (\sigma = 6.7 \text{ pb})$	0.16 ± 0.01	4.74 ± 0.17	$38.34{\pm}1.31$	36.09 ± 1.24		
Total SM expectation	104.71 ± 11.12	67.67 ± 10.45	$74.96{\pm}10.27$	55.43 ± 5.11		
750 pb ⁻¹ Candidates	101	71	93	64		
	4					

13.12 ± 0.91	7.83 ± 3	15 12	20 -	fake	· .
13.96 ± 3.59	6.29 ± 1	53 10	00		
36.61 ± 9.39	19.34 ± 4	.26	80		
38.34 ± 1.31	36.09 ± 1	.24			
74.96 ± 10.27	55.43 ± 5	.11	50		and setting
93	64	4	10		
			20		
			0 0 jet	1 jet ≥2 j	et HT>200 + C
		Candidate	Events By D	ilepton Category	Total
Source		ee	$\mu\mu$	eμ	ll
WW		0.79 ± 0.15	0.45 ± 0.09	1.45 ± 0.25	2.70 ± 0.42
WZ		0.41 ± 0.07	0.31 ± 0.06	0.20 ± 0.04	0.93 ± 0.15
$DY \rightarrow \tau \tau$		0.38 ± 0.10	0.39 ± 0.10	0.83 ± 0.21	1.60 ± 0.38
$DY \rightarrow ee + \mu$	μ	3.52 ± 1.57	4.31 ± 1.86	0.00 ± 0.00	7.83 ± 3.15
Fakes		$1.00{\pm}0.50$	2.06 ± 0.63	3.23 ± 1.30	6.29 ± 1.53
Total backgr	ound	6.10 ± 1.87	7.52 ± 2.12	5.72 ± 1.38	19.34 ± 4.26
$t\overline{t}$ ($\sigma = 6.7$ p	b)	8.25 ± 0.38	8.57 ± 0.39	19.27 ± 0.88	36.09 ± 1.24
Total SM ex	pectation	14.35 ± 2.08	16.09 ± 2.30	24.99 ± 1.75	55.43 ± 5.11
750 pb ⁻¹ Ca	andidates	12	24	28	64

180

160

140

CDF Run II preliminary (750 pb⁻¹)

Data
Bkgd ± 1
g uncertainty

tī (σ = 8.3 pb)

WW/WZ

Valentina Liberati

Source	Systematic Error (%)
MC Generator	2.4
ISR/FSR	4.4
PDF's	0.8
JES corrections	3.1
Multiple Interactions	1.7
Lepton Identification	4.0
Total	7.4

L'incertezza sistematica include l'incertezza su A (scala di energia dei jet) e sul background (domina il contributo di Drell-Yan). Calcolata come:

$$\sigma(t\bar{t}) = rac{N_{obs} - N_{bkg}}{\sum_i A_i imes L_i}$$

Si ottiene: $3 \pm 15 + 10 \pm 0$

 $\sigma(t\bar{t}) = 8.3 \pm 1.5_{stat} \pm 1.0_{sys} \pm 0.5_{lumi} \text{ pb}$

W. Z. photor

Hard scattering

Canale Leptone+Jets

 $p\overline{p}
ightarrow t\overline{t}
ightarrow W^+ bW^- \overline{b}
ightarrow l
u q\overline{q}b\overline{b}$

Un W decade leptonicamente e l'altro in quark. l'evento contiene:

- 🕚 un leptone di alto P_T
 - 2 un neutrino
- quattro jets, due originati dai quark b

Canale Leptone+Jets

$$p\overline{p}
ightarrow t\overline{t}
ightarrow W^+ bW^- \overline{b}
ightarrow l
u q\overline{q}b\overline{b}$$

La selezione degli eventi richiede che:

- E_T > 20GeV
- $Oldsymbol{2}$ MET > 20GeV
- 3 jet con $E > 15 GeV(|\eta| < 2)$
- $H_T > 200 \text{GeV}$ $(H_T = \text{MET} + E_{T_e} + E_{T_\mu} + E_{T_{jet}})$
- Imeno un b-tagging

Jet probability b-tagging

- Determina se un jet e' stato prodotto da un light o heavy quark
- Dalle traccie associate ad un jet si determina la probabilita' per le stesse di provenire dal vertice primario dell'interazione.
- Il calcolo si basa sul parametro d'impatto d_0 della traccia.

 d_0 e' positivo o negativo in funzione dell'angolo formato dalla traccia nel punto piu' vicino al vertice con la direzione del jet

< □ ▶ < /□ ▶ <

Un jet proveniente dall'adronizzazione di un b contiene adroni con vita lunga, le tracce dei quali sono nella parte positiva della distribuzione di d_0 . Quella negativa e' dovuta alla risoluzione del detector.

Jet probability b-tagging

Una traccia e'detta *jet probability track* se supera la selezione :

•
$$P_T > 0.5 \mathrm{GeV}$$

Perche' un jet sia taggable sono necessarie almeno due jet probability tracks con $d_0 > 0$

Jet probability b-tagging

Una traccia e'detta *jet probability track* se supera la selezione :

•
$$P_T > 0.5 \text{GeV}$$

Perche' un jet sia taggable sono necessarie almeno due jet probability tracks con $d_0 > 0$

Questo metodo puo' essere usato per separare i contributi di b e di c

Lvento

Valentina Liberati

- produzione di heavy flavour con W (*Wbb*)
- dibosoni (uno decade leptonicamente, l'altro in quarks)
- non-W bg: l+ MET non da W. (jet fa da leptone e la MET energia errata jet)
- mistag rate, jets da partoni leggeri come heavy flavour jets

Njets	1	2	3	≥ 4
Pretag	68183	10647	846	402
Mistag	286.0 ± 42.3	119.2 ± 17.7	21.0 ± 3.2	6.6 ± 1.0
$W b \overline{b}$	201.1 ± 62.3	109.0 ± 32.3	13.0 ± 3.5	3.3 ± 0.9
$Wc\bar{c}$	61.5 ± 18.0	40.9 ± 12.8	5.2 ± 1.6	1.5 ± 0.5
Wc	242.1 ± 62.0	50.4 ± 13.3	3.3 ± 0.9	0.4 ± 0.1
Single Top	17.2 ± 1.7	24.1 ± 2.4	2.1 ± 0.2	0.4 ± 0.1
Diboson	13.3 ± 2.1	19.2 ± 3.0	2.6 ± 0.5	1.0 ± 0.2
non- W QCD	99.9 ± 16.4	45.0 ± 7.5	5.8 ± 1.1	4.1 ± 0.8
Total	921.1 ± 113.3	407.8 ± 52.5	53.0 ± 6.3	17.2 ± 1.9
Data	1029	514	156	158

Njets	1	2	3	≥ 4
Pretag	68183	10647	846	402
Mistag	286.0 ± 42.3	119.2 ± 17.7	21.0 ± 3.2	6.6 ± 1.0
$W b \overline{b}$	201.1 ± 62.3	109.0 ± 32.3	13.0 ± 3.5	3.3 ± 0.9
$Wc\bar{c}$	61.5 ± 18.0	40.9 ± 12.8	5.2 ± 1.6	1.5 ± 0.5
Wc	242.1 ± 62.0	50.4 ± 13.3	3.3 ± 0.9	0.4 ± 0.1
Single Top	17.2 ± 1.7	24.1 ± 2.4	2.1 ± 0.2	0.4 ± 0.1
Diboson	13.3 ± 2.1	19.2 ± 3.0	2.6 ± 0.5	1.0 ± 0.2
non- W QCD	99.9 ± 16.4	45.0 ± 7.5	5.8 ± 1.1	4.1 ± 0.8
Total	921.1 ± 113.3	407.8 ± 52.5	53.0 ± 6.3	17.2 ± 1.9
Data	1029	514	156	158

Source	Systematic (%)
b-tagging	6.5
Luminosity	6.0
PDF	5.8
Jet Energy Scale	3.0
ISR/FSR	2.6
Lepton Identification	2.0
Total	11.5

Valentina Liberati

Njets	1	2	3	≥ 4	
Pretag	68183	10647	846	402	
Mistag	286.0 ± 42.3	119.2 ± 17.7	21.0 ± 3.2	6.6 ± 1.0	
$W b \overline{b}$	201.1 ± 62.3	109.0 ± 32.3	13.0 ± 3.5	3.3 ± 0.9	
$Wc\bar{c}$	61.5 ± 18.0	40.9 ± 12.8	5.2 ± 1.6	1.5 ± 0.5	
Wc	242.1 ± 62.0	50.4 ± 13.3	3.3 ± 0.9	0.4 ± 0.1	
Single Top	17.2 ± 1.7	24.1 ± 2.4	2.1 ± 0.2	0.4 ± 0.1	
Diboson	13.3 ± 2.1	19.2 ± 3.0	2.6 ± 0.5	1.0 ± 0.2	
non- W QCD	99.9 ± 16.4	45.0 ± 7.5	5.8 ± 1.1	4.1 ± 0.8	
Total	921.1 ± 113.3	407.8 ± 52.5	53.0 ± 6.3	17.2 ± 1.9	
Data	1029	514	156	158	
Misur	To la seziono > 3 $\sigma(t\bar{t}) = -\frac{\hbar}{2}$	e d'urto no jet N <u>obs−Nbok</u> «×∫Ldt	el bin	1200 Stranger Number Number 000 600	→ Data tť (8.2pl Non-W Diboson Single 1 Wc Wcc Wbb Mistag
(.		

$$\sigma(t\bar{t}) = 8.2 \pm 0.6_{stat} \pm 1.0_{system}$$

Richiedendo almeno 2b-tags si ottiene $\sigma(t\bar{t}) = 8.8^{+1.2}_{-1.1}(stat)^{+2.0}_{-1.3}(sys)$

Jet multiplicity	2 jets	3 jets	≥ 4 jets	L'incertezza
Mistags	2.9 ± 0.5	1.7 ± 0.4	1.0 ± 0.5	sistematica e'
Wbb	14.8 ± 4.0	4.7 ± 1.2	1.4 ± 0.4	dominata dalle
Wcc	2.3 ± 0.8	0.4 ± 0.1	0.2 ± 0.1	
Single Top	2.4 ± 0.5	0.1 ± 0.0	0.0 ± 0.0	incertezze sulla
Diboson	0.9 ± 0.2	0.2 ± 0.1	0.1 ± 0.0	luminosita',
Non-W QCD	1.0 ± 0.2	0.6 ± 0.1	0.2 ± 0.1	sull'accettanza, sul
Total Pred	24.3 ± 4.8	7.7 ± 1.4	2.9 ± 0.7	to ming Sono
Corrected Total	24.2 ± 4.8	7.2 ± 1.3	1.9 ± 0.5	tagging. Jono
$Top(6.7 \pm 0.8 \text{ pb})$	7.3 ± 1.6	20.4 ± 4.5	31.9 ± 7.1	trascurabili le
Observed	29	33	46	incertezze sul
				background

∍

<u> イ ロ ト イ 同 ト イ 三 ト イ 三 ト</u>

Njets	1	2	3	≥ 4
Pretag	68183	10647	846	402
Mistag	286.0 ± 42.3	119.2 ± 17.7	21.0 ± 3.2	6.6 ± 1.0
$Wb\overline{b}$	201.1 ± 62.3	109.0 ± 32.3	13.0 ± 3.5	3.3 ± 0.9
$Wc\bar{c}$	61.5 ± 18.0	40.9 ± 12.8	5.2 ± 1.6	1.5 ± 0.5
Wc	242.1 ± 62.0	50.4 ± 13.3	3.3 ± 0.9	0.4 ± 0.1
Single Top	17.2 ± 1.7	24.1 ± 2.4	2.1 ± 0.2	0.4 ± 0.1
Diboson	13.3 ± 2.1	19.2 ± 3.0	2.6 ± 0.5	1.0 ± 0.2
non- W QCD	99.9 ± 16.4	45.0 ± 7.5	5.8 ± 1.1	4.1 ± 0.8
Total	921.1 ± 113.3	407.8 ± 52.5	53.0 ± 6.3	17.2 ± 1.9
Data	1029	514	156	158

Jet multiplicity	2 jets	3 jets	$\geq 4 \text{ jets}$
Mistags	2.9 ± 0.5	1.7 ± 0.4	1.0 ± 0.5
Wbb	14.8 ± 4.0	4.7 ± 1.2	1.4 ± 0.4
Wcc	2.3 ± 0.8	0.4 ± 0.1	0.2 ± 0.1
Single Top	2.4 ± 0.5	0.1 ± 0.0	0.0 ± 0.0
Diboson	0.9 ± 0.2	0.2 ± 0.1	0.1 ± 0.0
Non-W QCD	1.0 ± 0.2	0.6 ± 0.1	0.2 ± 0.1
Total Pred	24.3 ± 4.8	7.7 ± 1.4	2.9 ± 0.7
Corrected Total	24.2 ± 4.8	7.2 ± 1.3	1.9 ± 0.5
$Top(6.7 \pm 0.8 \text{ pb})$	7.3 ± 1.6	20.4 ± 4.5	31.9 ± 7.1
Observed	29	33	46

Valentina Liberati

$\sigma(t\bar{t})$ VS M_{top}

```
La sezione d'urto dipende dalla
massa del top.
Da simulazioni MC, la sezione
d'urto diminuisce di \sim 0.2pb ogni
aumento di 1GeV della m_{top} nel
range (170 ÷ 190)GeV
```


$\sigma(t\bar{t})$ VS M_{top}

La sezione d'urto dipende dalla massa del top. Da simulazioni MC, la sezione d'urto diminuisce di ~ 0.2 pb ogni aumento di 1GeV della m_{top} nel range (170 ÷ 190)GeV

- A MEASURAMENT OF THE TTBAR PRODUCTION CROSS SECTION USING DILEPTONS, nota 8103. http://www.cdf.fnal.gov
- TOP PAIR PRODUCTION CROSS SECTION IN LEPTON+JETS CHANNEL WITH DISPLACED VERTEX.http://www.cdf.fnal.gov
- TOP CROSS SECTION USING JET PROBABILITY. http://www.cdf.fnal.gov