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Foreword

These lectures are an introduction to Nuclear and Subnuclear physics at the third
year level of the ”Laurea Triennale” in physics. The idea is to try to give an
overview of the main concepts that brought to founding new branch of physics at
the turn of the XX century. These are a necessary first step into the fundamental
concepts of particle and nuclear physics.

Subjects are approximately ordered in time as they have been developed in order
to give, as much as possible, a logical order in which the theoretical developments
and discoveries have been made. It is particularly interesting to note when theo-
retical insights and predictions were corroborated by experiment and when instead
experimental discoveries have triggered theoretical developments.

The lectures are structured in two main parts. The first block of chapters (from
the introduction to experimental methods) will set the stage. After an introduction
to fundamental aspects in physics (1) and an historic recap from ancient to modern
atomism (2), an overview of special relativity, the first fundamental building block
of particle and nuclear physics will be discussed (3). Up to this point, these are es-
sentially all recaps from other lectures. Chapter 4 then discusses the second essential
building block in understanding nature at the smallest scales i.e. scattering theory.
This will really only be an introduction to scattering theory, based on an extremely
important example: the Rutherford scattering experiment. The predictions for the
Rutherford scattering will be derived with a classical and a quantum mechanical
formalism. This chapter will lead us to an extremely important concept in particle
physics: Feynman diagrams and their interpretation in terms of fundamental inter-
actions. This again will only be an introduction. The first part of these lecture will
be completed by Chapter 5 on interactions of particles with matter and Chapter 6
on experimental methods. Most of the concepts discussed in this first part can be
understood from basic mechanics, electromagnetism and quantum mechanics.

The second part of the lectures starts at Chapter 7, when the conclusions of the
Rutherford experiment require an explanation of how same sign charges can be
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concentrated in such a small volume at the center of atom within the nucleus. Chap-
ter 7 will discuss fundamental observations of nuclear radioactivity that are key to
understanding the developments of nuclear models and the need for new types of
fundamental interactions. Chapter 7 will then attempt to model the new interac-
tions, introducing notions of relativistic quantum mechanics and their implications
in terms of the existence of anti-particles. Chapter 8 will discuss the central role
played by symmetries in nuclear and particle physics and Chapter 9 discusses mod-
els for the nucleus.

A few, hopefully most representative, fundamental discoveries, that have lead to
the developments of particle and nuclear physics are discussed in Chapter 11. Be-
fore concluding a synoptic review of particle properties will be given in Chapter 12.
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Chapter 1
Introduction

1.1 Fundamental Physics

The scope of fundamental physics is to figure out an understanding in the form of
models and/or theories of the base, the fundamental elements, from which every-
thing else develops. That is precisely what Nuclear and subnuclear physics is about.
As we will see in Chapter 2, the intuition that there are basic constituents of na-
ture came quite early in ancient Greece almost three millennia ago, however it is
really only in the XX century that a major leap in our understanding of nature at
microscopic scales occurred. The turn of the century marked a major transition that
brought remarkable theoretical and experimental developments which led to Mod-
ern Physics.

Nuclear and Subnuclear physics is the branch of Modern Physics and the field of
study of the atomic nuclei as well as their constituents and their interactions. The
fundamental extension of Subnuclear physics is the field of Particle Physics which
is related to the study of the fundamental components and forces of the Universe.
Our current understanding of forces and constituents, apart of the Gravitational in-
teraction, is enclosed in a single theory, known as the Standard Model of particle
physics. A complete description of the Standard Model is beyond the scope of these
lectures, but it should be emphasised that Nuclear and Subnuclear physics are the
foundations of Particle Physics and thus of its Standard Model (SM). In order to
achieve a proper description of the SM, a significant background is needed both
theoretical and experimental. The aim of these lectures is to give these fundamental
elements.

The construction of our fundamental understanding of nature led to completely
new concepts and the remarkable predictive power of the theoretical insights intro-
duced have been able to predict the existence of phenomena that were observed only
later. As we will see later in this Chapter, understanding the nature at small scales re-
quires a higher resolution power in distance scales and therefore higher momenta of
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2 1 Introduction

probe particles, which in turn requires a relativistic description of the systems. Also,
microscopic scales make a Quantum Mechanical description unavoidable. The theo-
retical framework for the description of the phenomena in these lectures will require
a solid bases in the two areas of modern physics and will start the construction of the
common theoretical framework of relativistic Quantum Mechanics. This will lead
to completely new concepts that have remarkable predictable consequences, such
as the prediction of anti-matter which was predicted well before it was observed in
nature. These lectures will cover the construction of our understanding of the nu-
cleus, and the processes related to nuclear physics, such as the radioactive radiation
(α , β and γ) and the bases of particle physics, with the rationale for the existence of
”hadrons” and their decays as well as the existence of ”leptons” which are heavy
replicas of the electrons. The terms ”hadrons” and ”leptons” will be explained and
correspond to specific particles that have specific roles in nature.

The scope of Nuclear and Subnuclear physics is not to be only descriptive of the
building blocks of nature. Understanding their role in nature, the underlying reason
for their existence and the fundamental laws that governs them is the wider scope.
The introduction of ”hadrons” is therefore done through their role in mediating
the strong interaction, that is the necessary interaction to explain the existence of
atomic nuclei. To get there however another major two new steps will need to be
introduced. The first will be a description of short range forces through the first step
into a relativistic Quantum Mechanical description of nature. The second will be on
how interactions are not the result of action at a distance, but from the exchange of
another type of particles: ”bosons”. A concept that is natural in special relativity,
but is a bit more involved to describe from the Quantum Mechanical point of view,
but will done through time dependent perturbation theory and the introduction to
Feynman diagrams. These bases will then lead to further theoretical developments
in relativistic quantum mechanics, relativistic quantum field theory, gauge field the-
ories and fundamental symmetries, which are outside the scope of these lectures.

Beside the significant theoretical developments, also remarkable experimental
developments had to be achieved and require substantial introduction.

The Standard Model (SM) has been proven as a valid and coherent theory on the
high energy (or small distance) scale, and this is the first time that such a thing hap-
pens in our history. The construction of the SM is the result of many experimental
and theoretical efforts, made by mankind along centuries.

In order to achieve a proper understanding of this theory, a significant background
is needed and these notes can be seen as a first introduction to Elementary Particle
Physics and Nuclear Physics for a third year bachelor student, in order to get the
needed preliminary knowledge to understand more advanced courses like:

• Relativistic quantum mechanics
• Electroweak Interactions
• Quantum Field Theory
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• Quantum Electrodynamics
• Fundamental Symmetries
• Particle Physics

1.2 An Extraordinary Convergence and Modern Microscopic
Physics

Modern physics, was really born with the Galillean and Newtonian theory of gravity,
providing an incredibly successful and simple law that explained an unprecedented
succession of phenomena at ever larger distant scales of observation from pendu-
lums or the free fall of objects on earth to the motion of planets, stars, galaxies and
clusters of galaxies, until small deviations required the modification and further in-
sights of general relativity to complete this very precise and predictive picture. The
event of Modern Physics at microscopic scales took longer and occurred through an
extraordinary convergence of theoretical and experimental developments that lead
to our understanding of the laws of nature at microscopic scales through Nuclear
and Subnuclear physics, viz. the main scope of these lectures.

In a handful of decades, from the mid XVIIIth century to the beginning of the
XIXth century an extraordinary convergence of theoretical and experimental physics
discoveries have led to the birth of Modern Physics:

1. the rise of Modern Atomism;
2. understanding the nature of light and birth of electromagnetism;
3. the theory of relativity;
4. the birth of Quantum Mechanics;
5. the discovery of radioactivity.

All of these aspects but the last pertain to chemistry, analytical mechanics, elec-
tromagnetism and quantum mechanics. This course will recap briefly in Chapter 2
the rise of Modern Atomism, in Chapter 3 special relativity. In Chapter 6 the prin-
cipal elements of the discovery of radioactivity will be given. These are the funda-
mental elements to then discuss in more detail nuclear and subnuclear (or particles)
physics. Various fundamental aspects of Quantum Mechanics will be reviewed in
discussing scattering throughout the course.

1.3 Role of Nuclear and Subnuclear Physics

Let’s try to be a bit more specific on some of the points discussed in Section 1.1.

Since in this course we’ll be discussing various new theories, it is perhaps worth
recalling the definition of scientificity as how we move from observations to uni-
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versal laws! The formal definition by Karl Popper in his ”The Logic of Scientific
Discovery” [1] through the criteria of falsifiability, it is worth paying attention to
its interpretation by the father of Quantum Electrodynamics and a reformulation of
Quantum Mechanics in terms of an Action Principle, Richard Feynman in his ”The
character of physical laws” [2] (a highly recommended reading):

”In general we look for a new law by the following process. First we guess it. Then we
compute the consequences of the guess to see what would be implied if this law that we
guessed is right. Then we compare the result of the computation to nature, with experiment
or experience, compare it directly with observation, to see if it works. If it disagrees with
experiment it is wrong. In that simple statement is the key to science.”

As stated by Richard Feynman in his lecture, no matter how appealing or in-
tuitive the law is, if it disagrees with the observation it is simply ”wrong”. What
falsifiability tells us is that in order for a law to be scientific, it has to be confronted
with observation and proved wrong, and in fact ”it can never be proved right” – it
is right until it is proved wrong.

As Feynman states, it is essential that the law that is guessed is also well de-
fined, or that it has very definite predictions or consequences that can be worked
out mathematically and that these consequences can be quantitatively compared to
observation. That is falsifiable. He puts it in very nice simple terms:

”you cannot prove a vague theory wrong. [...] If the process of computing the consequences
of theory is indefinite, then with a little skill any experimental result can be made to look
like an expected consequence.”

In his introductory lecture, Feynman explains how understanding the laws of na-
ture results from the observation of beautiful phenomena in nature and their rhythms
(or symmetries), and how guesses result from observations, and how the universal-
ity of laws (such as gravity, as he states, the first of the modern fundamental laws
of nature) have led to discoveries (as the example attributed to Ole Rømer in 1676,
of the understanding that light is not an instantaneous phenomena and it has a finite
speed and provided its first estimate through the observation that the frequency of
eclipses of Io one of Jupiter’s moons was not constant). Feynman reminds, and this
is essential to what will follow in this course, that some of the observations are not
trivial and not intuitive at all: The facts of nature are not so easy to understand.

Feynman, also reminds us, and this is essential, that it is not only the guessing of
physical and universal laws that have led to ground breaking discoveries, but also
the ”individual character” of experimenters:

”In fact experimenters have a certain individual character. They like to do experiments even
if nobody has guessed yet, and they very often do their experiments in a region in which
people know the theorist has not made any guesses. [...] In this way experiment can produce
unexpected results”

This course will be discussing how an ”avalanche” of guesses and experimental
results have led to the understanding of nature at short distances through Nuclear
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and Subnuclear physics.

1.4 Fundamental and Elementary Particles, Microscopes

In trying to understand the fundamental laws of nature in the sense discussed above,
it is important to give a clear definition of what an elementary particle is.

Definition 1.1 (Elementary Particle).
A particle can be considered as elementary if for all experiments and observa-

tions made there are no indications of an internal structure or finite size. Where the
absence of internal structure is defined as the impossibility to use energy externally
received by the particle for any other purpose than motion (or kinetic energy) of the
particle itself.

It is interesting to note that scattering processes will therefore undergo only elas-
tic scatterings. This will be discussed in Chapter 4. It then appears that to understand
if a particle is elementary or if it is a more complex system, will depend on the en-
ergy of probe particles (such as photons, neutrinos, electrons, protons, neutrons,
α , etc . . . ) in possible scattering experiments, as for example in the case of an α

(4He2+) ion scattering on a nucleus (such as gold) in the Rutherford experiment
(discussed in Chapters 4 and 4.7) where the scattering cross section is calculated
in the Rutherford formula as the scattering of a point like charge. If no deviation is
observed in the data with respect to this prediction we would be led to think that the
nucleus can be considered as point like which is of course not the case. At higher
energies of the α particle as will be discussed in Chapter 4.7 there is a clear break-
down of the Rutherford formula to describe the data. In some cases the deviations
can be more subtle.

There are important caveats that should not be overlooked. It is interesting in this
respect to take a closer look at the Hydrogen atom. It is well known to be a simple
system of a proton and an electron that is resolved in Quantum Mechanics with
the Schrödinger equation to describe the discrete internal energy levels accurately
as shown in Figure 1.1. Each level corresponds to a different configuration of the
system, where all levels are below a given value known as the ionization energy
above which the system will break down its more elementary components. If the
system was elementary there would be only one possible value of the energy.

In the case of the Hydrogen atom in its ground state, it should be noted that if
energy is given to the system through a photon, with an energy that does not cor-
respond to the difference with its first excited level, the received energy will be
transformed only to motion of the hydrogen atom. It is therefore important to cover
the widest possible range of energies to ensure that the system does not have an
internal structure.
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Fig. 1.1 Structure of the energy levels in an Hydrogen atom

The concept of elementary particle is therefore not definitive and is strictly ap-
plicable only for a given range of energies. Another way to look at this, which is
fundamental in these lectures, is through the quantum nature of microscopic par-
ticles and their duality with waves. One starts from the de Broglie hypothesis that
matter particles have a wave-like nature with a wavelength related to their momen-
tum:

λ =
h
p
,

which is the generalisation of Einstein’s interpretation of the photoelectric effect,
whereby electrons can only receive energy in discrete quanta by photons with en-
ergy E = hν , related to the photon frequency ν , and where h is Planck’s constant.

Heisenberg’s uncertainty principle relies on a fundamental hypothesis: it postu-
lates that measuring accurately the position would necessarily disturb the momen-
tum, which could in turn not be measured accurately – and vice versa:

∆ p ·∆x≥ }
2

where }= h/2π , and ∆ represents the standard deviation of length x and momentum
p. This view is fundamental in the quantum mechanical interpretation of a particle
as a wave. From this principle it is clear that, in order to resolve small distances,
large momenta ”disturbances” are needed, and therefore probes (like for example
photons) with larger momenta of typically:

p≥ h
4πx

.

Using simple light probes (photons), optical microscopes can naturally resolve
structures of the size of approximately 0.2 µm. Electron microscopes (which use
as probes electrons) can resolve atomic sizes with resolutions of 0.05 nm via Tun-
nel Transmission Electron Microscopy (TEM). Another sophisticated technique is
Scanning Tunneling Microscopy, which makes use of tunnelling electrons, by scan-
ning the material with a conducting tip close to its surface, and applying an electric
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voltage between the two, thus allowing electrons to tunnel through the vacuum. The
position will then be a function of the measured current and the resolution achiev-
able is approximately 0.1 nm. See Figure 1.2 for an illustration.

Fig. 1.2 Example image reconstructed via Scanning Tunneling Microscopy.

Higher energies are needed to resolve even smaller distance scales, which re-
quires new sources of particles at higher energies. As we will see in these lectures,
a number of such sources have been used.

As will be discussed in Chapter 6, the discovery of radioactivity provided sources
of photons, electrons and α particles at higher energies (energies which nowadays
would be deemed as fairly low!). Another very interesting source of high energy
particles, as will be discussed in Chapter ??, are cosmic rays, which constitute the
source of highest energy particles to date. Later, with the development of Nuclear,
Subnuclear and Particle Physics came sources of particles at increasingly larger
energies, reached through accelerators and eventually colliders. Accelerator tech-
niques will be discussed in Chapter 10.

1.5 Fundamental Forces

In his first formulation of a Modern Physics theory of gravitation, Newton recog-
nized immediately that there was a ”great absurdity” in imagining that a force could
be acting from one body to another at a distance! As he stated unambiguously in his
letter to Bentley in 1692:

”It is inconceivable that inanimate Matter should, without the Mediation of something else,
which is not material, operate upon, and affect other matter without mutual Contact...That
Gravity should be innate, inherent and essential to Matter, so that one body may act upon
another at a distance through a Vacuum, without the Mediation of any thing else, by and
through which their Action and Force may be conveyed from one to another, is to me so
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great an Absurdity that I believe no Man who has in philosophical Matters a competent Fac-
ulty of thinking can ever fall into it. Gravity must be caused by an Agent acting constantly
according to certain laws; but whether this Agent be material or immaterial, I have left to
the Consideration of my readers.”

Another very important aspect that will be developed in these lectures is that of
forces or interactions.

Take-home lessons

• Modern Physics includes Nuclear and Subnuclear physics; Particle Physics is a
branch of the latter, and studies the fundamental components and forces of the
Universe.

• A particle is considered as elementary if it shows no internal structure, i.e. if one
gives energy to that particle, this energy will be used only for the purpose of
motion (kinetic energy).

• We consider a particle as elementary if no experiment to date has proved it isn’t
– so the definition of elementary particle is somehow provisional.

• The Heisenberg uncertainty principle implies that, in order to probe smaller dis-
tances, we need higher energies.

• Radioactivity, accelerators, colliders and cosmic rays are sources of particles of
higher and higher energy.

• Relativity and Quantum Mechanics are two necessary building blocks of our
understanding of elementary particles.

• The Standard Model of particle physics is the model which best describes ele-
mentary particles and their interactions.

• Forces, or interactions, have a range: two bodies A and B cannot interact instan-
taneously, but they rather exchange particles which mediate that interaction.

Questions

• Let’s suppose you have a billiard ball. How can you tell whether it’s an elemen-
tary particle or not?

References
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Chapter 2
From modern atomism to radioactivity

2.1 Ancient Atomism

There is a long history of the quest to understand what the fundamental laws of na-
ture are and what things are made of and whether there are fundamental building
blocks. In ancient history, these were mostly philosophical questions, but they did
spark the curiosity of understanding the how nature fundamentally works, and they
did have interesting insights. As a foreword to these lectures we will just very briefly
mention the main ideas and philosophers just to give an idea of the times involved.
An excellent discussion of the long building of the atomic theory from the ancient
atomism to the quantum atom can be found in Ref. [1]

The presocratic philosophers in ancient Greece and India were probably the firsts
to address these questions nearly three millennia ago.

Thales of Mileto (640-545), the first of the so-called atomists, said “Water is the
first principle of everything”. For Anaximenes (596-595 bc) such unifying unlimited
principle must be identified with air. In his cosmogonic theory, Empedocles (494-
434 bc) pretended that the classic principles are four: earth, water, air, fire.

Later on, in ancient Greece, Democritus (470-380 bc) with Leucippus his teacher,
the philosophers of the Nature, elaborated the atomic theory. The question was to
know whether matter could be infinitely divided in smaller parts as believed by
presocratics. For the atomists matter is composed by a very small invisible and indi-
visible particle: the atom (meaning indivisible in Greek). Atoms should be infinite
in number, various in shape and moving around in the void.

The atomic view of matter was however ignored by Plato (428-348 bc) and Aris-
totles (384-322 bc). Plato tried to describe the universe in a very imaginative way
using five geometrical shapes known as the Plato’s elements. Not long after, Epicu-

9
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rus (341-270 bc) like Democritus defended the atomic materialist theory believing
that matter is made of indivisible atoms floating in empty space.

Fig. 2.1 The elements from Plato’s Timaeus dialogue, where Plato hypothesized that these regular
geometrical forms are the “classical elements”, i.e. the elements that could explain all complex
forms of matter.

In Rome, Lucretius (99-55 bc) was the most important nature philosopher and
poet, and he was also a definite epicurist. He developed his ideas in six volumes of
“The nature of things” (De rerum naturæ). He described the brownian motion of
dust particles, taking that as a proof for the existence of atoms.

In the ancient Indian philosophy the atomistic theory which appeared in the VIII
century became more elaborated in the I century bc with the Nyaya naturalists and
the Vaisheshikas atomists.

The intuitions of the ancient philosophers were remarkable, but at the time they
could of course only be philosophical considerations.

2.2 Modern Atomism

The first scientific atomic theory has been proposed in 1803 by John Dalton. Dalton
was an English quacker, a chemist and a meteorologist; he was color blind and
his first paper was on color blindness (which was called daltonism after him). He
also proposed that matter is made of blocks of atoms indivisible and indestructible.
All atoms of a single element are identical, whereas atoms of different elements
have different size and mass in order to compose complex structures. John Dalton
formulated his atomic hypothesis as follows:

• matter is made of small particles or atoms;
• atoms are indivisible and can neither be created or destructed;
• all atoms of an element are identical and have the same mass;
• different atoms have different masses;
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• a compound is made of a fixed number of its constituent atoms (in fixed propor-
tions).

It is not completely clear however how John Dalton came to propose his insight-
ful theory. Nevertheless, his theory includes two laws known at the time:

• The law of mass conservation elaborated and expressed by the french chemist
Lavoisier in 1789, according to which the mass of an invariant amount of ele-
ments remains constant in their chemical reactions: for example,

CH4 +2O2→CO2 +H2O.

• The law of definite proportions discovered in 1784 by another French chemist,
Joseph Louis Proust, which states that chemical compounds always combine in
constant proportions during chemical reactions (for example, a fraction of 8/9 –
or to be more explicit 16/18, of the mass of water comes from oxygen and 1/9
from hydrogen).

The law of the definite proportions can then be extended to the law of multiple
proportions, stated by John Dalton in 1803, whereby considering two compounds
made of two elements A and B (in different proportions), where r1,r2 are the ratios
of the masses of A divided by the masses of B (for each compound mA/mB), then the
ratio r1/r2 will always be the ratio of small whole numbers. Or in other terms, for
any compounds of elements A and B composed by 1 g of A, where A is the lightest
element between A and B, will require an integer number of grams of B.

As an example, let’s consider nitrogen (N) and oxygen (O) in the reactions:

4NO+2O2→ 4N2O3 (proportion of 2 : 1 between NO and O2)

4NO2 +2O2→ 4NO2 (proportion of 2 : 1 between NO2 and O2 )

As it is apparent in this example, the possibility that elements could make com-
pounds by themselves such as O2 was not yet taken into consideration. From the
above laws, John Dalton assigned an integer number to elements, by comparison
between elements that form compounds. This integer number was referred to as
atomic mass. In his classification of elements, hydrogen was the lightest and was
assigned an atomic mass of 1. Given that hydrogen combines with oxygen in a ratio
of masses of 1 to 7, Dalton assigned an atomic mass of 7 to oxygen, and so on an so
forth (see Table 2.1).

This was then resolved in steps. The first was the ideal gas law of Gay-Lussac,:

PV = nRT,

where P is the pressure of a gas, V is its volume, T its temperature and R the univer-
sal gas constant (R = 8.314 J/K/mol), and n is the amount of substance measured in
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Elements A.M. Elements A. M.
Hydrogen 1 Strontian 46
Azote 5 Barytes 68
Carbon 5 Iron 50
Oxygen 7 Sinc 56
Phosphorous 9 Copper 56
Sulphur 13 Lead 90
Magnesia 20 Silver 190
Lime 24 Gold 190
Soda 28 Platina 190
Potash 44 Mercury 167

Table 2.1 Table of atomic masses (A. M.) of elements according to John Dalton. Azote is the
Greek name of nitrogen αζ ωτικoσ used then by Dalton, and still in use in Italian, French and
various other languages.

number of moles. Moles are just a unit of number of entities of a substance, defined
by the Number of Avogadro (NA = 6.02× 1023). This law is known to be correct
only in the limit of small densities. This very useful formula in chemistry has actu-
ally very far-reaching consequences in the construction of a modern atomic theory.
What it is really stating is that in the limit of small densities and at equal pressures,
volumes and temperatures, the number of molecules in different gases are equal!

This was recognized by Avogadro in 1811 when he proposed that two identical
volume of different gas contain the same number of “particles”. Therefore, in mod-
ern terms, the mass has no impact on the volume. Identical volumes of different gas
contain the same number of molecules at a given pressure and temperature. As il-
lustrated in figure 2.2, two volumes of H2 are needed for one volume of O2 to make
two volumes of H2O. This reaction implies that the oxygen in the initial state has to
be forming molecules of two oxygen elements O2.

Fig. 2.2 Illustration of the implication of the ideal gas law and interpretation by Avogadro that
identical volumes of different gases, at given temperature and pressure, contain the same number
of entities or “particles”.
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2.3 The proton

From the laws and the classification in Section 2.2, all elements have integer atomic
masses – or, in other terms, all elements have masses multiple of the “first” element,
i.e. hydrogen. In Greek, “first” translates to protos (πρτoσ ), or proton, as the first
in the composition of elements. This is a formidable insight in what will then be
understood as the structure of the atomic nucleus.

2.3.1 Atomic mass

It is interesting to note that while the first element is hydrogen, and was chosen to
be the unit of atomic mass by John Dalton, in 1865 the atomic mass unit was chosen
to be 1/16th of the oxygen mass, due to the fact that oxygen was very prominently
present in a large number of reactions. Current units of atomic mass are (since 1971)
based on Carbon (on its 12C isotope, to be precise) due to its very high abundance,
high stability and the fact that it has the same number of protons and neutrons (these
notions will be more detailed in these lectures).

In order to count the number of entities or particles of a substance, at the time the
concept of mole was introduced. It is intrinsically related to the concept of atoms or
particles: the idea is to know how many entities are included in one unit of a given
element, where that unit is taken to be 12 g of 12C. That is almost equivalent to 1 g
of hydrogen.

To avoid confusion, let’s have a brief reminder of some of the related fundamental
concepts. If we call m the mass of a sample of a given substance, m is related to the
number of entities or particles of the substance, n, via its molar mass M, through the
relation

m = M ·n.
The molar mass, expressed in g/mol, is the mass of a mole of a given substance.

The atomic mass unit, was defined until 2019 to be precisely 1/12 of the mass of
a carbon atom. Therefore, until then the mass of 1 mol of carbon was precisely equal
to 1 g. Since 2019, the unified atomic mass unit was set to be a constant, instead of
being fixed to the mass of a given substance:

mu = 1.660539066605×10−27 kg.

Its numeric value is essentially extremely close to 1/12 of the mass of a Carbon
atom, but it is set as a constant.
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A simple way to estimate the Avogadro number is taking a given volume of
oil (knowing the mass and the nature of the substance) and let it cover a given
surface on water. Assuming that the layer is mono-molecular, one can derive the
Avogadro number from the measurement of the surface covered by the thin layer of
oil. There are of course many more subtle ways to determine the Avogadro number
that are beyond the scope of these lectures, the most precise coming from the study
of Brownian motion. The current value is:

NA = 6.022140857(74)×1023 mol−1. (2.1)

In this case as well, since 2019 the Avogadro number was fixed to be a constant,
precisely:

NA = 6.02214076×1023 mol−1. (2.2)

2.3.2 The Faraday experiment and the “charge” of atoms

In his insightful electrolysis experiments, in 1830 Michael Faraday published two
very important laws on electrolysis that can be summarised in one.

Faraday’s first law of electrolysis: the amount of mass deposited on an electrode, due to
the flow of current through an electrolyte, is directly proportional to the quantity of electric-
ity that passed through it.

The second is a bit more quantitative and also extremely important.

Faraday’s second law of electrolysis: when the same quantity of electricity is passed
through several electrolytes, the mass of the substances deposited are proportional to their
respective equivalent mass.

Here the equivalent weight is the ratio between the mass of the atom and its valence,
and the valence is defined as the number of hydrogen atoms with which it can com-
bine.

These laws can be illustrated with a simple example: a battery with a Copper
Sulfate solution (CuSO4) and two copper electrodes. The observation is that a mass
of copper has moved from the anode (+) to the cathode (-). The idea is that, with the
electric tension applied between the two copper plates, Cu2+ ions are dissolved in
water and move towards the cathode. The valence in this case is very important to
assess the amount of mass deposited with respect to charge. The valence of copper
is 2.

According to these laws, one mole of an element attracted to one of the electrodes
will correspond to a definite amount of charges, and in the case of a mono-valent
element one has
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F = 96485 C/mol,

i.e. the Faraday constant, which gives the charge corresponding to one mole of ele-
ment deposited on the electrode. This formula can be generalized to

m =
Mq
FZ

,

where Z is the electrolyte valence, M the molar mass, q the total charge and m the
deposited mass, and F the Faraday constant.

This is very far reaching, since it provides a definition of the unit charge corre-
sponding to a monovalent element, which can be given by:

e =
F

NA
= 1.60×10−19 C,

which can easily be derived from the simplest system – the hydrogen atom – which
is monovalent and has a molar mass of approximately 1.

The idea that all atoms could be made of hydrogen was proposed in 1815 by
William Proust. The idea emerged that there was a form of unit charge e: the concept
of proton, with unit mass and unit charge, was starting to take shape. However.
the discovery of the proton was published in 1919 from the experiment made by
Ernest Rutherford two years earlier. This discovery came after the discovery of the
existence of the nucleus in 1911, also by Ernest Rutherford.

Experiment 1 (Discovery of the Proton - Ernest Rutherford, 1919)
Bombarding nitrogen atoms with alpha particles, Ernest Rutherford obtained
the following reaction:

α +14 N→ O+ p,

where protons were found to be able to cover long distances.

In the meantime, many other key discoveries which will be discussed in this
chapter were made.

2.4 Atomic Classification

A large fraction of the work of the XIX century in Chemistry was devoted to study
the physical properties and the reactions of as many substances as possible. A large
number of new elements and compounds were discovered.
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With the massive amount of data and the simple laws stated above, a classifica-
tion of their properties could be made, according to their atomic masses and their
valence.

It was the Russian Physicist Dmitri Mendeleev who first started a systematic
classification of elements according to their masses and their chemical properties.
After a first attempt in 1869, in 1871 he published a classification that highlights
the importance of atomic valence. In his work, valence is reflected in the number
of elements with which an element can combine, and can be used to classify the
elements according to their electronic valence based on how elements combine with
hydrogen and (H) and oxygen (O). For example, H is mono-valent as it combines
with another H to for H2, and therefore O has a valence of II since it combines with
two H to form H2O. Elements El that combine with one H to form ElH or with one
O to form El2O have a valence of I. Elements forming ElO or H2El have a valence
of II. Elements forming El2O3 or ElH3 have a valence of III, and so on and so forth.
A classification is shown in Table 2.2.

Valence Elements
0 He, Ne, Ar, Kr, Xe, Rn
I H, Li, Na, K, Rb, Cs, Fr, Cu, Ag, Au, F, Cl, Br, I
II Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd, Pt, Hg, Sn, Pb, O, Se, Te, C
III B, Al, Au, Fe, Co, Ni, Cr, Mn, Cl, Br, I, Ga, In, Tl, N, P, As,

Sb, Bi, Po
IV C, Si, Ge, Sn, Pb, S, Se, Te, Pt, Ir, Mn
V Bi, Sb, As, I, Br, Cl, P
VI Te, Se, S, Mn, Cr
VII Mn, Cl, Br, I

Table 2.2 Classification of elements by Mendeleev, according to their valence.

Mendeleev soon noticed that elements could be classified according to the num-
ber of hydrogen and oxygen elements with which they can combine. In this classi-
fication he had eight columns which showed an intriguing periodicity, as shown in
Table 2.3.

This first classification starts with a column of alkali metals (Li, Na, K) which
have the same valence as hydrogen (these metals have low density and low fu-
sion point). Those appearing in the column VII are the halogens (F , Cl, Mn, Br),
they easily form compounds with alkalis to form salts (e.g. NaCl) and can form
bi-atomic gases (e.g. Cl2). Then all elements are ordered according to their atomic
masses. This first purely phenomenological classification showed a relation between
the atomic mass and chemical properties, and already allowed Dmitri Mendeleev to
predict elements in the missing spots in the table. One of them was gallium, which
was discovered soon after in 1875 by Lecoq de Boisbadran, and happened to have
all the properties predicted by Mendeleeev! This classification also led to introduce
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I II III IV V VI VII VIII
El2O ElO El2O3 ElH4 ElH3 ElH2 ElH ElO4

1 H
1

2 Li Be B C N O F
7 9.4 11 12 14 16 19

3 Na Mg Al Si P S Cl
23 34 27.3 38 31 32 35.5

4 K Ca Ti V Cr Mn Fe, Co, Ni
39 40 48 51 52 55 56, 59, 59

5 Cu Zn (Ga) As Se Br
63 65 68 72 78 78 80

6 Rb Sr Yt Zr Nb Mo Ru, Rh, Pd
85 87 88 90 94 96 100 104, 104, 106

7 Ag Cd In Sn Sb Te I
108 112 113 118 122 125 125

Table 2.3 Early Mendeleeev classification of atomic elements (denoted (El) according to how
they form compounds with hydrogen and oxygen.

the Atomic Number which corresponds to the rank of the elements in this periodic
table.

Mendeleev’s work eventually led to the current grouping in the periodic table of
elements, shown in Table 2.3. Elements are ordered in terms of their atomic number
which is growing by one unit from left to right and top to bottom. The table is
further organized in groups of elements with the same valence in columns. It can
also be divided in blocks which correspond to the subshell according to the angular
momentum `: the s(`= 0) subshell corresponds to the two first columns – including
He which has two electrons and completes 1s2, then the elements with their last
electrons are in the p(` = 1) subshell which correspond to the last six columns in
the first five rows (excluding He), and the elements with their outermost electrons in
the d(`= 2) subshell which corresponds to the 10 middle columns, then the f (`= 3)
is inserted between the s and the d blocs, etc. This classification has been crucial in
order to build a quantum theory of the atom.

2.5 The Modern Atomic Theory

In 1827 Robert Brown, a botanist, observed through a microscope that particles of
pollen grains of the size of approximately tens of microns in suspension in a fluid,
were moving randomly. It was a striking observation that he could not interpret.

It was not until 1905 when, in one of his annus mirabilis papers, Albert Ein-
stein [2] was able to demonstrate that this motion can be due to the motion of
molecules (as for example water molecules in which the pollen particles are sus-
pended), thus demonstrating the existence of atoms. In 1908 Jean Perrin performed
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Fig. 2.3 Periodic chart of the chemical elements ordered according to their atomic number and
electron configuration properties.

a series of measurements that corroborated Einstein’s theory stating that it “cannot
leave any doubt of the rigorous exactitude of the formula proposed by Einstein”.

2.6 The Discovery of radioactivity

During the XIX century many discoveries rest on the modern atomic physics and de-
pend on the development of the vacuum tube technologies, namely on the cathode-
ray tube. Starting in 1857, Gaissler introduced the glass tube, with two electrodes
on each end, to study the electroluminescent discharges. With the help of a vacuum
pump he could study the discharge as a function of the gas pressure. Applying high
voltage with very low gas pressure, a green luminescence was still obtained on the
side of the positive anode. The effect was independent of the presence of residual
gas in the tube and of the substances with which the electrodes were made. In 1878
Crookes introduced a fluorescent screen near the anode and demonstrated that the
luminescence was associated to the propagation of a kind of ray that could be ab-
sorbed by an obstacle generating a shadow on the screen. He could furthermore
establish that those cathode rays were deviated by a magnetic field.
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2.6.1 The discovery of X-rays

Thomson had not yet described the nature of the cathode rays, when Wilhelm
Röntgen, a German physicist, on November 8, 1895 discovered that they were pro-
ducing another type of penetrating radiations invisible to the naked eye depending
on the stratification of the material exposed: he gave them the name of X rays.
Unlike cathode rays, they could pass through the matter coloring selectively a fluo-
rescent screen or a photographic plate. X rays immediately became widely known
because of their ability to visualize bones inside the human body, and Röntgen
had found this phenomenon experimenting on himself almost by chance. Today
we know that cathode rays are electrons, and that X rays are photons irradiated by
impinging electrons because of the strong deflection in the atomic nuclei of the an-
ode, which induces bremsstrahlung emission of photons (continuous spectrum), or
when the impinging electrons remove electrons from the internal layers, with the
release of photons as transition from the external electrons toward the relative gap
with energy corresponding to the difference between the two electron levels (striped
spectrum).

Experiment 2 (Discovery of X-rays - Willhelm Röntgen, 1895)
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Top: A cathodic tube used by Crooks: the metal Maltese cross was used to
demonstrate the cathode ray absorption by the metal of the cross, as it gave a
shadow on the fluorescent screen (on the left). This was used as a proof of the
fact that cathode rays propagate on a straight line.

Bottom: two examples of X ray production. On the left, the impinging elec-
tron kicks off an electron of an inner layer, and a photon is emitted when an-
other electron from the next layer fills the gap. On the right, the photon is
instead emitted by the bremsstrahlung of the impinging electron, whose path is
deflected by the atomic nucleus.
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2.6.2 The discovery of radioactivity and α-, β - and γ-rays

The intense developments and research in Physics and Chemistry towards the end
of the XIX century, led to a ground breaking and completely unexpected discovery.

The French physicist Henri Becquerel, who was interested in phosphorescence
phenomena, was seeking for a connection between the phosphorescence of uranium
salts and possible emission of the recently discovered X-rays. As in the case of phos-
phorescence, Becquerel was expecting the phenomena to appear after the exposure
of the uranium salts to sunlight.

Experiment 3 (Discovery of Radioactivity - Henri Becquerel, 1896) In
1896, Henri Becquerel exposed various salts among which Potassium Uranium
Sulfates to sunlight before placing them in front of photographic plates
protected from light by black paper. All results failed, except those related to
the Potassium Uranium Sulfates. While things were proceeding according to
plan, on February 26 – a cloudy day in Paris (like it’s usual in that period of
the year) – Becquerel placed his salts and photographic plates in a closet. On
March 1, by scientific rigor, Becquerel decided to develop the photographic
plates. Much to his surprise, the images were clearly impressed and even
even the shape of a copper cross which had been placed by chance between
the salts and the plate was impressed. Becquerel had discovered natural
and spontaneous radioactivity (the term radioactivity was given by Maria
Sklodowska-Curie). The conclusion was that the material was spontaneously
emitting radiation which had properties similar to X rays.

In 1898 Maria Sklodowska-Curie, in collaboration with her husband Pierre
Curie, working on an uranium mineral extracted from uranite (or pitchblende),
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demonstrated that a radioactivity much more intense than the one due to the ura-
nium salts was associated to two chemical elements not known until then, which
they called polonium and radium.

The same year Ernest Rutherford demonstrated that natural radioactivity ob-
served at that time was due to radiation different from X rays. To further study
the nature of these spontaneously-emitted radioactive rays, Rutherford built a de-
vice which used led to collimate the rays and study their behaviour under magnetic
field (see Fig. 2.4).

Fig. 2.4 The device used by Ernest Rutherford.

Different radioactive substances were placed in the device and the rays were ei-
ther deflected in different directions or were not deflected. This showed that there
were three types of radioactivity: one negatively charged, one positively charged
and one neutral. The non-deflected neutral component was discovered in 1900, by
the French physicist Paul Ulrich Villard.

By placing different absorbing materials in the path of radioactive rays, the dif-
ferent types of radiation could be characterized in terms of their penetrating power.
The deflected types of radiations were named α and β , which were deviated in op-
posite directions by an external magnetic field. The neutral radiation was called γ .

In 1900, Becquerel verified that the ratio e/m of the cathode rays experiment (de-
scribed in Sec. 2.7) and that of the β rays were identical: β rays therefore seemed
to be electrons.
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In 1909, Rutherford identified the α rays as nuclei having a charge of 2e, which
were subsequently understood to be Helium 4He2+ ions.

Radiation Nature mass Energies Spectrum Penetration
α Helium (4He2+) 3.73 GeV few MeV Discrete 6-7 cm
β− Electron (e−) 0.511 MeV from keV to MeV Continuous 5-7 m
β+ Positron (e+) 0.511 MeV from keV to MeV Discrete 5-7 m
γ Photon (γ) 0 from keV to MeV Discrete ∼ km
X Photon (γ) 0 from ∼100 eV to keV Discrete ∼ km

Table 2.4 Properties of the main forms of radiation: nature, mass, ranges of energies and penetra-
tion lengths.

2.7 The discovery of the electron

It is interesting to note that while Crooks’ tube was succesfully used to discover
X rays, the nature of the initial beam was not fully known. The presence of some-
thing flowing from the cathode towards the anode in Crooks’ tubes was known since
1876. This was understood by Eugene Goldstein who named them cathode rays.
The characterization of these rays came later from the development of cathode rays
tubes (CRTs1), which are vacuum tubes (as opposed to Crooks tubes, which were
filled with tiny amounts of air).

It is in 1897 that Joseph John Thomson studied and discovered the nature of these
electric charges.

Experiment 4 (Discovery of the Electron - Joseph Thomson, 1897) The ex-
periment conceived by Joseph Thomson used a cathode ray tube. The source of
electrons can be simply a cathode, or they can be produced from a heated fil-
ament or from exposure to radiation. There is then an accelerating gradient to
accelerate the cathode rays along the longitudinal (x) direction, see the Figure
below:

1 The same technology used to build monitors and televisions until 2000s.



2.7 The discovery of the electron 23

e−

e−

⃗E

Screen

x

y

z

−

+

C A

− +

+−

ℓ

screenCoil
Fluorescent

Once accelerated to a velocity ~v = (vx,0,0), the beam passes through two
horizontal plates generating an electric field E along the y direction, and coils
producing a magnetic field ~B along the z direction. The distance covered by the
cathode ray between the plates is `, and the time passed through the plates is
∆ t where:

vx =
`

∆ t
.

In the presence of only the electric or only the magnetic field, the cathode
rays are bent in the y direction, thus showing that cathode rays are charged
particles. The expected deviation of the rays can be computed assuming they
are made of particles of mass m and charge q: if we write ~F = q~E = m~a, then

m
dv
dt

= qE ⇒ v =
ˆ

∆ t

0
q

E
m

dt = q
E
m

∆ t,

and the vertical displacement can then be computed simply as

∆y =
ˆ

∆ t

0
vdt =

1
2

q
E
m

∆ t2 =
1
2

q
E
m
`2

v2
x

In order to determine the unknown vx, Thomson had the idea to apply a
magnetic field ~B which could be controlled by the currents in the coils. The
resulting force exerted on the cathode ray can then be expressed as
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~F = q(~E +~v∧~B).
Assuming that the region immersed in the magnetic field is the same as that

covered by the electric field, varying the magnetic field in order to compensate
perfectly the deviation of the electric field will then yield a measurement of the
velocity vx:

~F =~0 ⇒ q(E− vx.B) = 0,

which yields the vx =
B
E .

From the measurement without the magnetic field, which yields ∆y, and the
measurement of the magnetic field needed to compensate the effect of the elec-
tric field, B, one can obtain a measurement of the ratio q/m:

q
m

= 2∆y
E

`2B2

Thompson verified that q/m did not depend neither on the gas in the tube,
nor on the cathode material chosen. He therefore established the existence of a
negatively charged particle, the electron.

In his study of the deflection of the cathode rays under the combined effect of
electric and magnetic fields, Thomson demonstrated that not only they were asso-
ciated to negative electric charges: they were also made of particles with a definite
relation between charge and mass. The denomination ”electrons” was proposed by
G. J. Stoneyin 1891 to describe these particles.

It is interesting to note that the charge to mass ratio for the cathode rays is much
larger than the ratio of the elementary charge divided by the elementary mass, as de-
termined in the case of Faraday’s electrolysis experiments. This showed that there
seem to be two types of components in the atom, with very different masses or
very different charges. Assuming that the charges are the same (since the atom is
electrically neutral, there had to be charges that mutually balance), the mass of the
electrons had to be much lighter.

2.8 The Zeeman effect

Interestingly, during the same period as Thomson’s discovery another striking dis-
covery was made on a completely different subject: the impact of a magnetic field
on the emission of light. First intuitions on a possible effect were formulated by
Faraday, but it wasn’t until the works of Pieter Zeeman in 1896 that the effect was
observed. Zeeman demonstrated that in the presence of a magnetic field the spec-
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tral lines of a light source show different components. This effect was first observed
right before the discovery of the electron, and it allows to independently evaluate
the charge-mass ratio q/m of electrons.

The Zeeman effect can be described in a semi-classic fashion starting from the
Bohr model of the atom, which will be described in more detail in Chapter 5. Con-
sidering a circular orbit of electrons with quantized angular momentum, for an elec-
tron with a velocity v the electric current in the loop of the orbit of the electron will
be given by

I =− e
T

=−e
v

2πr
,

where T is the period of the orbit and r its radius.

n = 2
n = 3
n = 4

n = 1 ⃗S = S ⃗u ⃗μ = I ⃗S

e−

e−

⃗u

S

E = hν
(a) (b)

Fig. 2.5 Illustration of (a) the Bohr atomic model and (b) the magnetic moment created by the
circular orbit of the electron.

The electric current of the orbit creates a magnetic moment (see Fig. 2.5) ~µ:

~µ = I~S =−ev
r
2
~u,

where S = πr2 is the surface of the circular orbit, and ~u the unit vector normal to
this surface. The magnetic moment can then also be expressed in terms of angular
momentum as:

~µ =− e
2me

~L,

where~L =~r∧~p = mevr~u is the angular momentum of the electron, and me its mass.
The quantization of the angular momentum is obtained by resolving the Schrödinger
equation for the hydrogen atom: the eigenvalues of the operator L2 are

L2 = `(`+1)}2,

where ` is the orbital quantum number.
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If the atom is immersed in a magnetic field ~B, the potential energy of the system
will be given by

E =~µ ·~B =
e

2me
~L ·~B,

where in the Bohr model the projections of ~̀ along the z direction2 are `z = m` ·},
where m` can take the values:

m` ∈ {−`,−`+1, . . . `+1, `}.

In this case the orbitals are not degenerate anymore, but they are rather split. The
magnitude of the splitting will yield a difference in energy (with respect to the de-
generate line) of:

∆E =
e

2me
m`}B = µBm`B,

where µB = e}
2me

is called Bohr magneton, and depends on the ratio e/me.
By measuring displacement of spectral lines ∆E induced by the presence of the

magnetic field, one can therefore measure the ratio between the charge and mass of
the electron. Zeeman found the same value as in the case of the Thomson experi-
ment:

e
m
∼ 1.76 ·1011C(Kg−1)

It is interesting to note that well before the discovery of the structure of atoms
and the existence of nuclei, Zeeman demonstrated an effect, that would prove ex-
tremely important in probing the atomic model, once the theoretical understanding
of the atom would have progressed sufficiently to describe it quantitatively.

2.9 The Millikan experiment and the Charge of the Electron

The measurement of the charge – and consequently the mass – of the electron came
later, with a very original experiment by Robert Millikan, in 1907. His experiment
was based on the study of fine oil droplets moving in air. The small drops were ei-
ther charged by friction on the spout of the atomizer, or by using a X ray source.

The setup of the experiment is illustrated in Fig. 2.6. The movement of the spheric
body in a fluid is subject to a frictional force proportional to the velocity (v0) and to
the radius (r) of the moving body. This is expressed by Stoke’s law,

F = 6πηrv0,

2 Of course, the choice of the direction z is arbitrary.
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Fig. 2.6 The Millikan experiment setup (left) and a schematic view from the original article (right).
M and N represent the condenser plates, A designates the atomizer and in X the ”Röntgen” (X ray)
source is placed. The brass Vessel D is immersed in a gas-engine oil bath at constant temperature
with fluctuations not larger than 0.2 deg.

where η is the viscosity of the medium in which the body is moving. If we call the
density of the moving body ρ , and consider that a droplet is – to a good approxima-
tion – a sphere, then its mass can be expressed in the following way:

M =
4
3

πr3
ρ,

where ρ is the oil density.

The resultant buoyancy of the sphere due to Archimedes’ principle in air, corre-
sponding to the mass of air displaced by the volume of the droplet, is

Ma =
4
3

πr3
ρa

where ρa is the density of air. Therefore, when the droplet reaches a uniform speed,
all forces cancel yielding:

4
3

πr3(ρ−ρa)g = 6πηrv0.

One can measure the velocity of individual drops by observing their fall through a
microscope. Given the above formula, measuring v0 gives the radius of the droplets:

r2 =
9ηv0

2g(ρ−ρa)
.

By applying an electric field in such a way that the electrostatic force is opposite
to gravity, the force qE will slow the fall down. The voltage applied is high enough
to generate an electric field of approximately 6000 V/cm. The voltage is then tuned
in order to stop the motion of the droplets (v = 0), i.e.

q
V
d
−Mg = 6πηrv = 0.
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Having previously measured the radius of the droplets was therefore essential to
infer the mass of the droplets. This experiment yielded measurements of the ele-
mentary charge of the electron to be:

e = 1.59 ·10−19 C,

slightly smaller than the currently known value of 1.6 ·10−19 C.

It is now known that Millikan’s value was very slightly biased due to an error in
the estimate of the viscosity. This insignificant mistake had a very interesting impact
in understanding measurement biases and is often cited as such due to the fact that
many subsequent experiments found values close to the one found by Millikan. The
experiment is therefore often given as an example of non-conscious bias towards an
already measured value.

From the measured ratio of e/m the mass of the electron can be determined,
yielding

me = 9.109 ·10−31 kg,

which corresponds to mec2 = 0.511 MeV in microscopic units as discussed in Chap-
ter 14.

Take-home lessons

• Ancient atomism was surprisingly visionary in its (merely philosophical) attempt
to describe nature. Empirical observations in Chemistry (e.g. Dalton’s and Gay-
Lussac’s laws) built the foundations of modern atomism. Faraday’s laws on elec-
trolysis suggested the existence of unit charges and of the concept of elementary
particle (then identified as the proton). The existence of atoms was proved later,
with the explanation of brownian motion.

• Different kinds of radioactivity were discovered, and classified first based on
their properties, and then based on our understanding of elementary particles.

• β+ radiation, consisting of electrons, was originally observed in the form of cath-
ode rays.

• X rays were observed when sending electrons (cathode rays) on atoms: they were
later understood to be photons which were either emitted by the electrons due to
bremsstrahlung radiation (continuum spectrum due to the deflection of their path
by the atomic nucleus), or photons emitted by an atomic electron which moved
from an outer to an inner level to replace another atomic electron kicked off by
the cathode ray (discrete spectrum).

• Spontaneous emission of radioactivity by materials was later discovered and soon
understood to be different from X rays. Radiation was classified as α , β and γ

depending on its deflection by magnetic fields. We now know that α particles are
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Helium nuclei (4He2+), β− radiation is made of electrons, β+ of positrons (the
electron anti-particle), and γ and X rays are made of photons of different typical
energies.

• Experiments helped measure the basic properties of particles. The electron
charge-mass ratio could be measured (i) by altering the path of cathode rays
using electric and magnetic fields, or (ii) with a measurement of the splitting of
energy levels induced by the presence of magnetic field, as explained by the Zee-
man effect in terms of the angular momentum and Bohr magneton of electrons.

• The charge of the electron could be measured by first charging small oil droplets
(e.g. by friction or irradiation with X rays), and then using an electric field to stop
their fall in air.

Questions

• How many protons are there in a kg of carbon?
• Can you draw the 1s→ 2p spectral line of hydrogen with and without magnetic

field?
• Why does a Crookes tube shine green light?
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Chapter 3
Elements of Special Relativity

3.1 Introduction

In 1905 Albert Einstein wrote four papers that would profoundly change physics.
The first explained the photoelectric effect, the second was on the Brownian motion,
the third stated special relativity and the fourth the equivalence between mass and
energy. Each of them were groundbreaking on their own; together, they made 1905
be regarded as the Annus Mirabilis of physics.

In this chapter we will discuss the findings of the last two of the four remarkable
papers [1, 2]. As was discussed in Chapter 1, special relativity is one of the main
pillars of modern physics and in particular of nuclear, subnuclear and elementary
particle physics.

The first paper was on “Zur Elektrodynamik bewegter Körper” (“The electrody-
namics of moving bodies”) received by Annalen der Physik on June 30. The second
“Ist die Trg̈heit eines Körpers von seinem Energieinhalt abhängig?” (“Does the
Inertia of a Body Depend Upon Its Energy Content?”) was received by the same
journal on November 21.

3.2 Galilean Relativity

Postulate 1 (Galilean Relativity) The laws of mechanics are the same in all iner-
tial reference frames.

Definition 3.1 (Inertial Reference Frame). A reference frame in which the 1st law
of motion holds exactly (a point-like body without forces acting on it either is still
or is moving with constant velocity on a straight line.)

31
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Starting from the postulate of Galilean Relativity, as an immediate consequence,
for an observer in an inertial reference frame it’s impossible to determine whether
the frame itself is moving or not.

Fig. 3.1 An example of an inertial frame O ′ moving with respect to another inertial frame O at
constant velocity v.

A Galilean transformation allows to determine the relation between the coordi-
nates of two inertial reference frames. With reference to Figure 3.1 the relations are
the following:





x = x′+ vt
y = y′

z = z′

t = t ′





x′ = x− vt
y′ = y′

z′ = z
t = t ′

(3.1)

The fundamental point in these equations is that the coordinate changes only
along the directions for which the components of~v are different from 0.

The diverging point from Galilean Relativity is an immediate consequence of
Maxwell’s equations. In fact, it can be easily proven that assuming the validity of
Maxwell’s equations implies that electromagnetic waves are moving at a constant
velocity c,

c' 3×108 m/s.

At the time of the discovery of Maxwell’s equations, physicists were not com-
fortable with the idea that light, and in general electromagnetic waves, are moving
through the void. The common idea at the time was that light is moving through
an invisible medium, which is uniformly distributed across the Universe: the Lu-
miniferous Aether, or ether. This idea predates modern electromagnetism, and was
proposed very early by Christiaan Huygens in his “Treatise on Light” in 1690,
when he argued that light is a wave that propagates through aether. The concept
of ”aether” as a general way to explain interactions between bodies and the absence



3.3 The Michelson-Morley Experiment 33

of vacuum was proposed by Robert Boyles a few years earlier. This idea, which was
further developed through the years, wasn’t fully satisfactory, as it required some
sort of imperceptible material. When in the XIX century, with the development of
electromagnetism, our knowledge of the nature of light progressed significantly, the
existence of a Luminiferous Aether was being very strongly questioned.

3.3 The Michelson-Morley Experiment

In order to verify the existence of the Ether, Michelson and Morley developed a par-
ticularly sensitive experiment, whose layout is shown in Figure 3.2. A light beam is
produced by a source, and then split by a semi-reflecting mirror into two paths – one
parallel and one orthogonal to the velocity with which the experimental apparatus
moves through aether (which is the speed of Earth).

Fig. 3.2 Layout of Michelson and Morley’s experimental apparatus.

If the interferometer is moving through aether, then light (which is moving at c
with respect to the aether) will travel the distance of the two arms of the spectrom-
eter in a different time, and a corresponding interference pattern will be produced
between the two beams.

No such interference was visible with the Michelson and Morley experiment:
light seemed to travel with the same speed over the two paths. It’s only after this un-
expected – yet conclusive – experimental result that physicists started to reject the
idea of aether, accepting the fact that light travels at the same speed in all reference
frames.
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3.4 From Simultaneity to Lorentz Transforms

The theory of Special Relativity is the theory which aims at describe space (and
time) transformations between two inertial reference frames, one of which is mov-
ing with a constant velocity~v with respect to the other.

The foundation of Special Relativity is on the following postulate, which is con-
sidered in addition to Postulate 1.

Postulate 2 (Invariance of c) The speed of light c has the same value in all inertial
reference frames. Its value is equal to

c = 299792458m/s.

The theory of Special Relativity was built by Albert Einstein, starting from these
two postulates, and exploiting more deeply the concept of Simultaneity. Einstein’s
definition of simultaneity follows from the following example. Consider two events
which happen in two different points of the coordinate space: the two events can be
considered as simultaneous if, after each one of them emits a light beam directed to
the other event’s position, an observer which is in the middle of them sees both the
light beams at the same time.

Fig. 3.3 Graphic representation of simultaneity

Let’s make a more detailed overview of this example. With reference to figure
3.3, an observer O which is in B, whose position is fixed with respect to A and C,
will see the light from A and C simultaneously. Instead, an observer O′ which is
moving with constant velocity ~v will see the light from A before the light coming
from C. In general, we have to take into account the fact that simultaneity depends
on the reference frame!
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Let’s consider the example in a quantitative way: we want to find the coordinates
of two events which are simultaneous by hypothesis (light beams from A and C
reach the observer in B) in the moving reference frame O′. We call the space and
time axes of O′ as (x, t), which define the plane shown in Figure 3.4: on this plane,
the equation of motion of a light beam is a straight line with slope t/x = 1/c or
t/x = −1/c – depending the direction along which it is emitted. The point B lies
on the same line as A and C, at a distance l from either. We call instead (x′,y′) the
coordinate system as measured by the observer in O = B.

Fig. 3.4 In this figure, the coordinates (x, t) belong to the reference frame of O′, which is moving
at constant velocity~v with respect to the points A, B and C. Coordinates (x′, t ′) are the coordinates
of the observer O, fixed with respect to A, B and C.

Let’s compute the coordinates (xI , tI) of the event I, “Beam from A arrives in B”.
The point A moves with constant speed v with respect to O′, so the coordinates of I
will follow the equation of motion

xI = vtI + l.

But the beam moves with speed c, so

xI = ctI ,

and hence
vtI + l = ctI ,

which leads us to
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tI =
l

c− v
, (3.2)

xI = ctI =
cl

c− v
. (3.3)

In order for the event “Beam from A arrives in B” to be simultaneous with the event
“Beam from C arrives in B”, in the reference frame O′(x, t) the second beam must
have been emitted in point J, i.e. at a time tJ 6= 0. This beam will travel in the
direction of negative x, following the equation of motion

x =−ct +α,

which corresponds to the line L on the (x, t) plane of Fig. 3.4; α is an unknown.
Since the second beam does reach the first beam in the intersection point I, then also
the I should satisfy the same equation,

xI =
cl

c− v
=− cl

c− v
+α,

from which one has
α =

2cl
c− v

=
2l

1− v
c
,

and by defining
β =

v
c

(3.4)

we finally obtain

L : x =−ct +
2l

1−β
. (3.5)

The point J has coordinates

xJ = vtJ +2l,

since it represents the position on the (x, t) plane of the light source in C = (l,0)
after a time tJ has elapsed. It must also satisfy the equation for L , so

xJ = vtJ +2l =−ctJ +
2l

1−β
,

[v+ c] tJ = 2l
[

1
1−β

−1
]
,

c [1+β ] tJ = 2l
[

1−1+β

1−β

]
,

[1+β ] tJ =
2l
c

[
β

1−β

]
,
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which gives us

tJ =
2l
c

β

1−β 2 , (3.6)

and

xJ = vtJ +2l

= 2l
β 2

1−β 2 +2l
1−β 2

1−β 2

= 2l
1

1−β 2

=
c
β

tJ ,

which is also the equation for the line L2. Each point on L2 corresponds to a si-
multaneous event.

The next task is then to derive the correct transformation laws which allow us to
go from the coordinates (x, t) to (x′, t ′). If x = vt then the coordinate x′ should be
zero (as v is the speed of O′(x, t) with respect to O(x′, t ′)). This implies that

x′ = f (v) · (x− vt).

At this point it is important to note that events on the line L2 correspond to points
that are simultaneous. It is then explicit that simultaneity is frame dependent. In
the moving frame the events A occurring at t = 0 (see Fig. 3.4) and the event J are
not occurring at equal times, but they are simultaneous from the Einstein light-ray
definition of simultaneity. This also means that the time of event J in the rest frame
of the points A, B and C corresponds to t ′ = 0. The line L2 therefore corresponds to
t ′ = 0.

For this reason, from the parametric form of L2, t = xv/c2, the following func-
tional form is expected for t ′:

t ′ = g(v) ·
(

t− v
c2 x
)

Continuing on the gedanken experiment, let’s suppose we consider a point along
the the light ray emitted at t = 0 at point A, whose spatial coordinates will therefore
be x = ct. Since A is part of L2, it also has t ′ = 0, and since the light is assumed to
be propagating at the same speed c in any reference frame, then one has

x = ct⇒ x′ = ct ′. (3.7)

Using this necessary condition in the previous equations, we straightforwardly ob-
tain that:
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x′ = (x− vt) · f (v) = (ct− vt) · f (v)

= t(c− v) · f (v),

t ′ =
(

t− v
c

t
)
·g(v)

=
1
c
(c− v)t ·g(v)

=
1
c

x′
g(v)
f (v)

,

from which one can deduce that the equation (3.7) is satisfied if and only if:

g(v) = f (v).

To further derive the form of the coordinates transformations, another important
gedanken step has to be taken. If the laws of physics are invariant in any inertial
reference frame, then there is no difference in considering the expression of coordi-
nates (x′, t ′) as function of (x, t) or vice versa. The expression of (x, t) as function of
(x′, t ′) should have the same functional form, but with an opposite velocity terms:





x = (x′+ vt ′) f (v),

t =
(

t ′+ v
c2 x
)

f (v),
(3.8)

and substituting the expression for x′ one gets

x =

[
(x− vt) f (v)+

(
vt−β

2x
)

f (v)
]

f (v)

= x
[

f (v)2
(

1−β
2
)]

.

We can then define
γ = f (v) =

1√
1−β 2

, (3.9)

and express the Lorentz transformations as

x′ =
x− vt√
1− v2

c2

, (3.10)

t ′ =
t− v

c2 x
√

1− v2

c2

. (3.11)

(3.12)

or, using (3.4) and (3.9):
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x′ = γx−βγct (3.13)
ct ′ = γct−βγx (3.14)

Note that β ≤ 1, γ ≥ 1
Note that in the limit v/c� 1 the Galilean expression of coordinate transfor-

mations is recovered. If we consider a Lorentz transformation in three dimensions,
we can always make a rotation of the reference frame which brings our coordinate
system with an axis (x for example) parallel to ~v. Then, the coordinates along axes
which are orthogonal to the direction of motion will not be affected by the transfor-
mation.

The transformation can then be written as

L(β ) =




ct ′

x′

y′

z′


=




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1







ct
x
y
z


 , (3.15)

Note that the matrix is a symmetrical diagonalizable block matrix, and also:

det(L
(
β )
)
= γ

2−β
2
γ

2 = 1. (3.16)

As a simple consequence of the invariance of reference frames, the inverse matrix
will be the one which describes the transformation from (ct ′,x′,y′,z′) coordinates to
(ct,x,y,z), i.e. the same matrix with a positive sign in front of β .

L−1(β ) =




γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1


 . (3.17)

In the non-relativistic approximation it is common to consider the following ex-
pansion:

γ = 1+
β 2

2
+O(β 2), (3.18)

which gives:

x′ = γ (x−βct) =

(
1+

β 2

2

)
(x−βct)

= x−βct +O(β 2),

∼ x− vt,

and
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t ′ = γt− 1
c

βγx

=

(
1+

β 2

2

)
t− β

c

(
1+

β 2

2

)
x

= t− β

c
x+O(β 2)

= t− β 2

v
x+O(β 2)

∼ t.

As expected, we obtain Galilean transformations.

It is interesting to note that Lorentz transformations define a symmetry in 4-
dimensional space. Other typical phenomena of Special Relativity can be derived
from the structure of coordinate transformations.

3.4.1 Contraction of lengths

When we measure the length of an object, for example with a ruler, what we are
measuring is the distance between its two endpoints, A and B, i.e. we are measuring
two positions. As the object may be moving with respect to us, we need to make
sure we perform these two position measurements at the same time (in our reference
frame).

Figure 3.5 shows the position of the points A and B of an object in the reference
frame O(x, t). Since we have taken (with no loss of generality) xA = 0, the length of
the object will be

L = xB− xA = xB.

In the reference frame O′(x′, t ′), which moves with respect to O with a speed v= βc,
we will have

x′A = γ (xA− vtA) =−vtA,

x′B = γ (xB− vtB) .

We perform the two measurements at the same time t ′A = t ′B, and we can take (with
no loss of generality) t ′A = 0. Therefore,

tA = γ(xA
v
c2 + t ′A) = 0,

tB = γ(xB
v
c2 + t ′B) = γxB

v
c2 ,

and so
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Fig. 3.5 Contraction of lengths between two reference systems

x′A =−vtA = 0,

x′B = γxB

(
1− v2

c2

)
= γxB(1−β

2) = xB
1
γ
,

which leads to
L′ = x′B− x′A =

L
γ
. (3.19)

This means that the distance in the O′ frame is reduced by a factor 1/γ . In a very
similar way it is possible to compute that the distance measured by an observer in
the O frame is also reduced by the same factor.

3.4.2 Time dilation

Measuring time intervals in a given reference frame requires a clock to be put in a
known, fixed position in that reference frame. For example, if we are at a Formula
1 race and we want to measure the distance between the events ”first car reaches
the finish line” and the event ”second car reaches the finish line”, we will place a
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clock at the finish line and read out its two measurements: their difference will be
the desired time interval.

Let us consider the sketch in Fig. 3.6. We are in the reference frame O(x, t), and
place a clock in point A which (with no loss of generality) has x = 0. We take a first
time measurement (x1 = 0, t1) (first car reaches A), and then another one (x2 =, t2)
(second car reaches A). We have

∆ t = t2− t1,

and we want to measure ∆ t ′ in a moving reference frame O′ (a third car).

Fig. 3.6 Dilation of time between two reference systems

From the Lorentz transformations, we have

t ′1 = γ

(
t1−

β

c
x1

)
,

t ′2 = γ

(
t2−

β

c
x2

)
.

The key point here is that the time measurement in O must be performed keeping
the clock in the same, fixed position x1 = x2. Therefore, one gets immediately

∆ t ′ = γ∆ t, (3.20)



3.4 From Simultaneity to Lorentz Transforms 43

a result known as time dilation. In other words, the time interval between two events
which happen at the same place in one reference system is always lower than mea-
sured by a moving reference frame. Note that this result is independent on the direc-
tion of velocity, and is the principle on which the so-called Twin Paradox is built.

3.4.3 Metrics

Since the Lorentz transformations contract distances and dilate time intervals, one
would expect the space-time distance to be preserved. Let’s see if this is the case.

Consider a point (x, t) and its Lorentz-transformed (x′, t ′):

x′ = γ (x−βct) ,

t ′ = γ

(
t− β

c
x
)
.

By squaring both equations, we get

x′2 = γ
2 (x−βct)2

= γ
2
(

x2 +β
2c2t2−2βcxt

)
,

t ′2 = γ
2
(

t− β

c
x
)2

= γ
2

(
t2 +

β 2

c2 x2−2
β

c
xt

)
,

so that

(ct ′)2 = γ
2
(
(ct)2 +β

2x2−2βx(ct)
)
,

x′2 = γ
2
(

x2 +β
2(ct)2−2βx(ct)

)
.

It is clear that the distance (x2 + t2) does not work, because it’s not conserved by
Lorentz transformation. Instead, the distance defined as (ct)2− x2 is conserved:

(ct ′)2− x′2 = γ
2
[
(ct)2(1−β

2)+ x2(β 2−1)
]

= γ
2
[
(ct)2− x2

]
(1−β

2)

= (ct)2− x2.
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The extension of this result to transformation with three components of velocity
is trivial, where the distance (ct)2− x2− y2− z2 is conserved. In other words, the
following quantity is a relativistic invariant:

∆s2 = c2
∆ t2−∆x2−∆y2−∆z2, (3.21)

or, better, in infinitesimal form:

ds2 = c2 dt2−dx2−dy2−dz2. (3.22)

3.4.4 Proper time

Consider again a clock which is moving together with an observer, as in Fig. 3.6. In
its reference frame O′, one has that dx = dy = dz = 0 by construction (a reference
frame is at rest with respect to itself). So we get

ds2 = c2 dt2−dx2−dy2−dz2 = c2 ds′ = c2 dt ′2

Thus, one can define the proper time

dτ =
ds
c
,

which has the meaning to a metric measure of space-time, also called Minkowski
space-time1.

3.4.5 Light Cone

Let us now consider the trajectory of a particle in space–time. In general, the trajec-
tory of a particle always defines a time–like interval.

Definition 3.2 (Time–like interval). A time–like interval is a segment in space-time
which satisfies:

ds2 = (cdt)2− (d~r)2 > 0.

For each time–like interval one can always write a corresponding Lorentz transfor-
mation for which d~r =~0, i.e. there is an inertial reference frame for which the two
events are happening in the same place (at different times).

Definition 3.3 (Space–like interval). A space–like interval is a segment in space-
time which satisfies

ds2 = (cdt)2− (d~r)2 < 0.
1 You will appreciate the difference between Minkowski space-time and space-times which stem
from different assumptions on how ds depends on dx,dy,dz,dt when studying general relativity.
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Fig. 3.7 Schematic representation of the light cone

In this case it’s always possible to write a Lorentz transformation for which dt = 0,
i.e. there is an inertial reference frame for which the two events are happening at the
same time (in different places).

The space-time region in which ds2 = 0 defines the light cone. Events which
are inside the light cone can belong to the past, present or future, and they can
be connected with a time-like segment to the origin: in other words, they can be
connected with a trajectory.

Events outside the light cone can be connected to the origin only with a space-
like segment. This implies that a point outside the light cone can not be causally
related.

3.5 Four-vectors and covariant Notation

We have already introduced four–vectors: (ct,x,y,z). Let’s now introduce four-
vectors with the superscript notation, which expresses each of its components in
a short form:

xµ = (ct,x,y,z) .

The position of the index (superscript or subscript) matters! The corresponding
four-vector xµ is defined as:

xµ = (ct,−x,−y,−z)

The action of “moving the index from upper to lower position” corresponds to
the action of putting a minus sign in front of spatial coordinates. In other words, it
corresponds to the multiplication of the four-vector by the metric tensor gµν , defined
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as2:

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (3.23)

From this moment, we will also assume the convention of leave out sums on re-
peated indices: this is a common way to manipulate four-vectors also known as
Einstein notation. For example, the application of the tensor gµν to the four-vector
xν can be written as:

xµ =
3

∑
ν=0

gµν xν ≡ gµν xν .

Using the Einstein notation, the product between two four–vectors U and V can
be written as:

U µVν =U0V 0−U1V 1−U2V 2−U3V 3

and the Lorentz invariant ∆s2 can be written as:

∆s2 = ∆xµ
∆xµ

Now, if we compute the differential of the four–vector xµ = (ct,x,y,z), we obtain:

dxµ = (cdt,dx,dy,dz)

ds2 = dxµ dxµ

As we have seen, proper time is defined as follows:

dτ
2 = dt2− 1

c2

(
dx2 +dy2 +dz2

)
,

dτ = dt

√
1− 1

c2

(
v2

x + v2
y + v2

z

)
,

dτ = dt
√

1−β 2,

dτ =
dt
γ
.

Velocity is clearly not invariant under Lorentz transformations, but we can define
the four-velocity as:

uµ =
dxµ

dτ
, (3.24)

which is Lorentz-invariant.
It is a common convention to use µ , ν and other Greek characters for indices

running over the four components of four-vectors. To avoid errors, we will adopt

2 General relativity will show you why we took the disturb to use a tensor to describe operations,
like computing ds, which are somehow simple: what here seems useless will prove crucial to deal
elegantly with space-times more complex than the Minkowski space-time.
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the following two notational conventions, widely used in modern physics textbooks
and literature:

• Four–vectors in space–time are denoted only and always with Greek indices, e.g.
xµ = (cx0,x1,x2,x3);

• Three–vectors in three dimensional space are only and always written with latin
indices, e.g. x j = (x1,x2,x3).

This is equivalent to say that Greek indices range from 0 to 3, and latin ones from 1
to 3.

For example, we will denote velocity in space (three–vector) with:

~v = (v1,v2,v3) =

(
dx1

dt
,

dx2

dt
,

dx3

dt

)
≡ vi.

Following the definition of four-velocity:

ui =
dxi

dτ

= vi
dt
dτ

,

which allows us to write the common expression of four–velocity:

uµ = γ(c,~v), (3.25)

which highlights the definition of four-velocity as the proper-time derivative of a
space-time four-vector. Although four-velocity is a four-vector, it has only three
independent components due to the definition of γ , which immediately relates u0

and ui.
Motion and trajectories in space-time are defined in terms of xµ and uµ , as illus-

trated in Fig. 3.8.

Fig. 3.8 Example of trajectory in a Minkowski space in terms of xµ and uµ
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3.6 Relativistic action and Hamiltonian of a particle

To determine the dynamics of a system in this new relativistic framework a pow-
erful starting point is the principle of least action, from which the Lagrangian and
Hamiltonian describing the evolution of the system can be derived, as well as the
equations of motion of a relativistic free particle.

Action, as in classical mechanics, has to be constructed from the trajectory of a
particle and should be invariant under Lorentz transformations. The latter condition
ensures the principle of relativity, that the laws of physics are independent of the
inertial reference frame we choose to describe them in.

Note 3.1. The Galilean invariance of the action in Newtonian mechanics is not triv-
ial, while it is straightforward from the fundamental principle of dynamics that
Newtonian mechanics is invariant under Galilean transformations. Constructing the
free particle action, both in the relativistic and Newtonian mechanics, imposing
isotropy and homogeneity of space and time translation invariance of forces, the
Lagrangian can only be a function of the square of the velocity of the particle,
L (~x,~v, t) =L (v2). A Galilean transformation with a constant velocity~u will trans-
form~v→~v+~u and therefore v2→ v2 +u2 +2~v.~u. In this case it appears that if the
Lagrangian is linear in v2, then applying the Euler–Lagrange equations, the equa-
tions of motion will be invariant under a Galilean transformation. However, here the
action is not explicitly invariant under Galilean transformations, but the equations
of motion are. From this, it is also apparent that if the Lagrangian is not a linear
function of v2 then the equations of motion will not be invariant.

The only invariant we have built from the trajectory of a particle is the proper
time (or proper length). We can then postulate action of a free particle to be in the
simplest form a function of the proper time:

S = α

ˆ b

a
dτ,

where α is a constant factor that we will determine in a moment. Following the
expression for dτ we get:

S = α

ˆ b

a
dt

√
1− 1

c2

(
ẋ2 + ẏ2 + ẏ2

)
,

where we denoted with a dot the derivative with respect to time.
Considering the action definition of Lagrangian Mechanics:

S =

ˆ
dtL ,

we obtain that our candidate Lagrangian is
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L = α

√
1− 1

c2

(
ẋ2 + ẏ2 + ẏ2

)
.

In order to determine α we need to consider the approximation of the Lagrangian for
small velocities, and equal it to the non-relativistic Lagrangian. For a slow particle,
we have

L ∼ α

(
1− v2

2c2

)
.

Since L is invariant up to addition of constant terms (remember, α is constant), this
is equivalent to

L ∼−α
v2

2c2 ,

and by comparison with the free–body Lagrangian in classical mechanics, which is
equal to its kinetic energy T ,

L = T =
1
2

mv2,

we reach the following choice of α:

α =−mc2.

The relativistic free-particle Lagrangian can then be written as

L =−mc2

√
1− 1

c2

(
ẋ2 + ẏ2 + ż2

)
.

From this point on, let’s use coordinates (x1,x2,x3) to denote (x,y,z) and simplify
notation. According to the Euler–Lagrange equation, it is possible to obtain the three
components of the spatial momentum of the particle by taking the derivatives

Pi =
∂L

∂ ẋi
(3.26)

= −mc2 ∂

∂ ẋi

√
V (ẋi), (3.27)

where we used V (ẋi) to represent the term under the square root. We obtain

∂

∂ ẋi

√
V (ẋi) =

1
2
√

V (ẋi)

∂V (ẋi)

∂ ẋi

= − 1
2
√

V (ẋi)

2
c2 ẋi.

Therefore, the complete expression for Pi is:
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Pi =
∂ L
∂ ẋi

=−mc2 −
1
c2 ẋi√

1− v2

c2

= γmẋi,

so that
~P = mγ~v.

Here the expression for the momentum of a free particle has been obtained, as-
suming only the definition of action, which satisfies the non–relativistic limit and
the Euler–Lagrange equation. It is interesting to notice that (using Latin indices) the
spatial components of P can be written as function of the four-velocity:

Pi = mui.

Now we can derive the definition of energy, starting from the Hamiltonian, which
is defined as a function of the generalised coordinates qi as

H = ∑
i

q̇i
∂L

∂ q̇i
−L .

In our case, this leads to the following expression:

H =
3

∑
i=1

ẋi pi−L

=
3

∑
i=1

γmẋ2
i +mc2

√
1− v2

c2

= γmv2 +mc2
√

1−β 2

= γmv2 +mc2 1−β 2
√

1−β 2

= γmv2 + γmc2

(
1− v2

c2

)

= γmc2,

and we have obtained the energy for a free particle:

E = γmc2.

Given the definition of four-velocity, uµ = γ(c,~v), we can observe that:

mu0 =
E
c
,
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which allows us to write the four-momentum vector as

pµ = muµ =

(
E
c
, p1, p2, p3

)
.

Now that we have a definition for energy, let’s compute the norm of the four-
velocity in terms of products of four-vectors:

uµ uµ = γ
2
(

c2− v2
1− v2

2− v2
3

)

= c2
γ

2
(

1−β
2
)

= c2,

and multiplying by m2 we get

m2uµ uµ = (muµ)(muµ)

= pµ pµ = m2c2.

In another way:

p2 = pµ pµ =
E2

c2 − p2
1− p2

2− p2
3 = m2c2,

or, implying the sum on the index i,

E2

c2 −
(

p2
i

)
= m2c2

It is important to note that the norm of the four-momentum only depends on the
particle’s mass: indeed, it is a Lorentz invariant.

3.7 Noether’s Theorem

Noether’s theorem has a crucial role in Particle Physics and in the calculus of vari-
ations.

Theorem 3.1 (Noether’s Theorem). To every continuous symmetry of the La-
grangian, i.e. to every continuous transformation of coordinates which does not
change the Lagrangian, a corresponding conserved quantity is associated.

In order to give a clearer idea of this theorem, let’s go through this example,
which takes into account a possible symmetry of the free-particle Lagrangian we
obtained in the previous section,

L =−mc2

√
1− 1

c2

(
ẋ2

1 + ẋ2
2 + ẋ2

3

)
.
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It is reasonable to assume that this Lagrangian should have the same functional form
for particles that are located in different points of the space-time. In other words, this
Lagrangian should be invariant under translation, a requirement which is written as

∂L
(
xi, ẋi, t

)

∂xi = 0 (3.28)

Now let’s use the Euler–Lagrange equation, which is usually represented in terms
of generalized coordinates as

d
dt

(
∂L

∂ q̇i

)
− ∂L

∂qi
= 0,

and can be written in our case as

d
dt

(
∂L

∂ ẋi

)
=

∂L

∂xi
.

This implies, taking into account equations (3.26) and (3.28),

d
dt

(
∂L

∂ ẋi

)
=

dPi

dt
= 0.

This means that the momentum is conserved under spatial translations. The state-
ment of the theorem asks for a continuous coordinate transformation: this is needed
to preserve the theorem for infinitesimal transformations, and to ensure that the
derivative of (3.28) exists.

A very similar computation can be easily done for translations in time. By speci-
fying that our Lagrangian L

(
xi, ẋi, t

)
is dependent on three variables, we can write

its total time-derivative as:

dL

dt
=

∂L

∂ t
+∑

i

[
∂L

∂xi
ẋi +

∂L

∂ ẋi
ẍi

]
.

Again, using Euler–Lagrange equation on the third term, we have:

dL

dt
=

∂L

∂ t
+∑

i

[(
d
dt

∂L

∂ ẋi

)
ẋi +

∂L

∂ ẋi
ẍi

]

=
∂L

∂ t
+

d
dt ∑

i

[
∂L

∂ ẋi
ẋi

]
,

−∂L

∂ t
= −dL

dt
+

d
dt ∑

i

[
∂L

∂ ẋi
ẋi

]
,

∂L

∂ t
= − d

dt

[
∑

i

(
∂L

∂ ẋi
ẋi

)
−L

]
,

∂L

∂ t
= −dH

dt
.
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This gives another important conclusion: if the Lagrangian doesn’t depend explicitly
on the variable t, i.e. if ∂ L

∂ t = 0, then the Hamiltonian is constant, i.e. energy is
conserved.

Since both of these conditions happen in our Lagrangian (invariance under space
and time translations), the four-momentum is a conserved quantity.

3.8 Equation of motion and force

It is finally interesting to connect these relativistic definitions with the more general
notions of forces and the equation of motion. We start from a Lagrangian with a
potential V (~x,~̇x, t),

L =−γ(~̇x)mc2−V (~x,~̇x, t).

Now, taking the Euler-Lagrange equation of motion,

d
dt

(
∂L

∂~̇x

)
− ∂L

∂~x
= 0

with the above Lagrangian we get

d
dt

(
∂L

∂~̇x

)
=

d
dt


mc2 2~̇x

2

√
1− ~̇x2

c2

− ∂V
∂~̇x




=
d
dt

(
γ(~̇x)m~̇x− ∂V

∂~̇x

)
,

while the partial derivative is

∂L

∂~x
=−∂V

∂~x
.

Keeping the same definition of force as in Newton’s second law of dynamics, i.e.

~F =
d~p
dt

,

one gets:

~F =
d
dt

(
γ(~̇x)m~̇x

)
=

d
dt

(
∂V
∂~̇x

)
− ∂V

∂~x
.
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3.9 More details on covariant notations

In section 3.5 we introduced the four-vector formalism, defining two classes of four-
vectors, those represented with lower indices and upper indices:

• the components of a vector with upper indices, like uµ or ui, are called con-
travariant;

• the components of a vector with lower indices, like uµ or ui, are called covariant.

Why are these two representations of a vector different? A vector is an abstract
object which can be represented in a certain basis of linear–independent vectors,

~v = vi~ei

Of course, a new basis~e′i can be chosen and a corresponding matrix Mi
j is associated

to the change of basis, such that

~e j = Mi
j~e
′
i (3.29)

This requires that M is an invertible matrix, which means det(M) = 1. In addition to
this, the components of the vector~v are affected by the following transformation:

~v = v j~e j = v jMi
j~e
′
i,

where one should remember that we are implying sum on repeated indices, and
that any element of this equation like v j or Mi

j should be treated as a number. This
means that, as long as indices are correctly written, the commutative property holds
between these elements, i.e.

v jMi
j~e
′
i = Mi

jv
j~e′i = v′i~e′i.

This defines3 the components v′ j of the vector~v represented in the basis~e′j,

v′i = Mi
jv

j.

The components of the vector under the new basis are on the left side of the equation,
and are obtained by applying the matrix M to the vector represented in the old basis.
This is the opposite as in equation (3.29): for this reason the components of a vector,
if represented with upper indices, are called contravariant.

We have already defined the scalar product between two vectors, but in a more
general way we could say that

~v ·~w = vi~ei ·w j~e j

= viw j~ei ·~e j

= viw jgi j,

3 Note that we re-label the index i into index j, as the name of the index is irrelevant as long as
summation is implied.
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which defines also the metric tensor gi j.
Now that we have a rule for the scalar product, the covariant components of a

vector can be defined as the projections of that vector on the given basis,

vi =~v ·~ei,

which implies the following rule:

vi = v j~e j ·~ei = v jgi j.

The metric tensor allows to change from covariant to controvariant components, and
vice-versa. If we now apply the rule for the change of basis, we get

vi = ~v ·~ei

= ~v ·M j
i~e
′
j

= M j
i v′j.

Here the components vi are obtained applying the matrix M to the components in
the new basis (v′j), as done in equation (3.29). For this reason, these components are
called covariant.

In an Euclidean space, the metric tensor is the Kronecker’s Delta

gi j = δ i j.

This means that covariant and contravariant components of a vector are identical.
In general, and in the case of Special Relativity, this is not true and the distinction
between covariant and contravariant components of a vector must be considered.

The metric tensor of the Minkowski space is

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (3.30)

An explicit way to represent contravariant and covariant components of a vec-
tor is by using respectively column–like and row–like vectors. For example, in eu-
clidean space:

ui =




u1
u2
u3


 ,

ui = (u1,u2,u3) ,

and the scalar product can be written as
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uiui = (u1,u2,u3)




u1
u2
u3


 .

This depends on the metrics! In the Minkowski space, in fact, one has

uµ =




u0
u1
u2
u3


 ,

uµ = (u0,−u1,−u2,−u3) ,

and the scalar product is

uµ uµ = (u0,−u1,−u2,−u3)




u0
u1
u2
u3


 .

Take-home lessons

• Special relativity extends Galilean relativity with the postulate of the universality
of the speed of light.

• Simultaneity of two events, in special relativity, depends on the reference frame
of the observer.

• Lorentz transformations can be obtained by the requirement that the laws of
physics are invariant in any inertial reference frame, with the constraint that the
speed of light is the same in every reference frame.

• Lengths contract by a factor 1/γ when measured in a moving reference frame.
• Time intervals dilate by a factor γ when measured in a moving reference frame.

In particular, time dilation is independent on the direction of velocity.
• The space-time of Special Relativity, also known as Minkowski space-time, is

defined by a diagonal metric tensor, and by the proper length ds = dt2− dx2−
dy2−dz2, or equivalently by the proper time dτ = ds/c.

• The light cone defines time-like (ds2 > 0), space-like (ds2 < 0) and light-like
(ds2 = 0) intervals (or four-vectors). Intervals between causally-connected events
are represented by time-like intervals. Time/space/light-likeness is a Lorentz-
invariant property.

• Four-vectors have covariant and contravariant representations.
• Four-velocity transforms as a four-vector, while ordinary velocity isn’t.
• The energy-momentum-mass relation E =

√
mc2 + p2c2 follows from the rela-

tivistic action and Hamiltonian of a free particle, which in turn is obtained from
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the requirement of action to be Lorentz-invariant (and so expressed as a function
of dτ) and by comparing the low-speed limit of the Lagrangian with its classi-
cal expression. Momentum follows from Euler-Lagrange equation, while energy
follows from the Hamiltonian.

• The conservation of energy and momentum is a consequence of the invariance
of the free-particle Lagrangian under space and time translations. This is due
to Noether’s theorem, according to which each continuous symmetry of the La-
grangian corresponds to an associated conserved quantity. Another consequence
of this is the conservation of angular momentum, which follows from rotational
invariance.

• In the more general case of a free particle under some external potential, the
force acting on it is expressed as a function of the derivatives (in time, space and
velocity) of the potential, following the Euler-Lagrange equation.

Questions

• Where does the sign in the temporal component of the first equation of the
Galilean and Lorentz transformations come from?

• Work out the Michelson-Morley’s calculation for the time difference between the
two light paths, in the assumption of Galilean mechanics.

• How do volumes transform under Lorentz transformations? What about densi-
ties?

• Is momentum a space-like, a time-like or a light-like four-vector? What about
four-velocity?

• Work out the transformation laws for three-velocity.
• Had we defined ds2 = −cdt2 + dx2 + dy2 + dz2, would any conclusion of this

chapter have changed?
• What happens when you try to bring an elementary particle of mass m to the

speed of light? How much energy is needed? Does its mass change?
• We look at a soccer game being played on a spaceship. Does it last more or less

than 90 minutes?
• Why is energy conserved in an isolated system?
• Why is momentum conserved in an isolated system?
• Why is angular momentum conserved in an isolated system?
• Does the relation ~F = m~a hold in special relativity?
• Is angular momentum a Lorentz invariant?
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3.10 Exercises

Exercise 1 Applicazione delle trasformazioni di Lorentz
Un osservatore S unidimensionale, posizionato sull’asse x, vede un lampo rosso a
xR = 1210m e, dopo un tempo di 4.96 µs, un lampo blu a xB = 480m.

1. Qual è la velocità di S per un osservatore S′ che vede accadere gli eventi nello
stesso punto?

2. Quale evento avviene prima, secondo S′, e qual è l’intervallo temporale mis-
urato da lui tra i due lampi di luce? (Suggerimento: provare a calcolarlo us-
ando le trasformazioni di Lorentz, oppure calcolarlo usando l’intervallo spazio-
temporale.

Exercise 2 Contrazione delle lunghezze
Un osservatore misura la lunghezza di un’asta quando questa è a riposo, otte-

nendo L = 1m, e quando è in moto, ottenendo L′ = 0.5m. A che velocità viaggia
l’asta quando è in moto?

Exercise 3 Decadimento e dilatazione dei tempi
Metà dei muoni di un fascio composto da muoni di energia fissata sopravvive

dopo aver viaggiato l = 600m nel sistema di riferimento del laboratorio. Qual è la
velocità dei muoni, conoscendo la vita media del muone τ0 = 2.2 µs?

Exercise 4 Composizione relativistica delle velocità e contrazione delle lunghezze
Due razzi, di lunghezza a riposo L0, si avvicinano alla Terra da direzioni opposte,

con velocità ±c/2. Quanto appare lungo un razzo all’altro razzo?

Exercise 5 Il decadimento del muone, visto dal muone
Il muone, indicato con µ , è una particella instabile che decade con un tempo pro-

prio (vita media per il muone a riposo) τ0 = 2.2 µs. Se viene prodotto all’inizio
dell’atmosfera per la collisione di raggi cosmici energetici con particelle nelle
molecole d’aria. Se assumiamo che i muoni vengano prodotti all’inizio dell’atmosfera
tutti a un’altezza di 10 km, e hanno una velocità v = 0.999c, in media i muoni rag-
giungono la superficie della Terra prima di decadere?

Exercise 6 Energia cinetica
Quanto lavoro bisogna compiere per aumentare la velocità di un elettrone (m =

511keV/c2) dalla posizione di riposo a:
1. 0.50c?
2. 0.990c?
3. 0.9990c?
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Exercise 7 Energia cinetica
Si calcoli la velocità di una particella in modo che
1. la sua energia cinetica sia il doppio della sua energia a riposo
2. la sua energia totale sia il doppio della sua energia a riposo

Exercise 8 Dilatazione dei tempi e quadrimpulso
Nell’urto ad alta energia di una particella di radiazione cosmica con un’altra

particella nella parte alta dell’atmosfera terrestre, 120 km sopra il livello del mare,
si genera un pione di energia totale E = 1.35×105 MeV che si muove verticalmente
verso il basso. Nel sistema di riferimento ad esso solidale, il pione decade dopo
35 ns dalla sua creazione. A che altitudine sopra il livello del mare, nel sistema
di riferimento terrestre, avviene il decadimento? L’energia a riposo di un pione è
139.6 MeV/c2.

Exercise 9 Conservazione dell’energia e impulso
Un elettrone e− con energia cinetica 1.0 MeV collide frontalmente su un positrone

e+ fermo (il positrone è l’anti-particella dell’elettrone, che ha la stessa massa, ma
carica opposta). Nella collisione le due particelle si annichilano e il risultato della
reazione sono due fotoni di uguale energia, ognuno dei quali viaggia a un angolo θ

rispetto alla direzione del moto (il fotone è una particella di massa nulla, il quanto
della radiazione elettromagnetica, con energia E = pc. La reazione è:

e−+ e+→ 2γ

1. Calcolare l’energia E, l’impulso p e l’angolo di emissione θ di ciascun fo-
tone.

Exercise 10 Sistema di riferimento del laboratorio e del centro di massa
Si consideri un fascio di antiprotoni di impulso 0.65 GeV/c che impattano su

un bersaglio di atomi di idrogeno. In questa collisione, se c’è energia sufficiente,
potrebbero prodursi dei barioni Λ , particelle contenenti un quark up (u), un quark
down (d) e un terzo quark, che può strange (s), charm (c) o bottom (b). Quello con il
quark s ha una massa a riposo mΛ = m

Λ̄
= 1.116GeV/c2, dove Λ̄ è l’anti-particella

del barione Λ .
1. La reazione p̄p→ΛΛ̄ può avvenire?

Exercise 11 Unità di misura
Usando il fatto che }c = 197.3MeVfm, si dimostri che in un sistema di unità di

misura in cui }= c = 1 vale:
1. 1GeV−2 = 0.389mb
2. 1m = 5.068×1015 GeV−1
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3. 1s = 1.5×1024 GeV−1

Ricordiamo che 1b = 1×10−28 m2 e che

[}c] = [Jsm/s] = [E][L].

Exercise 12 Energia di soglia di una reazione
Nell’urto protone-nucleo calcolare l’energia cinetica di soglia minima e massima

per la reazione protone su protone di un nucleo di rame:

p1 + p2→ p+ p+π
+

π
−

sapendo che il moto di Fermi del protone nel nucleo-bersaglio ha un impulso medio
di pF = 0.240GeV/c e che la massa del pione carico è: m(π± = 0.140GeV/c2 e la
massa del protone è mp = 0.938GeV/c2.

Exercise 13 Energia di soglia di una reazione su bersaglio e collisore
Calcolare l’energia di soglia per la reazione:

e+e−→ µ
+

µ
−

1. su bersaglio fisso
2. in collisioni e+e− con fasci di pari energia

Exercise 14 Energia di soglia e decadimento in due corpi
Si consideri la collisione frontale tra un fascio di protoni ed uno di elettroni, di

pari impulso p nel sistema di riferimento del laboratorio, che produce la reazione:

e−+ p→Λ +νe

1. Determinare l’energia dell’elettrone quando la reazione e‘ prodotta a soglia
con Λ → pπ−.

2. Determinare l’impulso del protone e del pione, prodotti dal decadimento
della Λ , nel sistema di riferimento in cui la Λ è in quiete [me = 0.511MeV/c2,
mp = 938.3MeV/c2, mΛ = 1115.7MeV/c22, mπ = 139.6MeV/c2]

Exercise 15 Diffusione elastica di un fotone su un bersaglio
Chiamiamo elastico un urto (“scattering”) in cui le particelle dello stato iniziale

e dello stato finale sono le stesse. Si consideri un urto elastico fra una particella di
massa nulla e una particella di massa m (bersaglio) che si trova a riposo nel sistema
di riferimento del laboratorio: qual è la massima energia trasferita dalla particella
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incidente al bersaglio? Suggerimento: si lavori nel sistema di riferimento del labo-
ratorio, e si espliciti il prodotto scalare fra gli impulsi spaziali della particella di
massa nulla prima e dopo l’urto in funzione dell’angolo, sempre nel sistema di rifer-
imento del laboratorio, fra la direzione iniziale e finale della particella incidente.

Se la particella incidente è un fotone e il bersaglio è un elettrone atomico a riposo,
di quanto varia la lunghezza d’onda del fotone fra prima e dopo l’urto?

Exercise 16 Cinematica ad un collider
In un anello di collisione elettrone-elettrone si hanno due fasci di e− che si

scontrano frontalmente (direzioni parallele e versi opposti dei rispettivi impulsi).
L’energie dei due fasci di elettroni sono rispettivamente E1 = 12.0GeV ed E2 =
5.0GeV. Si determini:

1. l’energia totale nel CM,
2. l’impulso delle particelle nel CM,
3. il beta ed il gamma della trasformazione LAB→ CM,
4. nel caso di una collisione con la stessa geometria di quella descritta sopra

ma con E1 = E2, la relazione che intercorre tra CM e LAB.

Exercise 17 Cinematica relativistica, decadimento di particelle
L’impulso più probabile dei pioni π+ che vengono prodotti al Fermilab di

Chicago, inviando un fascio di protoni di impulso pp = 400GeV/c su un bersaglio
sottile, è quello per cui i π+ hanno la stessa velocità dei protoni incidenti.

1. Calcolare l’impulso dei pioni carichi prodotti
2. Una volta prodotti i pioni entrano in un tunnel di lunghezza x = 400m

in cui alcuni decadono. Calcolare la frazione dei pioni che decadono nel
tunnel, sapendo che il tempo di vita medio proprio dei pioni carichi è
τπ

0 = 2.6×10−8 s.
3. Calcolare la lunghezza del tunnel misurata da un osservatore solidale al pi-

one
Si usi: mπ = 139.6MeV/c2, mp = 0.938GeV/c2.

Exercise 18 Scattering Rutherford
Un fascio di particelle α di 100 MeV di energia e 0.32 nA di corrente4 collide

contro un bersaglio fisso di alluminio, spesso 1 cm. Una sperimentatrice prende un
rivelatore di 1cm×1cm di superficie, e lo posiziona ad un angolo di 30° rispetto al
fascio di particelle, a 1 m di distanza dal bersaglio. Quante particelle α incideranno
sul rivelatore ogni secondo?

4 Per una spiegazione breve su come (e perché) si misura la corrente di un fascio di par-
ticelle, vedi https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.
beam_current. Una trattazione più completa è data ad esempio da https://cds.cern.
ch/record/1213275/files/p141.pdf.

https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.beam_current
https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.beam_current
https://cds.cern.ch/record/1213275/files/p141.pdf
https://cds.cern.ch/record/1213275/files/p141.pdf
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Chapter 4
Elements of Scattering Theory

4.1 Introduction

Scattering is an overarching theme in modern physics. It is particularly essential in
nuclear and sub-nuclear physics and has been by far the most important tool in the
development of the field of nuclear and particle physics.

To reveal the structure and properties of matter, of fundamental particles and
their interactions; the usual protocol is to hurl a beam of probe waves (sound or
electromagnetic) or particles (X or γ photons, electrons, protons, neutrons, alpha
(helium ions, heavy nuclei ions, etc . . . ) and analyse the patterns of the scattered
probes. Most of the current knowledge in atomic, nuclear and particle physics is
based on scattering experiments and their interpretation.

The term scattering processes in these lectures will denote all processes where
particles A,B,C, · · · in the initial state will interact to give particles ∆ ,Σ ,Ξ , · · · in
the final state,

A+B+C+ · · · → ∆ +Σ +Ξ + · · ·

Definition 4.1. Elastic scattering denotes the scattering processes where the num-
ber of particles of each type is unchanged and only the direction and energy of the
single particles is modified,

A+B+C+ · · · → A+B+C+ · · ·

In elastic scattering processes, the total kinetic energy for each is conserved.
Scattering theory is the mathematical framework that describes scattering pro-

cesses. Through given hypotheses on the nature of the target, one can calculate the
expected scattering predictions and compare them with the observed scattering pat-
tern, thus testing the validity of those hypotheses.

The origin of scattering theory can be traced back to the kinetic theory of gases
and the birth of statistical mechanics, with the work of Ludwig Boltzmann. There
are two fundamental reasons why statistical elements enter the mathematical de-
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64 4 Elements of Scattering Theory

scription of scattering. The first is practical: while the trajectory of an individual
molecule or particle interacting in a given potential (or with another molecule or
particle) could be calculated and measured, it is in practice impossible to describe
precisely the ensemble of molecules or particles interacting with another ensemble
of molecules or particles – and a thermodynamic description of the ensemble of
molecules is necessary. The second is the underlying probabilistic nature of quan-
tum processes.

4.2 The classical hard spheres case

We will start with a very simple classical example to immediately clarify the idea
and the main ingredients of scattering theory. Let’s take the simple example of two
macroscopic objects interacting via a simple mechanical collision process, as the
simple case of the elastic collision of two spheres. In this macroscopic case we
can know precisely the initial trajectory of the ”probe” sphere (A, with radius r)
(see Figure 4.1) and the relative position of the ”target” sphere (B, with radius R).
In this simple picture, from the relative position of the two spheres – which can
be measured in terms of the ”impact parameter” of the collision, i.e. the distance
between the centers of two spheres – scattering angle θ at which the probe sphere
is scattered is fully determined. It is a deterministic process. In the case of hard
spheres, the scattering angle can be easily derived from the impact parameter, given
that the scattering angle with respect to the perpendicular to the tangent plane at the
point of impact α , will be equal to the impact angle (see Figure 4.1). In formulas,
we have

b = (R+ r)sinα,

and the scattering angle θ will be related to α by π = 2α + θ or α = π

2 − θ

2 , and
thus

cos
θ

2
=

b
R+ r

. (4.1)

Now, let’s suppose that the nature of the target particle B is not known, while
that of probes is known to be hard spheres – similarly to what happens in particle
physics experiments. If it were possible to fully control the initial conditions of the
incident probe and measure the resulting scattering angle – for instance by scanning
any possible impact parameter and verifying that the corresponding scattering angle
θ follows the law of Eq. (4.1) – this would corroborate the hypothesis that also B is
a hard sphere, i.e. the result would be an improved understanding of the nature of
the target (which is the goal of the scattering experiment!).

This simple macroscopic situation is unfortunately not what typically happens
in a microscopic scattering experiment in atomic, nuclear or sub-nuclear physics,
where a beam of incident probe particles are bombarding an ensemble of targets, as
illustrated in Figure 4.2. In this case the scattering conditions are not precisely well
defined, and the beam and the target are defined by an ensemble of parameters that
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r

R
α

α
α θ = π − 2αA

B

Fig. 4.1 (Left) Illustration of the collision of a probe sphere (A) on a target sphere (B), in the
rest frame of the target where the probe sphere has an initial velocity v. (Right) Illustration of the
relation between impact parameter and scattering angle.

characterize particles that are approximately in a similar dynamic state. This means
that we know that all particles of the beam have similar velocities and masses, and
that all targets are considered to be at rest, but we cannot ”follow” individually what
happens to each of those particles.

The case of colliding beams (which is how scattering experiments at the high-
est energies are conducted, for example at the Large Hadron Collider at CERN) is
equivalent to the case of fixed-target experiments, as in the rest frame of one beam
the collisions can be considered on fixed target. “Colliders” and colliding beams
will be discussed briefly in Section ??.

The essential difference with a perfectly known beam of probe particles is that
the impact parameter for each specific collision is not known. This impossibility, or
in other words the non-perfectly-measurable nature of scattering experiments, has
two possible fundamental origins which are completely different in nature:

• Classical impossibility: a practical or experimental impossibility to measure the
motion of all single particles and their trajectories.

• Quantum mechanics: at quantum scales, from the uncertainty principle, it is in-
herently impossible to know with arbitrary precision the quantum observables
which are canonic conjugates (like momentum and position, or energy and time).

In this context, where the individual collision cannot be measured (i.e. where
the individual impact parameter is not known), other observables are required to
describe the dynamics of collisions.
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4.3 Main Definitions and notion of cross section

Let’s consider a case of a beam of particles of type A colliding on a target made
of particles of type B. We choose the reference frame in which the B particles are
at rest and the A particles are traveling towards the target with a velocity ~vA. The
transverse size of the beam of A particles is characterized by the surface S. This
picture describes the laboratory frame view of a typical fixed target experiment. As
mentioned in the previous section, the case of colliding beams – where a beam of
B particles are traveling with a velocity ~vB towards A – is fully equivalent, and just
requires a change of reference frame to yield the same picture, by transforming any
vector~u as~u→~u− ~vB. Therefore ~vA

′ = ~vA− ~vB and ~vB
′ =~0. For head-on collisions,

i.e. collisions where angle between the two colliding beams is zero, one simply has
v′A = vA + vB.

We therefore assume in the following the fixed target picture, and consider a
scattering experiment as illustrated in Fig. 4.2, where a cylindrical beam of particles
of type A and surface S travels with velocity~vA towards a target whose length along
the beam direction is d, and whose transverse size is sufficient to fully contain the
incoming beam. To characterize the initial conditions of the experiment, let’s first
define two important quantities for modeling the scattering process.

A

B⃗vA

vA Δt
d

𝒮 𝒮
x

y

z x

y

z

Fig. 4.2 Illustration of a scattering process between a beam of surface S, made of particles of type
A and velocity~vA, and a target made of particles of type B. The length of the target along the beam
direction is d, and its transverse size is sufficient to fully contain the incoming beam. Left: three-
dimensional view; right: view on the plane transverse to the beam direction (usually referred to as
“transverse plane”).

Definition 4.2. The flux of beam particles φA: The number of particles of a beam
A that traverse a plane perpendicular to their motion, per unit surface and unit of
time.

The flux φA can be expressed in formulas as
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φA =
∆NA

∆ t
× 1

S

=
∆NA

∆ t×S× vA
× vA,

where ∆NA is the number of particles A in the volume SvA∆ t. If we introduce the
density of particles A of the beam, nA, we have

φA = nA× vA.

The other important definition, in this fixed target view, is the number of targets
that are “seen” by the beam, which can also be expressed in terms of the density of
B particles, nB, as

NB = nB×S×d.

NB and φA characterise the initial conditions of the scattering experiment.
Now, in order to gather information about the nature of the interacting particles

or about the interaction itself, the result of the scattering experiment is simply ex-
pressed as a number of counts per unit time, i.e. a rate. This concept will be further
developed in the next section; in order to get there, we first need to introduce a
concept which is best understood with the simple geometrical example of colliding
spheres: the concept of scattering cross section.

What we are looking for is the best way to quantitatively describe the interaction
between two particles A and B from the main observable of a scattering experiment,
the scattering rate dNI

dt .
For the simple example of scattering sphere, let’s first estimate the number of

interactions of a particle A during a short time interval ∆ t. Considering that the
particle A is taken at random uniformly in the beam volume S×vA×∆ t, the number
of targets that the particle A will “see” during this time will simply be nB×S×vA∆ t.

A

B

r

R

r + R

𝒮

Fig. 4.3 Illustration of the available scattering surface within the surface area of the beam. This
transverse view corresponds to a slice of width vA∆ t.
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Let us compute, for each particle B, the probability for A and B to interact, by
considering the distribution of A and B to be uniform over the slice of the beam, and
considering that a contact between the spheres will occur if the impact parameter b
will be smaller than r+R. The probability δP of the two to be in contact will simply
be the ratio between the “contact” surface and the entire surface of the beam, i.e.

δP =
π(r+R)2

S
≡ σ

S
,

where σ = π(r+R)2. For a given A particl to interact with any B particle within the
slice of beam considered, the probability of an interaction ∆P will then be

∆P = δP×nBvAS∆ t.

The next step is to extend the calculation to the beam traversing the entire width
of the target d – which requires that the beam length is longer than the target. The
total number of A particles that can interact is then nA×S×d.

The number of interactions per unit time for a beam crossing the target will thus
be

∆NI

∆ t
=

∆P
∆ t
×NA =

∆P
∆ t
×nA×S×d.

The rate of interactions will therefore be:

∆NI

∆ t
= nA×S×d×nB× vA×σ

= (nAvA)× (nB×S×d)×σ .

This simple equation describes how the rate of events can be expressed in terms
of the initial conditions of the beam and the target and the cross section which
describes the probability of an interaction between a particle A and a particle B as a
fraction of the surface area of the beam.

Definition 4.3. The scattering cross section is defined for any scattering process
by generalising the geometrical description of the example above: the cross section
is the quantity σ which allows to express the rate of a scattering process as

∆NI

∆ t
= φA×NB×σ .

Cross section has the units of a surface. In the processes relevant for nuclear and
subnuclear physics, cross sections are typically of the order of magnitude of the size
of nuclei – for instance as 238U , which was deemed to be ”as big as a barn”. This
defines the typical unit of cross section, i.e. 10−28 m2:

1 barn = 1 b = 10−28 m2 .
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Another important definition which further simplifies the equation defining the
cross section is that of luminosity.

Definition 4.4. Luminosity: the luminosity L determines the initial conditions of
the scattering experiment, and is defined as

L = φA×NB .

Luminosity is often expressed in units of [L ] = cm−2s−1.

4.4 Differential Cross Section

In order to be able to fully characterise the interaction, it is important to measure
all measurable properties of the scattered particles (i.e. reconstruct the final state
of the interaction fully). When the nature of the particle is known, the measurable
quantities for a scattering experiment are its direction and energy in the final state
(assuming that knowing its nature means knowing its mass and therefore its momen-
tum is fixed). Typically the cross section is then measured in a differential fashion,
by counting the number of particles per unit time (i.e. the rate) as a function of the
particle’s energy and direction in spherical coordinates (E,θ ,φ).

A typical scattering experiment is illustrated in Fig. 4.4, where a detector mea-
suring a small portion of solid angle dΩ is considered.

θ

dΩ

⃗vA
Target

Beam A

B

Fig. 4.4 Illustration of a typical scattering experiment measuring a differential cross section
σ(E,θ ,φ) of the scattering of particles of type A on a target of particles B.

The differential cross section will then be defined again with respect to the rate
of specific scatterings in the (E,θ ,φ) phase space, yielding

∆NI

∆ t
(E,θ ,φ) = ṄI(E,θ ,φ) = φANBσ(E,θ ,φ).
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Given that the differentiation comes from the phase space in the final state, the
only dependence that relates the initial state to the final state being the cross section
(as L is a constant), one can then write

d3σ

dEdθdφ
(E,θ ,φ) =

d3ṄI(E,θ ,φ)
dEdθdφ

× 1
L

.

Or, in other typical cases where there is a cylindrical symmetry (uniform scatter-
ing in the azimuthal angle φ ) and a scattering where the final state energy of the
measured particle is fixed, then the relevant quantity will be

dσ

dΩ
(θ) =

dṄI

dΩ
(θ)× 1

L
.

From this differential cross section, the interaction rate at a certain scattering angle θ

within a solid angle dΩ can be derived. In all of these cases, we are always doing the
same thing: expressing the probability of the interaction in terms of quantities which
define the “parameter space” in which we measure the scattering (i.e. the interaction
rate). Choosing with respect to which variables we express the differential cross
section is a matter of knowing how the scattering experiment is conducted – whether
our particle detectors cover the full solid angle or not, whether we measure energies
or angles or we can assume some symmetry of the system, etc.

We can then return to the simple case of colliding spheres and compute the pre-
diction of the differential cross section.

As we have seen in this case, the energy or velocity of the scattered sphere is
constant and equal in norm to the initial velocity vA. The scattered spheres will be
uniformly distributed in the azimuth direction φ – there is no reason for them to
prefer any specific value of φ . We can then compute the differential cross section
as a function of the polar scattering angle θ , which will correspond to a specific
element of solid angle dΩ that can be integrated over φ . We have seen that a given
scattering angle θ corresponds to a specific value of the impact parameter b. The
scattered particles A will be in the element solid angle dΩ if the impact parameter b
lies in the interval [b,b+db]. If we look at the collision in the transverse plane with
respect to the beam direction (Fig. 4.5), this allows to estimate the probability of
an interaction in these conditions, which corresponds to the ratio between the area
of the ring and the total surface, 2πbdb/S. Following the same reasoning as for the
total cross section, one can write the contribution to the total rate corresponding to
this “ring” as

dṄI = dσ(b)×φA×NB,

where according to Fig. 4.5 one has

dσ(b) = 2πbdb.

Then the differential rate can be written from the relation between the impact
parameter and the scattering angle b = (R+ r)cos θ

2 :
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A

B
r

R b

db

Fig. 4.5 Illustration (in the shaded area) of the surface area representing the cross section for a
scattering corresponding to an impact parameter b and its corresponding scattering angle.

dṄI = 2π(R+ r)cos
θ

2
×L ×db

= 2π(R+ r)cos
θ

2
×L ×

∣∣∣∣
db
dθ

∣∣∣∣dθ

= 2π(R+ r)2 1
2

cos
θ

2
sin

θ

2
×L ×dθ

= 2π sinθ × (R+ r)2

4
dθ ×L .

Here used the relation between the impact parameter and scattering angle, from
which one has

db
dθ

=
R+ r

2
d cos θ

2
dθ

=−R+ r
2

sin
θ

2
.

Now, let us consider an element solid angle in spherical coordinates dΩ =
sinθdθdφ . Since scattering is uniform in the azimuthal angle φ , the element solid
angle can be expressed as

dΩ = sinθdθ

ˆ 2π

0
dφ = 2π sinθdθ ,

and the differential rate can be written as

dṄI

dΩ
=

(R+ r)2

4
×L ,

so that the differential cross section is

dσ

dΩ
=

(R+ r)2

4
.
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This implies that the distribution of the scattering of two spheres is uniform in any
direction! The rate measured by a detector will be the same in any direction.

We can then see for consistency what happens when the differential cross section
is integrated over the entire solid angle:

σ =

ˆ 4π

0

(
dσ

dΩ

)
dΩ = π(r+R)2,

which is precisely the initial result for the total cross section σ .
The reasoning we followed here in the simple, ideal example of colliding hard

spheres is the same which is used in any scattering experiment. The task will be to
determine which quantities are measured in the final state, and to calculate the differ-
ential and total cross-section of the interaction – which is in general a measurement
of its probability, rather than of the “physical size” of the involved particles.

4.5 Absorption Coefficient and Mean Free Path

In this section the important notions of absorption coefficient and mean free path
will be introduced. These two concepts will prove essential for describing quantita-
tively what happens when particles travel through matter.

4.5.1 Absorption coefficient

Let us consider a beam of particles A on a target of particles B. The probability for
a given particle of a beam to interact on a element distance dx will be constant,

dP = σnBdx,

where nB is the density of particles B. We can then define the quantity

µ = σnB,

so that the variation in the flux of the beam on a length dx can be written as

dφ =−φdP =−φ µdx,

therefore
dφ

φ
=−µdx i.e. [logφ ]

φ

φ0
=−µx,

or
φ(x) = φ0e−µx.
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The dimensions of µ will then be those of the inverse of a length, as [µ] = [σ ][nB] =
m2×m−3 = m−1.

Definition 4.5. The absorption coefficient is defined as the product between the
cross section and the number of targets per unit volume,

µ = σnB.

The attenuation length λ is defined as its reciprocal, i.e.

λ =
1
µ
.

The attenuation length corresponds to the length after which the flux of incoming
particles gets reduced by a factor e (i.e. where φ(x = λ ) = φ0/e).

4.5.2 Mean free path

The mean free path is the average distance covered by a particle in a target between
two successive interactions. Let us then first consider a distance x along the path
of the particle from a point O with coordinate 0 in the x direction. The distance x
represents the distance between two interactions (or “scatterings”), one occurring at
0 and the subsequent occurring at x.

In order to compute the probability of having a distance x between two scatter-
ings, one has to follow two steps. First the probability for the probe particle not
to have interacted between 0 and x (PNI(x)) can be computed from integrating its
differential form

dPNI(x) = PNI(x+dx)−PNI(x), where PNI(x+dx) = PNI(x)(1−µdx),

which means that the probability of not having interacted in x+ dx can simply be
deducted from the probability of not having interacted in x. Then, one has

dPNI(x) =−µ dxPNI(x) =⇒ [lnPNI ]
x
0 = µ x.

Assuming that PNI(0) = 1, the probability of not having interacted in x will then
be

PNI(x) = e−µ x.

The probability of interacting after x (but not before!) will then be

P(x)dx = PNI(x)×µ dx = µe−µ x dx.

If we average all the possible path lengths x weighted by their probability, we get
the average path:
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〈x〉=
ˆ

∞

0
x ·P(x)dx

=

ˆ
∞

0
xµe−µ xdx

=
1
µ

ˆ
∞

0
(µ x)e−µ xd(µ x)

= [−ey(1+ y)]∞0 (y = µ x)

=
1
µ
,

where the integration is simply done by parts.

Definition 4.6. The mean free path of a particle is the average length traveled by a
particle between two subsequent interactions,

〈x〉= λ .

One can immediately see that the mean free path is equivalent to the attenuation
length, as defined in the previous section.

4.6 The Rutherford Scattering Experiment

These definitions can be immediately applied to the analysis of one of the most
fundamental, landmark experiments for our understanding of atoms: the Rutherford
experiment.

4.6.1 Early atomic model

Towards the turn of the XX century, it was understood that the atom was made of
positive charges and electrons. Thomson then proposed the idea of a dynamic model
where the electrons – which were understood to be particles after his own experi-
ment – would be embedded in a volume filled with a positively charges. Thomson
considered three hypotheses on how the electrons could be distributed with respect
to the positive charges. The first was that the electrons were embedded in a uni-
formly positively-charged medium, the second was to pair each electron with a pos-
itive charge and the third was that the negatively-charged particles would orbit in-
side a volume of positive charges. Thomson retained the first hypothesis as the most
likely. This model is often referred to as the “plum pudding” model, where the elec-
trons are modelled as “plums” evenly distributed within a “pudding” or positively-
charged continuum (see an illustration of the “plum pudding”model” on the left of
Fig. 4.6).
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Fig. 4.6 (Left) Early atomic model by Thomson and illustration of an α particle traversing it un-
perturbed. (Right) Illustration of the Rutherford model where all positive charges are concentrated
in a positively-charged nucleus at the centre of the atom. The trajectory of an α particle is shown
as well.

Thomson encouraged his student at the time, Ernest Rutherford, to pursue exper-
iments to probe models of the atom. In order to do so, they exploited the idea of
using α particles (4He2+) to probe the structure of the atom, as shown in Fig. 4.6.

In the case of the “plum pudding” model (left figure), no deviation of the α par-
ticles is expected. This can be understood from the fact that, at any time, the electric
field created by the charges in the atom can be separated into two contributions: the
first is the outer spherical and hollow shell volume at a radius with respect to the
centre of the atom which is larger than the distance of the α particle to the atom’s
centre, as illustrated in Fig. 4.7-a; the second is the inner sphere as illustrated in
Fig. 4.7-b.

Since the atom is neutral, when the α particle travels outside of the atom it will
“sense” no electric field. When inside the atom, the contribution of the electric field
on the α particle from the outer hollow spherical shell volume is 0 from Gauss’
theorem, as there are no charges inside the inner volume. The component from the
inner sphere can be computed as well using Gauss’ theorem: one has

"
~E ·d~S = 4πr2E

1
ε0

˚
ρdV =

Q
ε0

= 0,

i.e. the electric field generated by the inner sphere will also be equal to 0. In this
model the α particle should travel through the atom mostly unperturbed!

In the case where the positive charges are concentrated in a limited volume at
the centre of the atom, the situation is quite different. When inside the inner shell
of electrons, the α particle will be fully subject to the electric field of the charges at
the centre of the atom (see Fig. 4.7-b).
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(a) (b)

Fig. 4.7 Illustration of the two volumes of charges that are considered in order to derive the trajec-
tory of an α particle within an atom in the “plum pudding” model.

4.6.2 The Rutherford scattering experiment

Rutherford started his experiments with Hans Geiger in 1907, joined by Ernest
Marsden in 1909 at the University of Manchester. In 1912, the team was joined
by Niels Bohr to study the atom.

The setup of the Rutherford-Geiger-Marsden experiment is illustrated in Fig. 4.8.
The team used a radium source to generate the beam of α particles, which impinged
on a target made of gold foil. The system was designed to measure the scattering
at large angles: for this reason, the main detection device (the microscope and the
screen) could rotate around the target. The idea of the detector is that the passage
of α particles through the screen of zinc sulfate would generate a faint scintillation
light that could be visible if the eye was sufficiently accustomed to the dark (which
took about half an hour during the experiment). The source generated a ”beam” of
collimated α particles.

The result of the experiment was striking, as emphasized by Rutherford’s famous
quote: “[The results were] as if you fired a 15-inch shell at a piece of tissue paper
and it came back and hit you”. Back-scatterings of α particles were in fact observed.

4.6.3 Prediction of the Rutherford Scattering Cross Section

In order to explain the astonishing results of his scattering experiment, Rutherford
proposed a different model for the atom where all the positive charges are con-
centrated in a small volume at the centre of the atom, and the negative particles
(electrons) orbit around this central volume.

Assuming a relatively small volume for this “nucleus”, when the α particle enters
the volume of the atom, again – according to Gauss’ theorem – the electric field
created by the shell of electrons will cancel. The α particle will not “feel” the effect
of the electrons, while the field from the “nucleus” (where the positive charges are
concentrated) will act on the α particle as a point source, again according to Gauss’
theorem (see the illustration of Rutherford’s model in Fig. 4.6). With this model
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Fig. 4.8 (Left) Illustration of the Rutherford-Geiger-Marsden α particles scattering experiment
(lateral view). Source: Cambridge University. (Right) A schematic illustration of the principle of
the experiment (top view) where the main points are reported: (R) is the Radium source of α

particles, (F) is the target foil, (M) is the microscope for the observation which could rotate along
with the cylindrical box (B), (S) was a Zinc Sulfate screen which produced the scintillation at the
passage of α particles to be observed by the microscope, and (D) a diaphragm through which the
particles were emitted.

greatly simplified by Gauss’ theorem, the scattering cross section can be computed
assuming that:

• the scattering is elastic;
• the target is point-like, with a mass M large with respect to the mass of the probe

α particles, and with a charge Ze;
• the probe particle is 4He2+.

The scattering can be described schematically as in Fig. 4.9, which represents the
trajectory of a charged particle in a central potential. By construction it is known that
these trajectories can be either open or closed, depending on the initial conditions
of the system.

In order to compute the cross section of this process, we need to stress an impor-
tant conceptual point: we are facing a classical, non-relativistic problem which is
fully deterministic. This implies that once the relation between the scattering angle
and the impact parameter is known, the cross section will be known. The reasoning
is precisely the same as that for the collision between hard spheres, where knowing
the uniform distribution of the impact parameter probe particles, and using the re-
lation between the impact parameter and the scattering angle, the differential cross
section was known. The aim of the game will then be to find the relation between
the impact parameter and the scattering angle. In this case, the calculation will be
a tad less straightforward than in the case of the hard spheres.

The first hypothesis is that we are dealing with a central potential, i.e. that V (r)
has only a dependence in r. We will also assume that the potential is falling and
becomes negligible (or at least its variations are negligible) at long distances. The
Coulomb potential is in fact a good example of potential with such properties. For
the Coulomb potential, we know in advance that the trajectory will be a conic with
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Fig. 4.9 Illustration which shows the open hyperbolic trajectory of the α particles deviated from
the Coulomb potential of the nucleus. In the image, θ denotes the scattering angle, b the impact
parameter of the incoming particle, p is its momentum before the scattering, p′ is its momentum
after the scattering and Ze is the charge of the nucleus.

a trajectory that can be open or closed, depending on the initial conditions of the
system. As it will become clear in the following, we will be in the framework of an
open hyperbolic trajectory.

Let us define a coordinate system as described in Fig. 4.9, which is centered in
the scattering centre (i.e. the nucleus), which has been assumed to be point-like and
is the origin of the potential. Let r̂ be the radial unit vector along the direction of
the probe particle (an α particle) to the target particle (nucleus); n̂ is the normal unit
vector.

Given that the force generated by the potential on the probe particle is radial, its
torque will be equal to 0:

d~l
dt

=
d(~r∧~p)

dt
=

dr
dt

r̂∧m~v+~r∧ d~p
dt

=~v∧m~v+~r∧~F = 0.

Therefore the angular momentum of the probe particle will be a constant of motion,

~̀=~r∧m~v thus `= mrvsinη ,

where η is the angle formed by the vectors~r and~v. One can then calculate ` when
the α particle is far away from the nucleus, i.e. when V (r)→ 0 and r sinη = b, so
that

`= mrvsinη = mbv0,

where v0 is the velocity of the particle before scattering. Since energy is conserved,
one has immediately
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E =
1
2

mv2
0 ⇒ v0 =

√
2E
m
⇒ b2 =

`2

m2v2
0
=

`2

2mE
, (4.2)

i.e. we expressed the impact parameter in terms of conserved quantities, the angular
momentum of the particle and its total energy, which are constants of motion.

Since the potential is central, it is convenient to represent the position of the
incoming particle,~r, in polar coordinates. One has that~r = (x,y), with

{
x = r cos χ,

y = r sin χ,

where χ is the angle between the horizontal axis and~r. In other words, one has

~r = r cos χ x̂+ r sin χ ŷ = rr̂,

where r̂ is the unit vector along the direction of~r. The unit vector orthogonal to r̂ is

n̂ =−sin χ x̂+ cos χ ŷ,

as it can be seen immediately by checking that n̂ · r̂ = 0. One can also note that

dr̂
dχ

= n̂.

As a result, we can express the angular momentum of the particle as

~l = m~r∧~v = m~r∧ d~r
dt = m~r∧ d(rr̂)

dt

= m~r∧
[

dr
dt r̂+ r d r̂

dt

]
= 0+m~r∧

[
r d r̂

dχ

dχ

dt

]
= mr2n̂ dχ

dt ,

i.e.

dχ

dt
=

`

mr2 . (4.3)

The source used by Rutherford was radium. The typical α radiation energy is of
the order of 5 MeV. The total energy of the α particle will be

E = T +mα c2 = 4005 MeV ⇒ γ =
E

mα

∼ 1.

The momentum of the α particle will then be

p =
√

E2−m2
α c4 ∼ 200 MeV/c ⇒ βγ ∼ β ∼ 0.05.

The probe particle in the fixed-target reference frame is therefore in a non-relativistic
regime.
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The non-relativistic total energy, taking into account the central potential V (r),
can be written as

E =
1
2

mv2 +V (r) =
1
2

m
(

dr
dt

)2

+
1
2

mr2
(

dχ

dt

)2

+V (r).

It is worth stressing the fact that E is a constant of motion, while V is a function of
r. From the previous expressions we obtain that

1
2

m
(

dr
dt

)2

= E−V (r)− `2

2mr2 ⇒
dr
dt

=−

√√√√ 2
m

(
E−V (r)− `2

2mr2

)
,

where we took the negative solution since r decreases in the first phase of the tra-
jectory. Using the expression of the angular momentum as a function of the impact
parameter from Eq. (4.2), we get

dr
dt

=− `

mrb

√
r2

(
1− V (r)

E

)
−b2 (4.4)

Given the expression of Eq.4.3, we can derive the variation of dχ:

dχ =
`

mr2 dt =
`

mr2
dt
dr dr

=
`

mr2
dr

− `

mrb

√
r2

(
1− V (r)

E

)
−b2

=
−bdr

r
√

r2
(

1− V (r)
E

)
−b2

.

In order to obtain an expression of the scattering angle θ as a function of the
impact parameter of the particle, we consider the point of closest approach of the
particle to the nucleus. In that point of space, denoted as r = r0, the particle will
have zero velocity, i.e.

dr
dt

∣∣∣∣
r=r0

= 0.

This condition is satisfied if the argument of the square root of Eq. (4.4) vanishes,
from which we get a relation between the impact parameter and the distance of
closest approach,

r2
0

(
1− V (r0)

E

)
−b2 = 0.

This allows us to write
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ˆ

α

0
dχ = α =

ˆ r0

∞

−bdr

r

√
r2

(
1− V (r)

E

)
−b2

,

where we used the fact that the particle comes from infinite distance (α = 0) and
reaches α for r = r0.

From the relation 2α +θ = π (which is evident from the symmetry1 of Fig. 4.9),
we get

α =
π

2
− θ

2
,

from which we obtain:

θ = π−2b
ˆ

∞

r0

dr

r

√
r2

(
1− V (r)

E

)
−b2

. (4.5)

This formula is valid for every scattering subject to a central potential V (r).
Now let’s use the fact the interaction between the α particle and the nucleus is

given by the Coulomb potential. The α particle (4He2+) has charge z = 2, and we
have

V (r) =
zZe2

4πε0r
.

In order to simplify the notation, let us define the constant A =
zZe2

4πε0E
. Then the

general central potential integral of Eq. (4.5) becomes

θ = π−2b
ˆ

∞

r0

dr

r

√
r2

(
1− A

r

)
−b2

. (4.6)

We express the distance of closest approach for the Coulomb potential as
(

1− A
r

)
r2 = b2 (4.7)

r2−Ar−b2 = 0 (4.8)

r =
A±
√

a2 +4b2

2
=

A
2

(
1+

√
1+

4b2

A2

)
≡ r0, (4.9)

where we took the physical solution of the second-order equation (positive sign
before the square root).

To solve the integral of Eq. (4.6), we perform the change of variable x = 1
r , i.e.

dx =− dr
r2 . We obtain

1 This is simply a consequence of the conservation of momentum of the incoming particle.
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θ = π−2b
ˆ

∞

r0

−dxr2

r
√

1
x2 (1−Ax)−b2

= π +2b
ˆ 0

x0

dx√
1−Ax−b2x2

,

where we called x0 = 1/r0.
This integral can be computed from the general inverse trigonometric integral

ˆ
dx√

a+bx+ cx2
=

1√−c
arccos

(
− b+2cx√

b2−4ac

)
,

so that

θ = π +2b · 1
b


arccos

(
A+2b2x√
A2 +4b2

)


0

x0

(4.10)

The lower integration boundary x0 can be written as

x0 =
1
r0

=
2
A

1(
1+
√

1+ 4b2

A2

) .

If we define y = 4b2

A2 , the argument of the arccos simplifies greatly:

A+2b2x0√
A2 +4b2

=

1+
y(

1+
√

1+ y
)

√
1+ y

=
1+
√

1+ y+ y√
1+ y+1+ y

= 1.

Eq. (4.10) can then be written in a simple form, by evaluating the upper bound
of the integral:

θ = π +2
[
−2arccos(1)

]
+ arccos

(
1√

1+ y

)
.

Taking the cosine and squaring the above expression yields

cos2
(

θ −π

2

)
=

1

1+
4b2

A2

= sin2 θ

2
,

from which we obtain

4b2

A2 =
1− sin2 θ

2

sin2 θ

2

=
cos2 θ

2

sin2 θ

2

=
1

tan2 θ

2

,

therefore

b =
A
2

1

tan
θ

2

=
zZe2

8πε0E tan
θ

2

. (4.11)
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We have the relation between the impact parameter and the scattering angle, so
we’re almost there! As we have done for the scattering between hard spheres, the
differential cross section can be written as:

dσ = 2πbdb,

where db is obtained from

db
dθ

=−1
2

A
2
× 1

sin2 θ

2

. (4.12)

Then, from

dσ = 2πb
∣∣∣∣

db
dθ

∣∣∣∣dθ ,

and using the fact that from the cylindrical symmetry of the scattering one has dΩ =
2π sinθdθ , we can then write

dσ

dΩ
=

b
sinθ

db
dθ

=

(
A
2

)2

1

sin2 θ

2

2sinθ tan
θ

2

,

where we used Eq. (4.11) and Eq. (4.12). Since sinθ = 2sin θ

2 cos θ

2 , we obtain the
differential cross section

dσ

dΩ
=

(
zZe2

16πε0Ek

)2

× 1

sin4 θ

2

(4.13)

where we have added the subscript k to the energy term Ek to make it clear that the
energy involved here is the kinetic energy.

4.6.4 Total cross section

If one tries to calculate the total Rutherford cross section, by integrating Eq. (4.13)
in dΩ , one would get a divergent result. This is a consequence of the fact that the
interaction which is responsible for the scattering, the Coulomb interaction, is long-
ranged: even a particle far away from the nucleus would “feel” the Coulomb force,
and so contribute to the total scattering cross-section (even if very mildly). One can
avoid this issue by applying a cut-off to the integration, i.e. considering a minimum,
finite angle to which the integration stops. Also, the cross-section formula itself
isn’t fully valid for arbitrarily high impact parameter values, as they correspond to
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the α particle traveling beyond the last electron level, which would imply that the
nuclear charge is screened by the atomic electrons, invalidating the hypotheses of
our calculation.

4.6.5 Interpretation

The first important note is that this scattering cross section can be computed in a
purely classical fashion. We will see in Chapter 4.7 that a similar result can be ob-
tained in a straightforward fashion in a Quantum Mechanical approach. This could
therefore be done before all the tools of quantum scattering were in place.

The Rutherford experiment has revolutionized our understanding of the atom and
proved the existence of the atomic nucleus. The first striking consequence is the ex-
istence of a nucleus per se, a small volume that contains all the positive charges and
most of the mass of the atom. This is an incredibly far-reaching consequence, as it
implies that a strong force must exist which on one side is able to keep its positive
constituents together, but at the same time has no impact on the scattering of the α

particles – at least at the scales that are observed by similar experiments (relatively
low energies).

It is of course very important to increase the energy of the incoming particle to
further investigate shorter distances (as discussed in Chapter 1), and see up to which
distance scales these conclusions hold. A more recent experiment using α particles
with energies of up to 40 MeV on a lead target is shown in Fig. 4.10 and can be
found in Ref. [1]. It is very interesting to note that the data follow accurately the
Rutherford formula up to a point where the agreement breaks down and the influence
of the nucleus becomes clear. This implies that the strong nuclear force binding the
nucleus together should be short-ranged. The approximate size of the nucleus can
then be inferred from the energy of the breakdown, by simply taking the formula of
the impact parameter (Eq. (4.11)), and considering a break-down kinetic energy of
approximately E = 28 MeV and the classical radius of the electron re ≈ 2.82 fm:

rnucleus ∼
zZremec2

2E tan θ

2

= 7.3 MeV.

Above this kinetic energy the impact parameter is such that the nuclear effects can-
not be neglected!

These findings are crucial in building a theory of the interaction that holds the
nucleus together, that will be referred to as the strong (nuclear) interaction – as will
be discussed in Chapter 7.
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Fig. 4.10 Measurement of the Rutherford cross section at a scattering angle of θ = 60o with probe
α particles with kinetic energy of up to approximately 40 MeV.

Beyond giving a revolutionary picture of the atom (and now the nucleus), the
formalism discussed in this section to derive the Rutherford formula will be used to
discuss the interaction of particles in matter in Chapter 5.

Take-home lessons

• Scattering is an essential tool for studying the structure of molecules, atoms,
nuclei and particles, and to study their properties and interactions. Scattering
processes typically involve a particle being sent on a target, or two beams of
particles scattering together.

• Elastic scattering is a scattering process in which the nature and number of the
particles in the initial and final state are the same. Particles change only direction
and energy, and the total kinetic energy is conserved.

• One basic concept for a quantitative description of scattering is that of impact
parameter. In classical scattering, for example when one rigid sphere undergoes
elastic scattering with another sphere, impact parameter – the distance between
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the centers of the two spheres – fully determines the scattering angle (which is
the angle at which the impinging sphere is deflected).

• In reality, scattering cannot be simply represented as the scattering of two rigid
spheres. First of all, experiments typically involve a beam of particles colliding
against some physical target, i.e. it’s experimentally impossible to measure the
motion of all single particles. Then, quantum mechanics states it’s inherently
impossible to know with arbitrary precision position and momentum of those
particles.

• In the case of a beam colliding over a fixed target, for example, one therefore
needs to describe scattering by taking into account that the beam is composed
by NA particles which travel its transverse surface S with a flux φA = dNA

dt
1
S . The

target is typically made of some physical material with nB target particles per
unit of volume: if its length along the beam path is d, then the number of target
particles seen by the beam is NB = nbSd.

• The ultimate question of scattering theory is: how many interactions NI between
particles in the beam and particles in the target will happen in unit time, i.e.
what is the scattering rate? In the case of a beam-target experiment, this rate is
proportional to the flux of incoming particles and to the number of target particles
seen by the beam, dNI

dt = σφANB. The proportionality factor σ is called cross
section. Luminosity is instead defined as the product L = φANB.

• The cross section of a scattering process is a measure of the probability of that
process to take place. Although cross section has the dimensions of the square
of a length, it should not be interpreted as a measure of the relative physical size
of the target with respect to the beam, like it is in the classical case of colliding
rigid spheres.

• Luminosity is a property of the chosen experimental setup, not of the under-
lying interaction. One may in fact use different experimental setups – for exam-
ple, beam-target and beam-beam experiments – to investigate the same scattering
process. The interaction rate would then still be the product of cross section and
luminosity.

• The density nB is the volume density of target particles in the physical target. Its
role depends on which process one is considering: for example, in a scattering
process between an electron beam and protons in a fixed, nB would be the num-
ber of protons in the atoms of the physical target, which can be expressed as a
function of the atomic number, atomic mass and density of the target material.

• In real life one measures the position and energy of particles – sometimes of all
initial and final state particles, sometimes only of a few of them. Experiments
are in general sensitive to differential rates of interaction, which means that one
measures how many particles are observed in unit time in a given portion of the
solid angle, and/or how many of them have energy inside a given range. The
differential interaction rate depends on the concept of differential cross section,
which encloses the dependence of the interaction probability on quantities like
the scattering angle and the particle energy. The integral of the differential cross
section over those quantities gives of course the total cross section σ .
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• How much a beam of particles can penetrate a fixed target is a function of the
density of the target, and of the cross section of the interaction between beam
and target particles. This process is inherently exponential, and is described by
the absorption coefficient and its reciprocal, the attenuation length or mean free
path.

• The Rutherford experiment proved that Thomson was wrong: atoms aren’t uni-
formly filled with positive and negative charges, but rather they are made of
small, positively-charged nuclei, around which negative electrons orbit. Ruther-
ford sent a collimated beam of α particles on a thin gold target, and measured
an interaction rate with a strong dependence on the scattering angle, compatible
with the hypothesis of a sphere with a positive, small nucleus.

• The Rutherford experiment can be treated with a purely classical formalism, un-
der the assumption that the α particle – an helium nucleus – undergoes an elastic
scattering with the point-like gold nucleus, with which it interacts electromag-
netically. The interaction potential which describes the interaction is therefore
the Coulomb potential, which is central. The key to calculate the differential in-
teraction cross-section is finding the relation between the impact parameter and
the scattering angle.

Questions

• What are the hypotheses which allow us to express impact parameter as a func-
tion of scattering angle, in Rutherford scattering?

• Are we really worried about the possible divergence of the Rutherford cross sec-
tion at small angles?

• What would change in the Rutherford experiment if the atomic nucleus was
negatively-charged? Can you think of a way to determine the charge of the nu-
cleus?

• What’s higher: the interaction cross-section between an α particle and a sheet of
paper, or the one between photons and paper?

• Is an alpha particle of 100 MeV relativistic? What about a photon from X radia-
tion?

• Can one measure with arbitrary precision the impact parameter of a single parti-
cle collision?

• In a beam-target scattering experiment, what changes if you double the flux of
incident particles?

• In a beam-target scattering experiment, what changes if you double the thickness
of the target?

• In a beam-target scattering experiment with a detector placed at an angle θ with
respect to the beam direction, what changes if you double the (transverse) size of
the detector?

• What does the cross-section of the beam-target scattering process A+B→C+D
measure? The physical size of the target B, the physical size of the beam particles
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A, the physical size of the system C+D or the probability that one interaction
A+B produces C+D? Or any combination of the above?

• You perform a scattering experiment between a beam of α particles and a golden
foil. If you place a detector at 30 deg and another one at 60 deg with respect to
the beam direction, which of the two will measure a higher rate?
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4.7 Quantum Mechanical Processes

4.7.1 The Schrödinger Equation

In quantum mechanics a system is described mathematically by its wave function.
The interpretation of the wave function is a complex probability amplitude from
which probabilities of outcomes of measurements can be inferred.

In simpler terms, quantum mechanics postulates that a free particle is described
by the free Schrödinger equation.

The Schrödinger equation was formulated in 1925 by Erwin Schrödinger and
published one year later. For postulating this equation Erwin Schrödinger was
awarded the Nobel prize in 1933.

The Schrödinger’s equation is inherently non-relativistic. This can be deduced
using the operators substitution in the non relativistic energy expression,

E =
p2

2m
. (4.14)

Using the relations E = i} ∂

∂ t and ~p = −i}~∇, which can be summarized in Ein-
stein’s notation as

pµ = i}∂µ , (4.15)

then Eq. (4.14) becomes

− }2

2m
∇

2
ψ = i}

∂

∂ t
ψ. (4.16)

In quantum-mechanical terms, the goal of a scattering experiment is the study of
a localized and stationary (time-independent) potential, V (x). Here localized implies
that V (x)→ 0 when x→±∞.

For the sake of simplicity, let us just consider the one-dimensional case. The idea
is to imagine the scattering experiment as a quantum particle traveling along the
x-direction and encountering the potential. The equation of motion is governed by
the Schrödinger equation,

− }2

2m
∂ 2ψ

∂x2 +V (x)ψ = i}
∂ψ

∂ t
. (4.17)

The solutions to the Schrödinger equation in a single spatial dimension are the
energy eigenstates

ψ(x, t) = e±
iEt
} ψ(x),

where it is clear the separation of the overall wavefunction as the product of a time-
dependent and a position-independent term. This holds only if the potential is sta-
tionary, i.e. V =V (x).
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Negative-energy solutions yield bound states2.This can be easily seen with any
shape of a one-dimensional potential V (x) where it is assumed that the potential is
constant at x→±∞, meaning that the particle is free far from the region where the
potential acts (a typical, reasonable assumption in a scattering experiment).

Then, by fixing the value of the potential at x =±∞ to 0, it can be seen that initial
negative energies will be bound in the region of x where the potential acts ([x1,x2]),
and the particle will oscillate between x1 and x2. Instead, if the initial energy is
positive, E > 0 then a free particle starting from the left with momentum p will be
only perturbed by the potential and will then recover its momentum when traveling
away from the potential.

The classification discussed above is interesting, and one could wonder whether
in all cases bound states will not appear, even when there is some “hole” in the
potential. However, even if there is a hole in the potential, the solutions to the
Schrödinger equation will still be scattering solutions, as the system will be able
to tunnel out of the “hole” with some non-zero probability.

4.7.2 Normalization of the wave function

In order to be able to interpret the wave function as a description of a physical par-
ticle, one needs to consider the problem of its normalisation. From a mathematical
point of view, the solutions of the Schrödinger equation allow for any normalisa-
tion to be chosen; however, this results in different physical interpretations of the
meaning of those wave functions.

Let’s consider the case of a free particle, which can be described by a plane wave

ψ = Nei~p·~x−i p2
2m t , (4.18)

which solves the Schrödinger equation; N is a normalisation factor. Given the prob-
abilistic interpretation of the wave function, a value of N 6= 1 implies that a given
volume V contains N2 particles,

ˆ
V
|ψ∗ψ|dV = N2×V. (4.19)

While the wave function normalisation is a matter of convention, it is important
that the physical predictions – namely, the cross section of a scattering process – are
independent of this choice. Often the choice will be

ˆ
V
|ψ∗ψ|dV = 1,

in which case the wave function will simply be

2 This is true only for the Schrödinger equation, while the case of a relativistic particle will be
different and discussed for the Klein-Gordon equation.
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ψ = ei~p·~x−i p2
2m t .

The problem is that, when one considers an infinite volume, it is not possible to
fix the wave function normalisation from the normalisation of the total probability
(or probability density),as it means that N2 → 0. The normalisation of the wave
function from the total probability is possible when one considers the free particle
not as a single wave function, but rather as a superposition of plane waves, i.e. a
wave packet, which can be written as a Fourier decomposition

ψ(x) =
ˆ

ψ(k)eikxdk, (4.20)

where
ψ(k) =

ˆ
ψ(x)e−ikxdx. (4.21)

A useful representation of the wave packet is the Gaussian wavepacket, which is
Gaussian both in momentum and position space and gives a good approximation of
the Heisenberg uncertainty relation. For the purpose of these note, we will avoid to
enter into the details of this more precise description of a quantum particle.

4.7.3 Probability current

The complex conjugate Schrödinger equation can be written as

− i
∂

∂ t
ψ
∗+

}
2m

∇
2
ψ
∗ = 0. (4.22)

Multiplying Eq. (4.16) by ψ∗ and Eq. (4.22) by ψ (on the left side), we obtain

iψ∗
∂ψ

∂ t
+

}
2m

ψ
∗
∇

2
ψ = 0,

and

−iψ
∂ψ∗

∂ t
+

}
2m

ψ∇
2
ψ
∗ = 0.

Subtracting the two equations we obtain

i
(

ψ
∗ ∂ψ

∂ t
+ψ

∂ψ∗

∂ t

)
+

}
2m

(
ψ
∗
∇

2
ψ−ψ∇

2
ψ
∗
)
= 0,

which becomes

i
∂

∂ t
(ψ∗ψ)+

}
2m

~∇ · (ψ∗~∇ψ−ψ~∇ψ
∗) = 0. (4.23)
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The quantity ρ = ψ∗ψ is the probability density. Equation 4.23 is the usual conti-
nuity equation.

If we consider a volume V , the variation of probability in the volume can be
expressed as

δ p =
∂

∂ t

˚
V

ρ dV.

If we call ~j the vector of the probability current, we can write the probability flux
through a surface element ~ds as ~j · ~dS (as shown in Figure 4.11. We exploit the
divergence theorem to write

∂

∂ t

˚
V

ρ dV =−
‹

S

~j · ~dS =

˚
V

~∇ ·~j dV.

This equations holds for each arbitrary choice of V , therefore we can write

Corrente di Probabilità

Fig. 4.11 Representation of the probability flux.

∂

∂ t
ρ +~∇ ·~j = 0,

and identify this probability current with the expression of Eq. (4.23), obtaining

~j =
}

2mi

(
ψ
∗~∇ψ−ψ~∇ψ

∗
)
.

If we take the free-particle wave function and choose to normalise it by N, where
N2 has the meaning of number of particles in a volume V , then we have ρ = ψ∗ψ =
N2, and the current ~j will be given by

~j =
1

2mi

(
ψ
∗(i~pψ)−ψ(i~p)ψ∗

)
=

~p
2m

2 |ψ|2 = ~p
m
|ψ|2 =~v ·ρ,

where we used ~p =−i}~∇ and ∇ψ∗ = (∇ψ)∗ = ( ~pi}ψ)∗ = ~p
−i}ψ∗. We can conclude

that, since ρ = |N|2 is the density (number of particles per unit volume), then ~j = ρ~v
is the flux of particles through an unit arc in a unit time. We will see that this is the
same expression as defined in the cross section formula calculation with the Fermi’s
golden rule.



94 4 Elements of Scattering Theory

4.7.4 Time independent formalism, the one dimensional case

Let us consider the case of a generic (stationary) potential V (x), such as the one
illustrated in Figure 4.12, and a system consisting of a particle in one dimension.
The Schrödinger equation is a second order differential equation and has two generic
solutions, which correspond to the particle moving from right to left or from left to
right. The possible states at infinity, which would correspond to the initial and final
states being free particles, will have energy

E =
}2k2

2m
.

The scattering states (i.e. those with E > 0) give rise to solutions that can be
right-moving, eikx, or left-moving, e−ikx.3

x

V(x)

Fig. 4.12 Illustration of a one-dimensional potential which is vanishing at large values of x far
from the localized region where the potential is non-zero.

One can calculate the various probabilities of scattering by seeking solutions that
are free particles at x→ ±∞: the resulting wave functions will be a combination
of the two types of solutions (right-moving and left-moving). The problem is then
posed in a stationary fashion, and we will look for solutions ψ(x) of the form of a
particle probing the potential from left to the right,

ψL(x) =

{
eikx + re−ikx

teikx
x→−∞

x→+∞
(4.24)

where r and t are complex numbers which will be referred to as reflection and trans-
mission amplitudes.

While the scattering process is inherently a time-dependent concept, here we are
modeling the scattering by a system of plane waves. It could be thought of as a beam
of particles thrown towards the potential from the left, with part of the beam being
reflected and part being transmitted.

3 We must stress that, since the Hamiltonian is time-independent by hypothesis, here we are not
talking about time dependence at all: the state of the system does not evolve in time.
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Taking the simple example of a plane wave for the free particle, for its interpre-
tation in terms of number of particles and probabilities it is useful to compute the
probability current,

j =
i}
2m

(ψ∗
∂ψ

∂x
− ∂ψ∗

∂x
ψ.)

By simply replacing the wave function solutions in this equation yields on the
left (x→−∞)

j =
}

2im
[(e−ikx + r∗eikx)(ikeikx− ikre−ikx)− (eikx + re−ikx)(−ike−ikx + ikr∗eikx)]

=
}k
2m

[1− re−i2kx + r∗ei2kx− rr∗+1− r∗ei2kx + re−i2kx− rr∗]

=
}k
m
(1−|r|2).

On the right instead (x→+∞) one gets

j =
}

2im
ik(t∗t + tt∗) =

}k
m
|t|2.

The conservation of the probability current yields

|r|2 + |t|2 = 1,

where R = |r|2 and T = |t|2 can be interpreted as the probabilities of reflection
and transmission respectively, where on the left there is the sum of two fluxes of
particles, one which is propagating towards the right with a flux of T and velocity
+k/m and a flux of particles moving to the left with a flux R with a velocity −k/m,
while on the right side the transmitted particles for a beam of flux T with a velocity
+k/m.

This is the so-called case of “scattering from the left”. The same can be done for
the case of the scattering from the right, where the problem is posed in the following
terms (a beam of particles coming from the right):

ψR(x) =

{
e−ikx + r′eikx

t ′e−ikx
x→+∞

x→−∞
(4.25)

From this we can note that there is a simple “mirror” relation between the case
of the scattering from the left and the scattering from the right. Since the potential
V (x) is real, then ψ∗L is also a solution of the Schrödinger equation,

− }2

2m
∂ 2ψ

∂x2 = (E−V (x))ψ,

in the form
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ψ
∗
L(x) =

{
e−ikx + r∗eikx

t∗e−ikx
x→−∞

x→+∞
(4.26)

We then recognize that

ψ∗L(x)− r∗ψL(x)
t∗

=




(1−|r|2)e−ikx/t∗ = |t|2e−ikx/t∗ = te−ikx

t∗e−ikx− r∗teikx = e−ikx− r∗
t
t∗

eikx
x→−∞

x→+∞
(4.27)

which is in the same form as the solution for the scattering from the right, if
we take t = t ′ and r′ = r t

t∗ . This is a very interesting result that shows that the
transition amplitude is the same irrespective of the shape of the potential and that
the reflection only differs by a phase. The transmission and reflection probabilities
R and T are thus the same in the scattering from the left and in the scattering from
the right.

4.7.5 Scattering in three dimensions and scattering amplitudes

In the much more realistic case of a three dimensional potential localised in space,
a similar stationary formalism can be applied. In this case the incoming beam of
particles is represented by a plane wave, or a beam of particles with a given mo-
mentum and in the z direction (ψ(~r) = eikz). The scattered particles will then be
represented by a spherical wave with a given scattering amplitude which depends

on the scattering direction ψ(~r) = f (θ ,φ) ei~k.~r

r . The dependence in 1/r of the scat-
tered wave function is obtained as a result of solving the Schrödinger equation and
can be simply interpreted in terms of density of states as |ψ|2 will be expanding over
a sphere of surface proportional to r2. The resulting overall wave function will then
be written as

ψ(~r) = eikz + f (θ ,φ)
ei~k.~r

r
. (4.28)

In this case the probability current can be expressed as

~j =
}

2im
(ψ∗∇ψ−ψ∇ψ

∗)

The current can also be separated into an incident current obtained from the incident
(eikz) part of the wave function,

~jincident =
}k
m

ẑ,

which can be seen as a beam of particles with velocity }k/m along the z direction.
We will derive the scattered current in a given direction in space (θ ,φ) under the
assumption that the potential is central (i.e. that it does not depend on φ ), and ne-
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glecting the 1/r2 terms from the derivative in terms of the polar angle θ , which are
suppressed as 1/(r sinθ)∂ f ∂θ and the derivative of 1/r. One gets4

~jscattered ∼
}k
m
| f (θ)|2

r2 r̂+O

(
1
r3

)

If we then consider the flux of particles across an element area dA in space, which
spans a solid angle dΩ = dA/r2, then we have

~jscattered · r̂ dA =
}k
m
| f (θ)|2dΩ .

Taking the ratio of the scattered flux to the incident beam flux will thus give the
differential cross section dσ ,

dσ =
~jscattered

~jincident
=

}k| f (θ)|2/mdΩ

}k/m
= | f (θ)|2dΩ ,

while the differential cross section can then be expressed as

dσ

dΩ
= | f (θ)|2.

We have therefore seen that the scattering amplitude and the differential cross sec-
tion are linked together.

4.7.6 Partial waves

In a central potential, i.e. which does not depend on φ , it is interesting to seek
solutions of the Schrödinger equation (similarly to the resolution of the Hydrogen
atom) in terms of spherical harmonics. We start from the fact that the Laplacian
operator ∇2 can be written, in spherical coordinates5, as

4 We started from

∇ =
∂

∂ r
r̂+

1
r

∂

∂θ
θ̂ +

1
r sinθ

∂

∂φ
φ̂ .

The derivative in φ in the last term will have no effect as the potential is central, and so we imme-
diately see that

∇ψ = ∇

(
1
r

f (θ ,φ)ei~k·~r
)
=

∂ ψ

∂ r
r̂+O

(
1
r2

)

.
5 We have

~r =





x = r sinθ cosφ

y = r sinθ sinφ

z = r cosθ

and the unit vectors are
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∇
2 =

1
r2

∂

∂ r

(
r2 ∂

∂ r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
r2 sin2

θ

(
∂ 2

∂φ

)

=
1
r2

∂

∂ r

(
r2 ∂

∂ r

)
−

~L2

}2r2 ,

where we used the fact that the partial derivative in φ will have no effect, and that
~L2 = (~r×~p)2 = (~r×−i}∇)2. With a bit of math (in which we simply took into
account how the derivatives of the unit vectors are written, cf. footnotes), we get

~L2 =−}2

[
∂ 2

∂θ 2 +
1

tanθ

∂

∂θ
+

1
sin2

θ

∂ 2

∂φ 2

]
. (4.29)

The Schrödinger equation Eψ = −}2/2m∇2ψ +V ψ in a central potential V (r)
can then be written as

Eψ =− }2

2m
1
r2

∂

∂ r

(
r2 ∂

∂ r

)
ψ +

~L2

2mr2 ψ +V (r)ψ.

Similarly to the case of the hydrogen atom, we can solve this equation via separation
of variables, by expressing the wave function as the product between a radial wave
function R(r) and an angular wave function Pl(θ) (given the assumption of a central
potential and therefore no φ dependence). We obtain

Eψ(r,θ) = ER(r)Pl(θ) = − }2

2m
Pl(θ)

1
r2

∂

∂ r

(
r2 ∂

∂ r

)
R(r)

+R(r)
~L2

2mr2 Pl(θ)+V (r)R(r)Pl(θ), (4.30)

where the index l was conveniently introduced as we already know that the angu-
lar part of the wave function will be solved with Legendre polynomials. Having
restricted ourselves to φ -independent solutions, the Schrödinger equation separates
into two equations, an angular and a radial one. The angular part is





r̂ = d~r/dr
|d~r/dr| =

(sinθ cosφ ,sinθ sinφ ,cosθ)√
(sinθ cosφ)2+(sinθ sinφ)2+(cosθ)2

= (sinθ cosφ ,sinθ sinφ ,cosθ)

θ̂ = d~r/dθ

|d~r/dθ | =
(r cosθ cosφ ,r cosθ sinφ ,−r sinθ)

r = (cosθ cosφ ,cosθ sinφ ,−sinθ)

φ̂ = (−sinφ ,cosφ ,0)

thus

∂ θ̂

∂φ
= (−cosθ sinφ ,cosθ cosφ ,0) = cosθφ̂ ,

∂ φ̂

∂θ
= 0,

∂ φ̂

∂φ
= (−cosφ ,−sinφ ,0).



4.7 Quantum Mechanical Processes 99

~L2Pl(θ) = }2l(l +1)Pl(θ)

which can then be written in terms of w = cosθ and therefore dw =−sinθdθ , from
which one can write ∂ f/∂θ = ∂ f/∂w ·∂w/∂θ and get

∂ f
∂θ 2 =

∂

∂θ

(
−sinθ

∂ f
∂w

)
=−cosθ

∂ f
∂w

+ sin2
θ

∂ 2 f
∂w2 =−w

∂ f
∂w

+(1−w2)
∂ 2 f
∂w2 .

One can then replace these expressions for the first and second order derivatives in
θ in Eq. (4.29) to write the angular equation as

∂

∂w
(1−w2)

∂

∂w
Pl(w)+ l(l +1)Pl(w) = 0 ,

where we wrote with no loss of generality the eigenvalue of the ~L2 operator as
l(l +1).

In the separation of variables, using the constant }2l(l +1), from Eq. (4.30) the
radial equation will become:

[E−V (r)]R(r)Pl(cosθ) = − }2

2m
Pl(cosθ)

1
r2

∂

∂ r

(
r2 ∂

∂ r

)
R(r)

+
}2l(l +1)

2mr2 R(r)Pl(cosθ),

which reduces to

[E−V (r)]R(r) =− }2

2mr2
1
r2

∂

∂ r

(
r2 ∂

∂ r

)
R(r)+

}2l(l +1)
2mr2 R(r).

If we take the expression of the (non-relativistic) kinetic energy, and define the
normalised potential Ṽ (r) as

E =
}2k2

2m
and Ṽ (r) =

2m
}2 V (r),

then the radial part of the Schrödinger equation can be written as

[
∂ 2

∂ r2 +
2
r

∂

∂ r
− l(l +1)

r2 −Ṽ (r)+ k2

]
Rl(r) = 0 .

As we had anticipated with the introduction of the index l, we can recognise Pl as
the Legendre polynomials, which are eigenstates of the angular momentum operator
~L2 and thus solutions of the angular part of the Schrödinger equation.

The partial wave expansion consists in writing a generic wave function as a
linear combination of partial waves, each of which is a solution of the Schrödinger
equation in the separation of variables:
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ψ =
∞

∑
l=0

Rl(r)Pl(cosθ)). (4.31)

In absence of a potential, the free particle system will correspond to Ṽ (r) = 0
and therefore the radial equation can be written as

[
∂ 2

∂ r2 −
l(l +1)

r2 + k2

]
(rRl(r)) = 0.

The solutions to this equation are the Bessel spherical functions . It can be seen
that for l = 0 the solution is very simple,

R0(r) =
e±ikr

r
,

i.e. ingoing (outgoing) a plane wave, depending on the sign ±.
Again, when far away from the region where the potential is non-vanishing, we

must also seek for the plane wave solutions as the incident wave function

ψincident(~r) = eikr cosθ

Now, let’s express the plane wave in terms of partial wave expansion, i.e. in the form

eikz = eikr cosθ =
∞

∑
l=0

Rp
l (r)Pl(cosθ). (4.32)

We can use the properties of Legendre polynomials, such as their orthogonality,
which can be expressed in the integral form

ˆ 1

−1
Pl(x)Pm(x)dx =

2
2l +1

δml ,

From this we can easily write Rp
l (r) in a simple form. Let’s multiply both terms of

Eq. (4.32) by Pm(cosθ), and integrate in dw = d(cosθ): we get

ˆ 1

−1
dwPm(w)eikrw =

ˆ 1

−1

∞

∑
l=0

dwRp
l (r)Pl(w) =

2
2m+1

Rp
m(r).

Thus we have (we change label from m to l)
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Rp
l (r) =

2l +1
2

ˆ 1

−1
dwPl(w)eikrw

=
2l +1

2

[
eikrw

ikr
Pl(w)

]1

−1

− 1
ikr

ˆ 1

−1
eikrw dPl(w)

dw
dw

=
2l +1

2
1

ikr

[
eikr− (−1)le−ikr

]
+O

(
1
r2

)
, (4.33)

where we integrated by parts (and identified in this way the O(1/r2) terms), and
used the fact that Pl(1) = 1,Pl(−1) = (−1)l . Remember, we are looking at the wave
function far away from the potential, i.e. for r→ ∞! This is a very interesting result
which shows that a plane wave can simply be decomposed in two spherical waves,
one which is outgoing and the other ingoing:

ψincident(~r) =

(
∞

∑
l=0

2l +1
2ik

Pl(cosθ)

)
eikr

r
−
(

∞

∑
l=0

2l +1
2ik

(−1)lPl(cosθ)

)
e−ikr

r
.

Why is this important? Because with these simple expressions we can express
the wave function in the form of Eq. (4.28) (r→ ∞). We first expand the scattering
amplitude f (θ) (which, again, does not depend on φ as the potential is central) in
terms of partial waves, as

f (θ) =
∞

∑
l=0

2l +1
k

flPl(cosθ), (4.34)

where we chose this form so that the coefficients of the expansion, fl , have a clear
correspondence with the previous equation. Note that fl do not depend on θ but
rather depend on k (and on the chosen potential V ). We can then write the wave
function for r→ ∞ by replacing the partial wave expansion of the plane wave in
Eq. (4.28): we get

ψ(~r) =
∞

∑
l=0

2l +1
2ik

Pl(cosθ)

(
(−1)l+1 e−ikr

r
+(1+2i fl)

eikr

r

)
Pl(cosθ),

where the first term is ingoing and the second one is outgoing.
It is interesting to note that, in this spherically symmetric case, the total wave

function decomposes in different values of l because the angular momentum is con-
served. For each individual value of l, the scattering system is completely equivalent
to the 1D case: the notion of scattering from the left and from the right applies nicely
also in the case of an incoming and outgoing spherical wave. In the case of a sym-
metrical potential one has r′ = r, which implies that the equation derived in the 1D
case r′ = r∗ t

t∗ leads to
rt∗+ r∗t = 0. (4.35)
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We can imagine the scattering of an incoming spherical wave in one dimension as
a simultaneously left-moving and right-moving incoming wave and the outgoing
wave, which when x→−∞ results in the initial beam of particles and the reflected
one eikx + re−ikx – to which one should add the particles transmitted from the right,
i.e. te−ikax. Given that the conservation of the probability current (i.e. of the number
of particles) yielded R+T = 1, by using Eq. 4.35 one can see that |r+ t|2 = 1 also
in this context6.

In the context of the spherical 3D scattering, this means that |(1+ 2i fl)|2 = 1,
i.e. one can write (1+ 2i fl) = ei2δl(k), where we highlighted the dependence on k.
In other words, we can write the scattering amplitudes (Eq. (4.34)) as a function of
the phase shifts δl(k) only,

f (θ) =
1

2ik

∞

∑
l=0

(2l +1)(ei2δl(k)−1)Pl(cosθ) (4.36)

Then, following what we said in the previous section, from the scattering ampli-
tude one gets the differential scattering cross section as a function of the scattering
angle θ ,

dσ

dΩ
= | f (θ)|2 = 1

k2 ∑
l,l′
(2l +1)(2l′+1) fl f ∗l′Pl(cosθ)Pl′(cosθ).

In order to compute the total cross section, we can use the orthogonality of the
Legendre polynomials to get

σ =

ˆ
dΩ

dσ

dω
= 2π

ˆ 1

−1

dσ

dΩ
d cosθ =

4π

k2 ∑
l
(2l +1)sin2

δl(k) (4.37)

Since Pl(1) = 1, the expression of f (0) from Eq. (4.36) is

f (0) =
1

2ik

∞

∑
l=0

(2l +1)(ei2δl(k)−1) =
∞

∑
l=0

2l +1
k

eiδl(k) sinδl(k).

This results in the following relation, known as the optical theorem:

σ =
4π

k
ℑ f (0), (4.38)

which relates the forward cross section at θ = 0 with the total scattering cross sec-
tion. This result can be intuitively memorized as the conservation of probability or
the conservation of total number of particles, whereby the decrease in number of
particles that are unaltered by the scattering should equal the ones which are scat-
tered in any direction.

6 There is much more to this in the theory of the Scattering matrix which is beyond the scope of
these lectures.
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The time independent formalism, though very powerful and yielding deep and
consequential results, is intrinsically not fully satisfactory when it comes to de-
scribing transient effects. For this purpose the time dependent perturbations is more
appropriate and more general. However, the stationary formalism will be used for
several calculations in nuclear physics.

Important note from the expression of the total cross section of Eq. 4.37 one
can infer that the total cross section is necessarily bounded by:

σ <
4π

k2 ∑
l
(2l +1) (4.39)

One should also note that the angular momentum of the particle will be given
by L = ~p∧~r where then l} = }kr sinθ , where r sinθ is a constant – the impact
parameter b of the scattering reaction. So for a given momentum of the particle
p = }k, the number of partial waves to consider will be limited by the range Rmax

of the interaction: for example, in the case of the Rutherford scattering this was due
to the fact that outside the atom the Coulomb repulsion is screened by the atomic
electrons, or in the case of nuclear interactions which, as we will see, are short-
ranged. It should also be noted that the number of partial waves to consider increases
with the energy of the particle n = kRmax: in fact, the cross section is bounded by

σ <
4π

k2

n

∑
l=0

(2l +1)

σ <
4π

k2 (n+1)2

σ <
4π

k2 (kRmax +1)2

σ < 4π

(
Rmax +

1
k

)2

= 4π(Rmax +λ )2, (4.40)

where λ = 1/k is the corresponding wavelength of the particle.

4.8 Time dependent perturbation theory

In order to be able to describe a particle physics experiment – e.g. the interaction of a
particle with a potential, the decay of a particle, the cross-section of an interaction...
– we need to be able to calculate the probability of transition between the initial and
final state of a quantum system. The idea is to do so by starting from the expansion
which is performed for the time-dependent perturbation theory (summarised in the
previous sections). For unbound states (as it is in the case of a scattering) there are
infinite solutions to the Schrödinger equation with energy E (i.e. the free-particle
Schrödinger equation). We will use this basis to express the solution to the general
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Schrödinger equation (i.e. the one with the addition of a potential V ), as a linear
combination of its elements. The challenge comes from the fact that we will assume
that V is not only a function of position, but also of time (V = V (~x, t)). Let’s see
how we can address it.

We will call H0 the hamiltonian of a free particle, and try to describe its interac-
tion with a potential V (~x, t). The possible quantum states of the particle will be the
solutions ψ to the Schrödinger equation

[
H0 +V (~x, t)

]
ψ = i}

∂ψ

∂ t
. (4.41)

In general, this equation cannot be solved in a straightforward way: one needs to use
perturbation theory in order to obtain an approximation of the solution. That’s why
we choose to use the base of the eigenfunctions Φ of the free-particle hamiltonian
H0, i.e.

H0 =−
}2

2m
∇

2.

The eigenfunctions Φ are those which solve the equation

H0Φk(~x, t) = EkΦk(~x, t),

and are labeled with the subscript k. The normalisation of these wave functions is
chosen such that we have 1 particle per unit of volume V : orthonormality is then
written as ˆ

V
Φ
∗
mΦn d3~x = δmn.

In order to simplify notation, let’s assume from now on that }= 1. We are looking
for a solution of Eq. (4.41) expressed in this basis, assuming that both the initial and
final states (i.e. “before” and “after” the scattering process) are well-modeled by
the hamiltonian of a free particle. This assumption means we are considering the
potential as negligible for t = 0 and t = ∞. We write the solutions of Eq. (4.41) as

ψ(~x, t) = ∑
k

ak(t)Φk(~x, t),

where we call ak(t) the (time-dependent!) coefficients of the expansion of Ψ on the
basis

Φk(~x, t) = Φk(~x)e−iEkt . (4.42)

The task is then to calculate an approximated expression for the coefficients a(t).
Applying this general solution to the right-hand side of Eq. (4.41), we obtain
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i
∂ψ

∂ t
= ∑

k

[
i

∂

∂ t
(ak(t)Φk(~x)e−iEkt)

]
=

= ∑
k

[
i
∂ak(t)

∂ t
Φk(~x)e−iEkt +ak(t)Φk(~x)Eke−iEkt

]
=

= ∑
k

i
∂ak(t)

∂ t
Φk(~x)e−iEkt +∑

k
ak(t)Φk(~x)Eke−iEkt .

The left-hand side of Eq. (4.41) instead becomes
[
H0 +V (~x, t)

]
ψ = ∑

[
H0 +V (~x, t)

]
ak(t)Φk(~x)e−iEkt ,

to which we can apply Eq. (4.42) and obtain
[
H0 +V (~x, t)

]
ψ = ∑

k
Ekak(t)Φk(~x)e−iEkt +∑

k
V (~x, t)ak(t)Φk(~x)e−iEkt .

We can then simplify the two terms and write Eq. (4.41) as

∑
k

i
∂ak(t)

∂ t
Φk(~x)e−iEkt = ∑

k
V (~x, t)ak(t)Φk(~x)e−iEkt . (4.43)

As we said above, our assumption is that the particle is free in the initial and final
state. This means that we can write its final state as one of the eigenstates of the
free-particle hamiltonian H0, the one with the label f :

| f 〉= Φ f e−iE f t .

If we then multiply Eq. (4.43) by 〈 f |= Φ∗f e+iE f t , we obtain

∑
k

i
∂ak(t)

∂ t
Φ
∗
f (~x)Φk(~x)e−i(Ek−E f )t = ∑

k
ak(t)Φ∗f (~x)V (~x, t)Φk(~x)e−i(Ek−E f )t .

In the case of a time-independent potential, V (~x, t) = V (~x), if we integrate over
the volume V we have

i
∂at(t)

∂ t
= ∑

k
ak(t)

ˆ
V

Φ
∗
f (~x)V (~x)Φk(~x)d3x × ei(Ek−E f )t , (4.44)

where the integral is nothing else than
ˆ

V
Φ
∗
f (~x)V (~x)Φk(~x)dV = 〈Φ f |V (~x)|Φk〉.

As done for the final state, we can write the initial state as |i〉 = Φi(~x, t), which
means that ak(0) = δik. We can then consider a weak perturbative potential which
does not alter much the state of the particle: this means that the coefficient associated
to the eigenstate i of the free-particle hamiltonian will always be close to 1, i.e.
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ai(t)∼ 1 ∀t,

and that the coefficients associated to the other eigenstates will be almost zero, i.e.

ak 6=i(t)∼ 0 ∀t.

Under these assumptions, we can obtain the coefficient associated to the final state
f , by replacing the expressions for ai(t) and ak 6=i(t) in Eq. (4.44): we get

∂a f (t)
∂ t

=−i
ˆ

d3x Φ
∗
f (~x)V (~x)Φi(~x)× ei(E f−Ei)t ,

which depends on the transition matrix

Tf i =

ˆ
V

Φ
∗
f (~x)V (~x)Φi(~x) d3x.

The coefficient a f (t) at any time T is then obtained by integrating between t = 0
and t = T ,

a f (T ) =−i
ˆ T

0
Tf iei(E f−Ei)t dt,

Remember – we assumed that the potential is independent on time, i.e. V =V (~x). We
can therefore move the transition matrix outside of the integration sign, obtaining

a f (T ) =−iTf i

ˆ T

0
ei(E f−Ei)t dt. (4.45)

Eq. (4.45) shows that it is possible to introduce a transition between the state |i〉 and
the state | f 〉 with an amplitude a f (T ).

In the end, we are studying a scattering experiment, so we are interested in know-
ing how probable the transition between the initial and the final state is. The proba-
bility to find the system in the final state a f (T ) is |a f a∗f |, i.e.

Pf i = a f (T )a∗f (T ) = |Tf i|2
ˆ T

0

ˆ T

0
ei(E f−Ei)t × e−i(E f−Ei)t ′dtdt ′.

We usually deal with decaying particles or colliding particles, so it is convenient to
ask ourselves what is the probability of transition between the initial and final state
after some time T has elapsed. We therefore define the transition rate as

Γf i =
Pf i

T
. (4.46)

In order to calculate this quantity, we start by performing the change of variables

t→ t +
T
2
, t ′→ t ′+

T
2
, (4.47)
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from which we can write

Γf i = |Tf i|2
1
T

ˆ T
2

− T
2

ˆ T
2

− T
2

ei(E f−Ei)te−i(E f−Ei)t ′dtdt ′.

This integral can be solved by separation of variables: we have

ˆ T
2

− T
2

ei(E f−Ei)tdt =
ei(E f−Ei)

T
2 − e−i(E f−Ei)

T
2

(E f −Ei)i
,

and calling the difference7 between the energy of the two states E f −Ei = ν f i, we
find ˆ T

2

− T
2

ei(E f−Ei)tdt = 2
sinν f i

T
2

ν f i
.

We can repeat the reasoning with the integration over t ′, and finally obtain

Γf i = |Tf i|2
4
T
(sinν f i

T
2 )

2

ν2
f i

.

This relation shows that the transition rate drops quickly for high values of ν f i, i.e.
for E f significantly different from Ei. Fig. 4.13 shows the evolution of

4
T
(sin(ν f i

T
2 ))

2

ν2
f i

, (4.48)

as as a function of ν f i. We can see that in the limit T → ∞, i.e. after the potential
has had enough time to act on our particle, this function becomes a Dirac delta.
This basically corresponds to imposing the conservation of energy in the scattering
process.

Perturbazioni dipendenti dal tempo

Fig. 4.13 Evolution of Eq. (4.48) as a function of the difference between the final and initial state
energy ν f i.

7 Keep in mind we put }= 1.
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Let’s extend our reasoning to the continuum case, i.e. let’s assume that we have a
continuum of possible energy states, and that we are interested in the dn accessible
states in the range [E f ,E f +dE f ]. The total transition rate can be expressed as a sum
of continuous elements dΓf i of transition rates, where

dΓf i = |Tf i|2×
1
T

ˆ T
2

− T
2

ˆ T
2

− T
2

ei(E f−Ei)te−i(E f−Ei)t ′dtdt ′dn.

Considering long time intervals, T → ∞, we have

dΓf i = |Tf i|2× lim
T→∞

1
T

ˆ T
2

− T
2

ˆ T
2

− T
2

ei(E f−Ei)te−i(E f−Ei)t ′dtdt ′dn.

In order to calculate the total rate, we can exploit the fact that the Fourier transform
of 1 is the Dirac delta function, δ ,

ˆ +∞

−∞

eik(x−x0)dk = 2πδ (x− x0).

Therefore we have ˆ +∞

−∞

ei(E f−Ei)t ′dt ′ = 2πδ (E f −Ei),

and we can write the contribution to the total transition rate due to the several ac-
cessible states in the [E f ,E f +dE f ] energy range as

dΓf i = |Tf i|2dn lim
T→∞


 1

T

ˆ T
2

− T
2

ei(E f−Ei)tdt


×2πδ (E f −Ei),

and so the total transition rate can be expressed as

Γf i =

ˆ
dΓf i =

ˆ
|Tf i|2

dn
dE f

lim
T→∞


 1

T

ˆ T
2

− T
2

ei(E f−Ei)tdt


2πδ (E f −Ei)dE f ,

obtaining, using the delta properties on the integral,

Γf i = 2π

ˆ
|Tf i|2

dn
dE f

δ (E f −Ei)dE f × lim
T→∞

1
T

ˆ T
2

− T
2

dt.

But

lim
T→∞

1
T

ˆ T
2

− T
2

dt = 1,

therefore the total transition rate is written as
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Γf i = 2π|Tf i|2
∣∣∣∣∣

dn
dE f

∣∣∣∣∣
Ei

,

where ∣∣∣∣∣
dn

dE f

∣∣∣∣∣
Ei

= ρ(Ei)

is the density of accessible states in the final state, given the initial energy Ei. We
can therefore write the total transition rate as

Γf i = 2π|Tf i|2ρ(Ei).

For completeness, we report also its expression when } 6= 1:

Γf i =
2π

}
|Tf i|2ρ(Ei).

4.9 Fermi’s golden rule

Until now assumed ak 6=i(t)∼ 0: what happens if we relax this assumption? Let’s take
again Eq. (4.43) and keep only the assumption that ai(t)∼ 1, and that V =V (x): we
have

i∑
k

∂ak(t)
∂ t

Φk(~x)e−iEkt =V (~x)Φi(~x)e−iEit +∑
k 6=i

V (~x)ak(t)Φk(~x)e−iEkt .

Multiplying by 〈 f | and integrating over the volume V , we get

i
∂a f (t)

∂ t
=

ˆ
V

d3xΦ
∗
f (~x)V (~x)Φi(~x)ei(E f−Ei)t

+∑
k 6=i

ˆ
V

d3xΦ
∗
f (~x)V (~x)ak(t)Φk(~x)ei(E f−Ek)t .

(4.49)

The strategy to get the solutions to the Schrödinger equation in this more general
case (ak 6=i(t) 6= 0) is to approximate ak(t) with the solutions from Eq. (4.45) (which
were obtained assuming, at the first order, ak 6=i(t) = 0): in other words, we write

ak(t) =−i
ˆ T

0

[ˆ
V

Φ
∗
k (~x)V (~x)Φi(~x)d3x

]
ei(Ek−Ei)t ′dt ′

=−i
ei(Ek−Ei)t

i(Ek−Ei)

ˆ
V

Φ
∗
k (~x)V (~x)Φi(~x)d3x

=−ei(Ek−Ei)t

Ek−Ei

ˆ
V

Φ
∗
k (~x)V (~x)Φi(~x)d3x.
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We then insert this expression in Eq. (4.49), obtaining

∂a f (t)
∂ t

=

[
−i

ˆ
V

d3xΦ
∗
f (~x)V (~x)Φi(~x)

]
ei(E f−Ei)t

+(−i)(−1)∑
k 6=i

´
V d3xΦ∗f (~x)V (~x)Φk(~x)

´
d3xΦ∗k (~x)V (~x)Φi(~x)

(Ek−Ei)
ei(Ek−Ei)tei(E f−Ek)t .

Using the bra-ket notation,

〈 f |V |i〉=
ˆ

V
Φ
∗
f (~x)V (~x)Φi(~x)d3x,

we can write

∂a f (t)
∂ t

=−i


〈 f |V |i〉+∑

k 6=i

〈 f |V |k〉〈k|V |i〉
Ei−Ek


× ei(E f−Ei)t .

What we did is effectively to obtain a better approximation of the transition ma-
trix element Tf i,

Tf i = 〈 f |V |i〉+∑
k 6=i

〈 f |V |k〉〈k|V |i〉
Ei−Ek

,

which is again a time-independent expression. We can insert it in Eq. (4.45), and
use this second-order evaluation of Tf i in the expression of the Fermi’s golden rule.
The procedure can be iterated, obtaining more and more precise approximations of
the solutions of the Schrödinger equation for an arbitrary potential.

4.10 Perturbative calculation and particles exchange

This iterative calculation has a fundamental interpretation in particle physics. We
have seen that at second order one has

Tf i = 〈 f |V |i〉+∑
k 6=i

〈 f |V |k〉〈k|V |i〉
Ei−Ek

. (4.50)

We can see the first-order calculation of a scattering process as a simple scatter-
ing within the potential zone, highlighted by a “bubble” in Fig. 4.14. At second
order, the interaction happens through an intermediate state k, as represented in
Fig. 4.15. The potential describing each interaction is denoted with subscripts, e.g.
Vf i = 〈 f |V |i〉 for the direct interaction between the initial and final state (same holds
for Vf k and Vki).

In this representation, when a particle is scattered in a potential, there is a mo-
mentum exchange between two particles through the potential, which is called a
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Interazioni e Scambio di Particelle

Fig. 4.14 Picture of a scattering interaction at first order in the perturbative calculation.

Interazioni e Scambio di Particelle

Fig. 4.15 Picture of a scattering interaction at second order in the perturbative calculation: the
scattering happens through an intermediate state k.

“ranged interaction”. If the potential is created by a particle (e.g. a gold nucleus
in the Rutherford experiment), during the ranged interaction the potential should
change instantly, but this would not be possible due to special relativity.

A new formulation of the process can be obtained thinking of the interaction as if
were mediated by a mediator particle X , as shown in Fig. 4.16. Let us also include
the time in our “picture” of an interaction: for example, let’s take an interaction a+
b→ c+d where the intermediate state is k. We will also assume that the interaction

Interazioni e Scambio di Particelle

Fig. 4.16 Picture of a possible, mediated interaction which brings from an initial state of two
particles a+ b to a final state c+ d. The horizontal axis represents time, while the vertical axis
represents space, and the interaction between particles is mediated by a mediator X . In this specific
picture, the a particle emits c together with X , which is then absorbed by b which emits d.
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is quite simple: the transition matrix between any state is represented by a constant
coupling g, defined as

〈k|V |i〉= g = 〈 f |V |k〉,
as shown in Fig. 4.17. In this example, one way in which we can write the initial,
intermediate and final states in terms of their particle content is

i : a+b, k : c+ x+b, f : c+d.

We can see this as the following time sequence:

1. in the initial state i, we have the particles a and b;
2. the intermediate state k, where the particle a emits a particle X and a particle c,

which exist together with b;
3. the final state f , where b has absorbed X and emitted d, and so we are left only

with c and d.

Interazioni e Scambio di Particelle

Fig. 4.17 Simple interaction with a constant coupling g between two quantum states a and c; X is
the particle which mediates their interaction (“mediator”).

In this case, we have the transition matrix element

T (i)
f i =

〈 f |V |k〉〈k|V |i〉
Ei−Ek

,

where the superscript i is to remind us that we are considering one possible option
(a emits X and subsequently b absorbs it). The energies of the three states, in this
specific hypothesis of what’s going on in the interaction, are

Ei = Ea +Eb,

Ek = Ec +EX +Eb,

E f = Ec +Ed .

We use the assumption that Vlm = g does not depend on the states l and m, and write

T (i)
f i =

g2

(Ea +Eb)− (Ec +Ex +Eb)
=

g2

Ea−Ec−Ex
.

But, in the sum of Eq. (4.50), we need to consider all possible intermediate states,
even the ones in which b emits X and a absorbs it, as it is shown in Figure 4.18. This
is a crucial point! In this case we have
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Interazioni e Scambio di Particelle

Fig. 4.18 Picture of an alternative interaction between a and b, which leads to a final state c+ d.
In this specific picture, the b particle emits d together with X , which is then absorbed by a which
emits c.

Ei = Ea +Eb,

Ek = Ea +EX +Ed ,

E f = Ec +Ed ,

from which one gets

T (ii)
f i =

g2

Eb−Ed−EX
,

again with a superscript ii which reminds us the fact this is another term in the sum
of Eq. (4.50). Since the energy conservation can be written as

Ea +Eb = Ec +Ed → Eb = Ec +Ed−Ea,

we can write

T (ii)
f i =

g2

Ec−Ea−EX
.

The sum of these two contributions is

T (i)
f i +T (ii)

f i = g2
(

1
Ea−Ec−EX

− 1
Ea−Ec +EX

)
=

2g2EX

(Ea−Ec)2−E2
X
.

From the relativistic energy-momentum-mass relation we can write

E2
X = p2

X +M2
X ,

where ~pX = ~pa− ~pc (i.e. we assumed the conservation of momentum in the process
a→ X + c). Therefore,

E2
X = (~pa− ~pc)

2 +M2
X .

If we define the four-momenta q, pa and pc, we have
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q = pa− pc,

from which we can write

Tf i = 2EX
g2

(Ea−Ec)2− (~pa− ~pc)2−M2
X
,

and since (Ea−Ec)
2− (~pa− ~pc)

2 = q2, we have

Tf i = 2EX
g2

q2−M2
X
.

The term
1

q2−M2
x

is called the propagator of the interaction.The term g is called the coupling of the
interacting particles to the mediator of the interaction itself.

Note that the term Tf i is not a Lorentz invariant, due to the presence of the term
2EX . The term

g2

q2−M2

is instead a Lorentz invariant. The interaction rate must necessarily not depend on
the reference frame we use to describe the interaction, while the term 2EX does de-
pend on the normalisation chosen for the wave functions during the perturbation cal-
culation. In fact, choosing a different normalisation (which in quantum mechanics,
we stress it, cannot affect the results of any physical measurements) we can absorb
the 2EX term: we can in fact require that the space integral of the free-particle wave
functions is ˆ

V
Φ
∗
Φ d3x = 2EX ,

instead of 1.
One should also note that it is necessary to maintain the chosen order of per-

turbation theory for all the considered intermediate configurations of the system.
The higher order of perturbation we apply, the more intermediate configuration are
possible; in particular, these two numbers coincide.

4.11 Feynman diagrams

The calculations of cross-sections and decay rates in particle physics is performed
using a different formalism in relativistic quantum mechanics and quantum field
theory. A representation of the calculations can be given through the use of Feyn-
man’s diagrams, in which the perturbations which were ordered in time are instead
represented by single diagrams, as shown in Fig. 4.19.
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Diagrammi di Feynman

Fig. 4.19 The alternative interactions which were ordered in time in perturbation theory, shown by
the left diagrams, are replaced by a single Feynman diagram, shown on the right.

As shown in the case of perturbation theory, in the interaction “vertices” the en-
ergy is not conserved and the X particle, the mediator, is considered as a physical
particle which may be measured/observed. In the Feynman diagram formalism, in-
stead, the mediator is considered as an “intermediate” state with a virtual mass q2

which does not correspond to the mass of the free particle, M2
X (q2 6= M2

X ); but the
four-momentum is conserved at the vertices. A virtual particle can be seen as a
mathematical construct which represents the sum over all the possible time ordering
considered by perturbation theory.

Both representations are equivalent. The “classical” interpretation with the ex-
change of a physical intermediate particle fulfills the interpretation of the momen-
tum transfer.

4.12 Density of states, wave function normalisation and phase
space

How can we calculate the density of states, which is needed in order to obtain the
transition rate from an initial and a final state according to Fermi’s golden rule? We
start from the fact that the wave function of a free particle is given by

ψ(~x, t) = Aei~p·~x−iEt ,

and its normalisation is usually obtained requiring
ˆ

V
d3xψ

∗
ψ = 1,

which corresponds to one particle in the volume V . This is an important element to
consider. In the case of a free particle (plane wave), in a cubic volume V with side a
(i.e. a box) we therefore have

ˆ a

0

ˆ a

0

ˆ a

0
ψ
∗
ψ dx dy dz = 1.



116 4 Elements of Scattering Theory

The normalisation of the wave function A is therefore

A2 =
1
a3 =

1
V
.

This normalisation implies that the wave function satisfies the boundary conditions

ψ(x+a,y,z) = ψ(x,y,z) = ψ(x,y+a,z) = ψ(x,y,z+a).

Taking a volume V with periodic boundary conditions is equivalent to the case of
wave functions which vanish at the borders of a box, but allows easier calculations
with momenta.

We want to count the number of possible states for given energy or momentum.
Let’s start with momentum: the periodic boundary conditions applied to the x direc-
tion imply that

eipxx = eipx(x+a),

and similarly for the y and z directions. Therefore, from the requirement eipxa = 1
we have that pxa must be a multiple of 2π; this implies

(px, py, pz) =
2π

a
(nx,ny,nz),

where nx,ny,nz are integers. In other words, not all momentum values are allowed,
and the momentum space is quantized, as shown in Fig. 4.20.Normalizzazione, Densità di Stati, Spazio delle Fasi

Fig. 4.20 Quantization of the momentum space. Any particle lives in a point of this three-
dimensional grid.

In order to count the number of states with momentum in the range [p, p+ d p],
we have to perform a calculation over a 3D sphere in the (px, py, pz) space; Fig. 4.21
shows a projection of this sphere on the (px, py) plane. Every single state occupies
a cubic volume

d3 p = d px d py d pz =

(
2π

a

)3

=
(2π)3

V
,

therefore the number of states with momentum p ∈ [p, p + d p] will be equal to
the ratio between the volume between two spheres with a radius differing by d p,
4π p2d p, divided by the volume occupied by a single state:
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Normalizzazione, Densità di Stati, Spazio delle Fasi

Fig. 4.21 Projection over the (px, py) plane of the quantisation of the space of the momenta.

dn = 4π p2d p
(

V
(2π)3

)
.

This leads to
dn
d p

=
4π p2

(2π)3 V.

We can in turn write the density of states as

ρ(E) =
dn
dE

=
dn
d p

∣∣∣∣
d p
dE

∣∣∣∣ . (4.51)

From the last term of the right-hand side of this equation, one can see that decays
to lighter particles are more probable (have higher density of states) than decays to
heavier particles.

Again, the interaction rate will not depend on the overall normalisation, which
cancels out with the other terms from Fermi’s golden rule: the normalisation of the
waveform is 1/

√
V , and its square appears in the transition matrix element squared,

which cancels out with the factor V in Eq. (4.51). To simplify the calculations we
can take therefore an unitary volume, V = 1, choosing a normalisation which corre-
sponds to one particle per volume unit.

For a solid angle element dΩ , the density of the states can be expressed using
spherical coordinates as8

dn = p2 sinθ d pdθdφ
V

(2π)3 ,

therefore
dn
d p

=
p2 sinθd pdθdφ

(2π)3 V.

For a final state with N particles, there will be N−1 independent momenta (due to
momentum conservation), therefore we need to count N−1 final states:

8 We simply used the fact that the volume element in spherical coordinates is r2drdΩ =
r2dr sinθdθdφ .
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dn =
N−1

∏
i=1

dni =
N−1

∏
i=1

d3 pi

(2π)3 V.

In the case of a decay of a particle into N particles, a→ b1 + b2 + · · ·+ bn, the
number of independent states can be expressed in terms of all N particles in the final
state, by using a Dirac delta to impose the conservation of momentum:

dn = (2π)3
N

∏
i=1

d3 pi

(2π)3 δ
3

(
~pa−

N

∑
i=1

~pi

)
V.

4.13 Cross-section and decay rate

The concept of cross section is related to the transition rate (or interaction rate) in
the case of a beam of particles A which interact with a target of particles B, through
the relation

dNi

dt
= σΦANB,

where ΦA is the flux of A particles, and NB is the number of targets accessible to the
beam. Considering a particle density nA and a velocity of the beam vA, we have seen
that one can write

ΦA = nAvA.

The cross-section is the equivalent surface for a single particle target of the interac-
tion

σ =
1

ΦANB
× dNI

dt
.

The rate Γf i is defined by the Fermi’s golden rule: for a specific scattering corre-
sponds to

σ =
Γf i

ΦA
=

2π

}
|Tf i|2ρ(Ei)

ΦA
,

and depends on ρ(Ei) (the density of states, a function of the initial state energy Ei)
and ΦA, which must be evaluated correctly.

In the case of particle decays, instead, the decay rate Γf i is directly given by
Fermi’s golden rule.

4.14 Electromagnetic interaction - the Rutherford scattering

Let’s consider a simple case for which we know the classical cross-section, the
Rutherford scattering, which is the scattering of a charged particle by an electrostatic
potential
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VC(r) =
Ze

4πε0r
.

Our goal is to compute the cross-section in quantum mechanics, using the time-
dependent perturbation theory we developed in the last sections.

Let us consider again a beam of α particles, with a charge Ze, mass m and mo-
mentum ~pi. Given the typical energy of α particles, the problem – as we have seen –
is non-relativistic. We will choose a normalisation of the wave function correspond-
ing to 1 particle per unit volume, so that we will have nA = 1, and ΦA = vA = pi

m . We
will call ~p f the final state momentum and θ the angle between the initial and final
directions of the momentum (the “scattering angle”).

Scattering di Rutherford (Quant.)

Fig. 4.22 Relation between initial and final state momenta and scattering angle of an α particle in
the Rutherford scattering experiment.

Fermi’s golden rule is

Γf i =
2π

}
|Tf i|2ρ(Ei),

where ρ(Ei) is the density of the final states (given the initial state energy) included
in the solid angle dΩ f . We have

dn
d p

=
p2 sinθdθdφ

(2π)3 ,

and since in the initial and final state the α particle is free, we have

E f =
p2

f

2m
,

so that we can write
dE f

d p f
=

p
m
.

The wave functions of the initial and final states, normalised to 1, are

ψi = ei(~pi·~r−Et)
ψ f = ei(~p f ·~r−Et),

therefore
Tf i =

ˆ
V

d~xψ fV (r)ψi.
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Note that in this case V (r) is the potential energy, not the Coulomb potential:

V (r) =−ze
Ze

4πε0r
.

Using the conservation of energy (E f = Ei), we obtain

Tf i =−
zZe2

4πε0

ˆ
∞

0

ˆ
π

0

ˆ 2π

0
r2 sin θ̃ei~q·~r 1

r
drdθ̃dφ ,

where ~q = ~pi− ~p f , and θ̃ is the polar angle in the direction ~q (not to be confused
with the polar scattering angle θ ).

Therefore, we can write

−zZe2

4πε0

ˆ
∞

0

ˆ
π

0

ˆ 2π

0
r2 sin θ̃eiqr cos θ̃ 1

r
drdθ̃dφ .

We define y = cos θ̃ , so that we have

dy =−sin θ̃dθ̃ ,

and then performing the integral over φ , obtaining

Tf i =
zZe2

4πε0
2π

ˆ
∞

0

ˆ −1

−1
r2eiqry 1

r
drdy =

zZe2

4πε0
2π

ˆ
∞

0
r

[ˆ 1

−1
eiqrydy

]
dr.

Since ˆ 1

−1
eiqrydy =

eiqr− e−iqr

iqr
= 2

sin(qr)
qr

,

we have (assuming }= c = 1)

Tf i =
zZe2

4πε0
2π

ˆ
∞

0

2i
qi

sin(qr)dr = 4πzZα
1
q

ˆ
∞

0
sin(qr)dr =

= 4πzZα
1
q

[
eiqr + e−iqr

iq ·2i

]∞

0

.

We can consider that the potential is shielded for large enough distances, and
therefore introduce a term e−εr for which we take

1
r
→ lim

ε→0

e−εr

r
.

The oscillating term in the integral we need to solve to calculate Tf i becomes

lim
ε→0

ˆ
∞

0
e−εr sin(qr)dr = lim

ε→0

[
eiqr−εr

(iq− ε)2i
− e−iqr−εr

(−iq− ε)2i

]∞

0

,
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so
lim
ε→0

ˆ
e−εr sinqrdr = lim

ε→0

q
q2 + ε2 =

1
q
,

and in the end we get

Tf i = 4παzZ
1
q2 .

We get the given form of the matrix element which includes the product of two
numbers, ze and Ze (“couplings”), and a “propagator” of the form 1

q2−M2
X

, where
MX = 0 (the massless photon). The transferred momentum can be expressed as

q2 = |~pi− ~p f |2 = 2p2
i (1− cosθ),

where pi = p f (in general the scattering is elastic and the nucleus does not move),
and p2

i = p2
f = 2mE (E is the kinetic energy of the α particle), therefore

q2 = 8mE sin2
(

θ

2

)
,

where we used

1− cosθ = 2sin2
(

θ

2

)
.

For the cross section we have

dσ =
Γf i

ΦA
=

2π|Tf i|2ρ(Ei)

pi/m
,

where

ρ(Ei) =
p2

i sinθdθdφ

(2π)3 ×
(

d p
dE

)
=

p2
i dΩ

(2π)3
m
pi
.

The differential cross-section can then be written as

dσ

dΩ
=

1
(2π)2 T 2

f im
2 =

1
(2π)2 (4π)2× (αzZ)2× 1

64E2 sin4 θ

2

,

and in the end
dσ

dΩ
=

(αzZ)2

16
1

E2 sin4 θ

2

,

which is the Rutherford cross section, the same of the classical calculation!

Take-home lessons

• One of the keys of scattering theory is that we consider particles at infinite
distance from the region where a potential acts as free particles, which can
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then be described with plane waves, i.e. positive-energy solutions of the free-
particle Schröedinger equation. Negative-energy solutions instead represent (in
non-relativistic quantum mechanics) bound states.

• In quantum mechanics, a different choice on the normalisation of a wave func-
tion must have no effect on calculated physical quantities (like cross-sections).
Probability current can then be interpreted in terms of the flux of particles of a
beam.

• In time-independent perturbation theory (i.e. if the Hamiltonian of a system
does not depend on time), and in the presence of a central potential in a three-
dimensional space, it is convenient to express the Schröedinger equation in terms
of the sperical expression of the Laplacian operator ∇2. In this way, its solutions
can be separated into a radial and an angular part. The wave function can then be
expanded in partial waves, i.e. projected onto the basis formed by the Legendre
polynomials: one finds that a plane wave can ve decomposed into two spherical
waves, one propagating outwards and one inwards.

• In general, the Hamiltonian of a system may depend on time, and one would have
to use the time-dependent perturbation theory to get an approximated solution of
the Schröedinger equation. The solution to this equation can be expressed in the
basis of the solutions of the free-particle Hamiltonian, in terms of coefficients
which are time-dependent. If the perturbative potential is weak, one can find an
expression of the transition probability between two states of the system (which
in the end is a concept related to the scattering cross-section!), and use this to
calculate the total transition probability. This latter quantity in turn depends on
the density of accessible states.

• If one brings time perturbation theory to second order, one can see (Fermi’s
Golden Rule) that the transition matrix between the initial and final state de-
pends on a sum over possible intermediate states k, so that the transition i→ f
is actually i→ k→ f . This sum should run over all possible intermediate states:
an interaction a+ b→ c+ d can then be seen as mediated by the exchange of
another particle x, which implies a contribution to the transition matrix which
depends on its mass Mx and on a coupling strength factor g which ”weighs” the
interaction with x.

• Feynman diagrams represent a convenient way to visualize this summation over
possible intermediate states. They prove essential to compute cross-sections in
Relativistic Quantum Mechanics and Quantum Field Theory.

• The density of states represents the volume density of accessible states in the
momentum space. It is a quantity which depends on energy-momentum conser-
vation – a final state with N particles will have only N−1 independent momenta,
as the total momentum is constrained to be equal to the initial state value.

• The Golden Rule allows to express the interaction rate in terms of the square of
the transition matrix between initial and final state, and of the density of states.

• The quantum-mechanical calculation of the differential cross-section of Ruther-
ford scattering yields the same results as the classical calculation.
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Questions

• In quantum mechanics, are energy eigenvalues always quantised?
• What characterises the process A→ B+C+D+E: the decay rate or the cross-

section?
• Does the decay rate of the process A→ B+C depend on the reference frame we

use to measure it?
• What does the density of states measure?
• Which term in Fermi’s golden rule describes the interaction dynamics?
• In time-ordered perturbation theory, why can’t the energy of intermediate states

be equal to the initial and final state energy?
• What is the meaning of q in the expression of the propagator 1

q2−m2
X

?
• What is the difference between a Feynman diagram and a time-ordered perturba-

tion theory diagram?
• When does E 6=

√
m2c4 + p2c2 hold: for real particles, virtual particles, massless

particles or anti-particles?
• In which formalism is the mediator of an interaction off the mass shell: quantum

field theory or time-ordered perturbation theory?
• Does the probability of an interaction depend on the density of states?
• Which of the decays π+→ µ++νµ and π+→ e++νe has a higher density of

states?
• Do measurable quantities like cross-section and rate depend on the normalization

volume chosen for the wave function?
• How many degrees of freedom do I have to choose the momentum of a free

particle in space?
• How many degrees of freedom do I have to choose the momenta of B and C in

the decay A→ B+C?
• What does the branching ratio of a given decay channel of a particle mean?
• Is the half-life of a particle the sum of the half-lives of that particle in its different

possible decay channels?
• Is the decay width of a particle the sum of the decay widths of that particle in its

different possible decay channels?





Chapter 5
Interaction of Particles with Matter

Before more fundamental concepts in the development of the field of nuclear and
subnuclear physics are discussed, it is important to introduce fundamental concepts
of the interaction of particles in matter. Much of the progress in nuclear, subnuclear
and particle physics required ingenious detection techniques of particles. By using
just the notions of relativity and scattering theory discussed so far, we will be able
to better understand the discoveries that have led to the greater understanding of the
nucleus, the nuclear forces and of particles and fundamental interactions in general.

Understanding particle properties requires particle detectors, and particle detec-
tors are based on the interaction of particles in matter.

The main properties that will characterize the particles of interest will be quite
simple: their mass and kinematic properties and their electric charge. Their spin
and magnetic moment will essentially play little role in the following and all the
phenomena that will be quantitatively described result from the electromagnetic in-
teraction alone.

It is conceptually simple to measure the momentum of a charged particle using
a magnetic field. However, to do so it is important to be able to “sense” the pres-
ence of a particle and track it as precisely as possible. From the measurement of
the momentum of the particle it is less obvious how the mass of the particle can
be inferred. For this purpose, all possible properties of the interaction of charged
particles in matter will be discussed. How neutral particles can be detected and their
energy measured will also be addressed.

In order to efficiently describe the interaction of particles in matter, this chapter
will focus on the loss of energy of particles in matter. The following aspects will be
covered.

A charged particle which is crossing a material can lose its energy by:

• Ionization or excitation of other atoms;
• Coulomb–scattering with atomic nuclei;
• Radiation emission in the field of atomic nuclei (Bremsstrahlung).

A photon interacting with matter can lose its energy via:

• Photoelectric effect;

125
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• Compton scattering;
• Production of electron–positron pairs.

5.1 The Bohr Atom

At the end of the XVIII century, experiments had shown that excited gaseous ele-
ments could emit radiation, and different spectral lines were associated to different
elements. Discrete emission lines, with well-defined patterns, were first observed
by Johann Balmer in 1885. While Thomson’s plum pudding model was coherent
with the knowledge of the time that atoms were known to be electrically neutral and
to be composed of electrons, this model could not provide an explanation for the
existence of these lines.

It was really Rutherford’s experiment that demonstrated that atoms are composed
of positively-charged nuclei, surrounded by electrons. At the time it was already
clear that the hypothesis was lacking an explanation for the nature of atomic nuclei:
given how small the nuclei seemed to be, how could all the positive charges be kept
together against the strong electrostatic repulsion? Well before the secrets of the
nucleus were unveiled, the Rutherford model could be used to build more accurate
models of the atom.

In 1913, Bohr who had been working with Rutherford, developed his famous
atomic model based on the following assumptions:

• an hydrogen atom is composed by a proton and an electron, kept together by the
Coulomb potential;

• the mass of the proton is much greater than the mass of the electron;
• the atom is stationary: electrons revolve in stationary orbits around the nucleus

and do not radiate energy.

Let’s assume that the orbits are circular. If m is the mass of the electron, then

F =
e2

4πε0r2 = mω
2r, (5.1)

and the energy of the system is constant and given by:

E =
1
2

mω
2r2− e2

4πε0r

=
1
2

(
e2

4πε0r

)
− e2

4πε0r

= −1
2

e2

4πε0r
.

Also, if the orbits are stationary, the angular momentum is conserved,
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L = mωr2 = const.

Bohr introduced the assumption that the angular momentum is quantized,
˛

L dφ = nh,

where h is the Planck’ constant. In another way, one has

L = n}= n
h

2π
,

which fixes the allowed values of the energy and radius of the electron orbits. From
Eq. (5.1) we easily get the quantisation rule for the radius:

mω
2r4 =

e2r
4πε0

,

L2

m
=

e2r
4πε0

,

r ≡ rn =
n2}2
(

me2

4πε0

) ,

where used the subscript n to highlight the fact that the radius rn is quantised. Simi-
larly, for the energy we have

En =−m

(
e2

4πε0

)2

2n2}2 .

Bohr’s atomic model is also providing an explanation for the lines appearing in
the emission spectrum: lines appear in a discrete number, as a consequence of the
quantization of the electronic orbits. In fact, the wavelength emission is associated
with the transition of an electron from the m-th orbit to the n-th orbit (n < m), which
happens with the emission of a photon with an energy given by equation:

hν = Em−En.

Let’s now introduce two fundamental constants which will be convenient to sim-
plify notation in the theory of nuclear and particle physics. The fist one is the fine–
structure constant α , defined as

α =
e2

4πε0}c
' 1

137
,

and the second one is the classical electron radius re, which is defines as the radius
of a charged sphere with electrostatic energy equal to mec2:
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mec2 =
e2

4πε0re
.

Using these definitions, it is possible to write the two formulas for En and rn in
the following way:

En = − 1
2n2 α

2mc2,

rn = n2 re

α2 .

For the fundamental state of the hydrogen atom, we have

E1 = −13.6 eV,

a = r1 = 0.53 × 10−10 m.

The magnetic moment of a system can be expressed in terms of its angular mo-
mentum. If we see a particle as a coil of surface S with a given electric current i, for
example, its magnetic (dipole) moment will be given by

~µ = i~S.

In the case of Bohr’s model, we can calculate the magnetic moment associated to
one orbit of the electron, by identifying

~S = πr2n̂,

i = e/T = eν =
eω

2π
,

where T is the period of the orbit and ν = 1/T = ω/2π its frequency, and n̂ is the
unit vector orthogonal to the orbit plane. We then get

~µ = πr2 eω

2π
n̂ =

e~L
2m

,

from which one can define another fundamental constant, the Bohr magneton, which
is the magnetic moment of the fundamental state of the hydrogen atom:

µB =
e}
2m

= 5.8×10−5 eV/T.

The Bohr magneton is naturally used as the unit for expressing the magnetic mo-
ment of fundamental particles. The above expression is of course valid only in the
international system of units (and remember that here m is the electron mass!).
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5.2 Energy loss by ionization

5.2.1 The Bohr formula

It is interesting to take a closer look at the derivation of the energy loss of a charged
particle in a material using some of the concepts discussed in Chapter 4.

To do so we consider an atom with Z electrons and a nucleus with a charge equal
to Ze, and an interacting particle with charge ze and mass M typically larger than the
mass of the electron me. A picture of the interaction of the particle with an electron
of the atom is given in Fig. 5.1.

Fig. 5.1 Illustration of the interaction of a particle of mass M and charge ze with an electron of an
atom with atomic number Z. The impact parameter of the interaction is b.

The most efficient way to compute the energy loss is to express the system in
the frame where the particle of mass M is at rest and the electron travels towards
it, as illustrated in Fig. 5.2. From the fundamental principle of dynamics, the total
amount of momentum transferred to a single electron of the atom can be expressed
as a function of the Coulomb force generated by the charge ze:

∆~p =

ˆ +∞

−∞

~FC dt,

where FC is due to the Coulomb potential, and can be expressed as

FC =
ze2

4πε0r2 .

We can then consider the two main projections of the momentum transfer, where
the first is the one along the direction of motion of the electron, i.e. ∆~p along the
x-axis (the direction of motion!) of Fig. 5.2:
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Fig. 5.2 Illustration of the reference frame in which the particle with mass M is at rest and the
atomic electron travels towards it.

∆ p‖ =
ˆ +∞

−∞

ze2

4πε0

1
x2 +b2 sinθ dt,

=

ˆ +∞

−∞

ze2

4πε0

1
x2 +b2 sinθ

dx
v
,

in which we used dt = dx/v, and θ is the angle between the vector~r and the y-axis.
Let’s assume v = const and write

sinθ =
x√

x2 +b2
,

so that

∆ p‖ =
ze2

4πε0v

ˆ +∞

−∞

x
(
x2 +b2

) 3
2

dx.

Now, we use r =
√

x2 +b2, with

dr
dx =

1
2

2x√
x2 +b2

=
x
r
,

r dr = xdx,

from which we get

∆ p‖ =
ze2

4πε0v

ˆ +∞

−∞

r
r3 dr

∝

ˆ r0

−∞

1
r2 dr−

ˆ +∞

r0

dr
r2

=

[
−1

r

]r0

−∞

−
[
−1

r

]+∞

r0

=

[
−1

r

]+∞

r0

−
[
−1

r

]+∞

r0

= 0.

This shows that the transferred momentum along the x–axis, i.e. parallel to the di-
rection of the incoming particle, is zero.

Instead, the component along the y-axis, i.e. the orthogonal direction with respect
to the direction of motion, can be computed as:
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∆ p⊥ =

ˆ +∞

−∞

ze2

4πε0

1(
x2 +b2

) cosθ
dx
v

=
ze2

4πε0v

ˆ +∞

−∞

1
b2 cos3

θdx,

in which we used

cos2
θ =

b2

x2 +b2 .

Now let’s compute the integral in dθ :

x2 +b2 =
b2

cos2 θ
,

x2 =
b2
(

1− cos2 θ

)

cos2 θ
= b2 tan2

θ ,

x = b tanθ ,

dx
dθ

=
b

cos2 θ
,

which gives

∆ p⊥ =
ze2

4πε0vb

ˆ + π
2

− π
2

cosθ dθ

=
ze2

4πε0vb
·2.

This last equation can simply be written as

∆ p⊥ =
ze2

4πε0b2 ·
2b
v
.

This means we can see the overall momentum transfer as the momentum transferred
by a constant force ze2/4πε0b2 for a time equal to 2b/v. The ”average force” is sim-
ply the Coulomb force from a charge ze at a distance equal to the impact parameter,
and the time defines the scattering time.

An important note at this point is that the trajectory of the electron is assumed es-
sentially to be a straight line, which is clearly an approximation. This approximation
holds only in the case where the velocity of the particle of mass M is large enough
with respect to the velocity of the electron in its orbit. For this specific calculation
we will focus on a very specific energy range of the incident particle: the one where
the velocity is large enough to make this approximation valid, but still not too large
to break the assumption of a non-relativistic regime.

Since ∆ px = 0, the only contribution to the energy transferred to the electron
comes from the perpendicular momentum change. In the non-relativistic case, the
kinetic energy loss can be written as
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∆E (b) =
∆ p2

2me
=

2z2e4

mev2 (4πε0)
2 b2

,

where we highlighted the fact that the energy depends on the impact parameter. It
should be emphasized that the velocity here is non-relativistic in order to be able
use the above energy-momentum relation. While the regime is non-relativistic in
this case, we will still express the formula in terms of the velocity normalised to
the speed of light β = v/c: substituting the equation of the classical radius of the
electron, the energy loss becomes

∆E (b) =
2z2e4

meβ 2c2 (4πε0)
2 b2

=
2z2mec2

β 2b2

[
e2

4πε0mec2

]2

=
2z2mec2

β 2b2 r2
e .

The energy transferred to a single electron of the atom from a particle of mass M
and charge ze can thus be written as

∆E = 2mec2 z2

β 2
r2

e

b2 . (5.2)

In the reference frame of the interacting particle, the material it encounters can be
seen as a “beam” of electrons moving towards it. The goal is to compute the energy
loss per unit path length of the particle: in order to do so, we will express the energy
loss as a function of the impact parameter and we will need to start by taking into
account all the electrons with a given impact parameter within the “beam”.

If ne is the electron density in the material (number of electrons per unit volume),
then the number of electrons in an element path of the particle dx and with a given
impact parameter b will define a cylindrical region around the charge, as shown in
Fig. 5.3, with volume V . The number of interacting points with an impact parameter
b ∈ [b,b+db], dNI , will therefore be:

dNI = neV = ne 2πb dbdx.

.
The absolute value of the element energy loss in the infinitesimal path length dx

at a given impact parameter b within an infinitesimal element impact parameter db
can then be expressed as follows:

d2E
dxdb

= ner2
e mec2 4π

b
z2

β 2 ,

where we multiplied Eq. (5.2) by dNI .
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Fig. 5.3 Illustration of the element cylindrical volume defined for a given impact parameter b.

In order to compute the energy loss per element path length dE/dx, we must
integrate the above formula with respect to b. This is in principle a clearly divergent
integral:

dE
dx

= ner2
e mec24π

z2

β 2

ˆ bmax

bmin

db
b

= ner2
e mec24π

z2

β 2 ln
bmax

bmin

Is it worrisome? No, because the range of possible impact parameters b is necessar-
ily limited. To estimate the energy loss, reasonable estimates of the values of bmin
and bmax need to be made.

• The scattering time has to be relatively small as discussed above in order for the
electron not to be moving significantly in its atomic orbit during the scattering
time. A natural limit in the scattering time will therefore be the revolution period
of the electron around the atom, which in the reference frame of the electron
is Te = 1/〈νe〉, where 〈ve〉 is the average orbital frequency of electrons. As the
scattering time could be expressed as approximately b/v, then we require that it
does not exceed the time needed for an electron to complete an orbital revolution.
We take into account the time dilation of the revolution period when seen by the
moving particle, γTe = γ/〈νe〉. As a consequence, bmax is expressed as

bmax =
γv
〈ve〉

=
βγc
〈ve〉

.

• According to the uncertainty principle,

∆ pe∆x >
}
2
.

If the momentum transferred to the electron is equal to the momentum of the
electron itself, i.e. ∆ pe ∼ pe = meγβc, the minimum allowed spatial “resolution”
∆x for the electron position can be taken as ∆x = bmin, i.e.

bmin ∼
}
pe

=
}

meβγc
.

Having defined the bounds for the integration, the density of electrons in a ma-
terial can be defined assuming an isotropic material with density ρ [g/cm3], atomic
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mass A [g/mol−1] and atomic number Z [#e−/atom] using the Number of Avogadro
NA [mol−1] as:

ne =
NAZρ

A
[#e−/cm3],

and finally we get

dE
dx =

ˆ bmax

bmin

4πner2
e mec2 z2

β 2
db
b

= 4π
NAZρ

A
r2

e mec2 z2

β 2

[
ln

bmax

bmin

]
,

which gives the expression for Bohr’s formula of energy loss of a charged particle
traveling in a material:

dE
dx

= 4πr2
e mec2 NAZρ

A
z2

β 2 ln
mec2β 2γ2

}〈ve〉
. (5.3)

This approximate estimate of the energy loss of a charged particle in a material
has a quite limited kinematic range. A more extended formulation is given in the
following section: it will be interesting to note that the two formulations are surpris-
ingly close.

5.2.2 The Bethe-Bloch formula

A more general expression of the energy loss, which is valid also in the relativis-
tic regime and which takes into account more intricate quantum effects has been
derived in 1930 by Hans Bethe in the non relativistic regime and then deriving a
relativistic correction in 1932. The equation was later completed by Felix Bloch in
1933, who introduced a specific additional term.

While Bohr’s approach was fully classical, Bethe took an quantum-mechanical
approach which he extended in the relativistic regime. While a full derivation is
beyond the scope of these lectures, we will introduce the Bethe equation from the
relation between the energy loss and the impact parameter obtained from energy-
momentum dispersion relation, Eq. (5.2), yielding

∆Emax

∆Emin
=

b2
max

b2
min

.

Here it should be noted that the maximal energy transfer will correspond to the
minimal impact parameter and vice-versa, i.e. that ∆Emax ∝ 1/b2

min and ∆Emin ∝

1/b2
max, thus giving the expression above.
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The absolute value of energy loss can be expressed in terms of the ratios of the
square-root of the maximum and minimal energy losses, which will translate to the
logarithm of the ratio divided by 2:

dE
dx

=
NAZρ

A
r2

e mec24π
z2

β 2
1
2

log
∆Emax

∆Emin
.

We will start from the maximal energy transfer ∆Emax from a kinematic stand-
point and just consider a two-body scattering of the particle with mass M and charge
ze on the electron, which is initially at rest, and compute the maximum kinetic-
energy transfer. Let ~p and ~p1 be, respectively, the momentum of the particle before
and after the scattering, and ~p2 the electron momentum in the final state, as shown
in Fig. 5.4.

Fig. 5.4 Illustration of the scattering of a particle with mass M on an electron at rest, used for the
computation of the maximum energy loss of the particle (i.e. the maximum kinetic-energy transfer
to the electron). The angle θ is the angle between the momentum of the electron after the scattering
and the original direction of the incoming particle.

Momentum and energy conservation laws can be written as:

~p = ~p1 + ~p2,

E +mc2 = E1 +E2.

From this last equation, using E2 = M2c4 + p2c2 and p = Mγβc:

E1 = E +mc2−E2,
[
M2c4 +~p2

1c2
] 1

2
= E +mc2−E2,

M2c4 +(~p− ~p2)
2 c2 =

(
E +mc2−E2

)2
,

M2c4 + p2c2 + p2
2c2−2pp2c2 cosθ = E2 +m2c4 +E2

2

+2Emc2−2E2mc2−2EE2,

−2pp2c2 cosθ = 2m2c4 +2Emc2−2E2mc2−2EE2

= 2mc2
(

mc2 +E
)
−2E2

(
mc2 +E

)

= 2
(

mc2−E2

)(
mc2 +E

)
.
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Squaring both terms gives:

(
mc2 +E

)2(
E2

2 +m2c4−2E2mc2
)
= p2 p2

2c4 cos2
θ ,

(
mc2 +E

)2(
E2

2 +m2c4−2E2mc2
)
= p2E2

2 c4 cos2
θ − p2m2c6 cos2

θ .

Then,
[(

E +mc2
)2
− p2c2 cos2

θ

]
E2

2

−2mc2
(

E +mc2
)2

E2

+m2c4
[(

E +mc2
)2

+ p2c2 cos2
θ

]
= 0.

We want to solve this second-order equation for E2. Let’s compute the ∆/4:

∆/4 = m2c4
(

E +mc2
)4

−m2c4
[(

E +mc2
)2

+ p2c2 cos2
θ

][(
E +mc2

)2
− p2c2 cos2

θ

]

= m2c4 p4c4 cos4
θ ,√

∆/4 = mc2 p2c2 cos2
θ = mc4 p2 cos2

θ .

We finally get to

E2 = mc2

(
E +mc2

)2
+ p2c2 cos2 θ

(
E +mc2

)2− p2c2 cos2 θ

.

This clearly shows that the maximum amount of energy is transferred when cosθ =
1, for which the electron energy is

Emax
2 = mc2

(
E +mc2

)2
+ p2c2

(
E +mc2

)2− p2c2

= mc2

[
E2 +m2c4 +2Emc2 + p2c2

E2 +m2c4 +2Emc2− p2c2

]

= mc2

[
M2c4 +m2c4 +2Emc2 +2p2c2

M2c4 +m2c4 +2Emc2

]

= mc2

[
1+

2p2c2

M2c4 +m2c4 +2Emc2

]
.
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The maximum kinetic energy that can be transferred to the electron is therefore

T max = Emax
2 −mc2 =

2mc2 p2c2

M2c4 +m2c4 +2Emc2 ,

and if we use p = Mcβγ and E = γMc2 we get

T max =
2mβ 2γ2c2

1+2γ
m
M +

( m
M

)2 .

An useful approximation of this formula in the limit 2γm�M will be useful for the
complete Bethe-Bloch calculation:

∆Emax = T max = 2mβ
2
γ

2c2. (5.4)

In order to compute the minimum energy loss of the incoming particle, the intu-
itive estimate should be the average ionization energy of the electrons of the atom,
〈I〉. This quantity is non trivial to estimate and was one of the main contributions
from Felix Bloch in 1933, who showed that the mean ionization energy can be sim-
ply approximated by the relation

〈I〉 ∼ (10eV)×Z.

A similar approximation can be obtained with the Thomas–Fermi model, where
〈I〉 can be computed from the average ionization energy of hydrogen atoms,

〈I〉 ∼ ZIH .

From the above formula one obtains a formulation of the average ionization en-
ergy which depends only on the atomic number Z in units of the electron rest energy
(i.e. its mass),

mec2

I
∼ 3.6 ·104

Z
.

In order to simplify notation, one usually defines the constant C as

C = 4πr2
e mec2NA = 0.31

MeV
g · cm−2 ,

and the energy loss formula can then be written as

1
ρ

dE
dx

=C
Z
A

z2

β 2
1
2

ln
2meγ2β 2c2

I
. (5.5)

One often uses 1/ρ
dE
dx instead of dE

dx , in order to highlight the small dependence of
the energy loss on the material.
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In fact, by using
mec2

〈I〉 ∼
3.6×104

Z
,

it becomes clear that the energy loss divided by ρ scales as

dE
ρdx

∝
Z
A

ln
const

Z
,

which, apart from the density and a logarithmic dependency on Z−1, does not de-
pend strongly on the material. If we ignore the logarithmic dependency we obtain
that the energy loss per unit of length divided by the density is independent of the
material of the detector.

The result of this calculation is often referred to as the Bethe formula. A more
precise empirical model for the average ionization energy is obtained from mea-
surements of the ionization energy normalized to the atomic number Z, as shown in
Fig. 5.5. The measurements show a good agreement with the Bloch prediction, with
a significant deviation at low Z.
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Fig. 5.5 Illustration of the average ionization energy measurement as a function of the atomic
number Z. The relation 〈I〉 ∼ (10eV)×Z is represented by the dashed, horizontal line.

A more accurate parameterisation which is valid in a wider range of atomic num-
ber Z is
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I
Z
∼
(

12+
Z
2

)
eV for Z . 10,

I
Z
∼
(

10+60Z−1.2
)

eV for Z & 10.

The dE
dx behaviour described by the Bethe formula is shown in Fig. 5.10.

Fig. 5.6 Illustration of the behaviour of the energy loss dE
dx described by the Bethe formula as a

function of βγ .

5.2.2.1 Interpretation

It is interesting to compare the Bethe formula with the simple dependence in 1/β 2.
This shows that in the low energy regime the dominant term essentially goes as
1/β 2, indicating that slow particles will lose much more energy by ionization than
faster particles. With respect to the simple 1/β 2 behaviour, the Bethe formula shows
a slow increase in ionization energy at relativistic velocities, often referred to as
relativistic increase.

In the higher energy range, compared with the 1/β 2 analytic form, there is a
logarithm rise of the energy loss which is interpreted as the increase of the energy
loss due to the increase in the electrostatic field ”seen” by the probe particle when
it is boosted. The electric field components which are orthogonal to the boost axis
will be increased by a factor γ , while the longitudinal component is unchanged.
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However, this formulation of the energy loss is incomplete. A more accurate and
up-to-date version of the Bethe formula, the Bethe-Bloch formula, is discussed in
the next section.

β ∼ 0 β

γEy

ExEx

Ey

⃗E

Fig. 5.7 Illustration of the interpretation of the logarithmic relativistic rise of the energy loss due
to the increase of the electric field ”seen” by a boosted probe particle.

5.2.3 The complete Bethe-Bloch formula

The complete Bethe-Bloch formula for the calculation of the energy loss by ion-
isation, which is valid also in the relativistic regime and takes all known intricate
effects into account, is the following:

1
ρ

dE
dx

=Cz2 Z
A

1
β 2

[
1
2

ln
2mec2β 2γ2Tmax

I2 −β
2− δ

2
− K

Z

]
.

Here Tmax corresponds to the maximum kinetic energy which can be transferred to
the electrons, as calculated in the previous section. i.e.

Tmax =
2mec2β 2γ2

1+2γ
me
M +

(me
M

)2
γme�M−−−−→ 2mec2

β
2
γ

2,

and δ is a term due to the density effect due to the screening of polarisation, which
limits the logarithmic growth of dE

dx . The term K/Z is a term which lowers the en-
ergy loss for slowly-moving particles, for which v (and then the kinetic energy K) is
not much greater than the electron velocity.
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Fig. 5.8 Energy loss normalised to the density of the material (”mass stopping power”), dE/ρdx,
for a muon, a particle with a mass of 105 MeV, as a function of its βγ .

Figure 5.8 shows on the y–axis the dE/ρdx of a muon1 as a function of its mo-
mentum. Let’s take a look to the region labelled as “Bethe” (in which the precision
of the formula is around 1%):

• at low β , i.e. at low momentum, the energy loss is dominated by the dependence
on 1/β 2;

• the energy loss has a minimum: particles which are crossing a material such
that their energy loss is in this minimum are called minimally-ionising particles
(MIP); the minimum position is usually at βγ ∼ 3÷3.5;

• after the minimum, the energy loss begins to grow as 2ln(βγ);
• in the lowest βγ region the model is not valid, and empirical models are used to

describe the energy loss;
• in the low βγ region, the correction K/Z becomes important;
• for high βγ , the model is no more valid, as the energy loss is dominated by

bremsstrahlung (described later in this chapter).

The correction introduced by δ is mostly effective at high energy. As the energy
of the particle increases, its electric field becomes more flattened and extended, but
the real media become polarized, truncating this part of logarithmic rise.

Figure 5.9 shows the energy loss at its minimum for different elements.

1 Standard model particles will be introduced later in these notes. Here you should consider the
muon as a particle identical to the electron, but with a mass of 105MeV.
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Fig. 5.9 Value of the energy loss at its minimum (normalised to the density of the material,
dE/ρdx) as a function of the atomic number of different elements (Z). A linear empirical re-
gression shows that dE/ρdx depends on ln(Z) with a good approximation.

Different particles traveling in the same material lose their energy in a similar
way. In this case, the Bethe-Bloch law can be seen as

−dE
dx

= z2 f (β ),

where z2 multiplies a function of the velocity which is unique for the material.
Since T = (γ − 1)Mc2, the velocity is a function of T/M. This suggests that if

the energy loss for a particle with mass M and charge z is known, the energy loss of
another particle with mass M2 and z2 will be

−dE2

dx
=− z2

2

z2
1

dE1

dx

(
T2

M1

M2

)
.
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5.2.4 Cross Section, Range, Straggling and the Landau
Distribution

5.2.4.1 Cross section

Equation 5.2 shows the dependency of ∆E on the impact parameter b. We can com-
pute the cross section of the ionisation energy loss starting from the inverse formula.
Let us call Ẽ = ∆E to simplify notation: we have

b2 =
2r2

e z2mec2

β 2Ẽ
,

and differentiating both members we have

|2bdb|= 2r2
e

z2mec2

β 2
dẼ
Ẽ2 ,

from which we can compute the infinitesimal cross-section in an element cylinder
as

dσ = (2πb)db

= 2πr2
e mec2 z2

β 2
dẼ
Ẽ2 ,

and finally get the differential cross-section

dσ

dẼ
= 2πr2

e mec2 z2

β 2
1

Ẽ2
.

The more energy is lost by the particle, the more collisions are rare.

5.2.4.2 Residual Range

The residual range R is defined as the mean path crossed by a particle in a certain
material before losing its entire kinetic energy; it is of course a function of the energy
of the particle. Using f (E) =− dE

dx , we have

R(E) =
ˆ R

0
dx

= −
ˆ 0

E

dE
f (E)

=

ˆ E

0

dE
f (E)

.
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One should note that this quantity is an average quanity: since the energy loss is a
stochastic effect, the actual value of R will vary in a certain interval.

In order to measure the residual range it is possible to take an absorber of different
length and material and measure the transmission power (ratio of incoming and
outgoing particles). Stochastic effects (straggling) are responsible for the smoothed
curve of transmission power, as shown in figure 5.10.

Fig. 5.10 Transmission power (fraction of particles in a beam which are transmitted) as a func-
tion of the distance traveled by the beam in a given material. Stochastic effects (“straggling”) are
responsible for the smoothed curve. Note that the average distribution becomes a Gaussian which
parameters will be described in Sec. 5.2.4.4.

In order to take into account the effects at low energy loss, it is common to
introduce a term like

R(E) = R0(Emin)+

ˆ E

Emin

dE
f (E)

,

which can be measured experimentally, while the integral is computed numerically.
Figure 5.11 shows the range divided by M for different particles in different materi-
als. The precision of this prediction is around 1%.

5.2.4.3 Channeling

Channeling is another limit of Bethe-Bloch formula. If a particle crosses a material
at a certain critical angle it is possible that it starts to follow a path in which the
number of encountered electrons is lower than average. This is usually happening at
a small angle θcrit ∼ 1◦ and β ' 0.1, becoming smaller as the energy rises. Figure
5.12 shows an example of this path.
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Fig. 5.11 Range (times density) of ionizing charged particles (xρ) in liquid hydrogen, helium
gas, carbon, iron, and lead. As an example, for a K+ with mass 493.7MeV/c2 and with momen-
tum 700 MeV/c, i.e. βγ = 1.42, from the curves one can read R/M ∼ 396, and so the range is
195gcm−2.
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Fig. 5.12 Illustration of the phenomenon of channelling, as observed for example in crystals. It
defines a limit of Bethe Bloch formula.

5.2.4.4 Energy straggling

The Bethe-Bloch formula gives an expression of the average energy loss. Since the
nature of these interactions is stochastic, the energy lost by a particle should also be
considered as a random variable with a certain distribution.

Although the computation of the energy loss distribution in a material of length
x is difficult (and usually dealt with computer simulation), we will see the limits of
very thin and very thick material.

For a thick material, we can assume that the energy lost in a single collision, ∆ ,
is much smaller than the energy of the incoming particle. If we also assume that
this ∆ is small enough not to change the β of the particle, the central limit theorem
ensures us that the distribution of energy lost by the particle will be Gaussian,

f (∆) ∝ e−
(∆−∆̄)2

2σ2 ,

whose expectation value and standard deviation we wish to calculate.
The number of collisions in a length dl with transferred energy Ẽ ∈

[
Ẽ, Ẽ +dẼ

]

is

f (Ẽ)dẼdl =
NAZρ

A
dl

dσ

dẼ
dẼ

=
NAZρ

A
2πr2

e mec2 z2

β 2
dẼ
Ẽ2 dl

=
C
2

Zρ

A
z2

β 2
dẼ
Ẽ2 dl.

If we assume that β is constant and neglect the K/Z and density effect corrections,
the integral of the Bethe-Bloch can be easily computed,

ˆ x

0

dE
ρdx

dx =C
Z
A

z2

β 2
1
2

(
ln

2mec2β 2γ2

I
−β

2

)
x,
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which gives ∆̄ ,

∆̄ = ξ

(
ln

2mec2β 2γ2

I
−β

2

)
,

where we used

ξ =
C
2

Z
A

z2

β 2 x.

The variance can be obtained from its definition:

σ
2 =

ˆ
f (Ẽ)Ẽ2dẼdl

=

ˆ
dẼdl

C
2

Zρ

A
z2

β 2

=
C
2

Zρ

A
z2

β 2

(
Emax−Emin

)
x

' C
2

Zρ

A
z2

β 2 T maxx

=
C
2

Zρ

A
z2

β 2 2mec2
β

2
γ

2x

= C
Zρ

A
z2mec2

γ
2x,

where we replaced T max with its approximation for 2γm << M from Eq. (5.4).

For a thin material we cannot apply the central limit theorem: the Gaussian ap-
proximation will fail, as interactions between particles are rare. In this case, the
fluctuations in the energy loss will follow the Landau distribution with a most prob-
able value ∆p < ∆̄ :

f (λ ) =
1√
2π

e−
(

λ+e−λ
)

2 ,

where
λ =

∆ −∆p

ξ
.

Other laws which are describing different regions exists. An example of straggling
function is shown in Fig. 5.13.
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Fig. 5.13 Illustration of the Landau distribution modelling the energy loss ∆ over a small distance
x travelled by 500 MeV pions in silicon.

5.2.5 Interpretation and Particle Identification

As shown in figure 5.14 the energy loss at its minimum is around 1÷2MeVg−1cm2.
This corresponds, for a medium with ρ ∼ 10gcm−3 like copper, to a mean energy
loss per 1cm of 16 MeV, i.e. a non–negligible amount of energy.

Since the energy loss reaches its maximum for low β , if the absorber is deep
enough, the maximum amount of released energy will be close to the stopping point
of the particle.

The dependence of Bethe-Bloch formula on the incoming particle mass and
charge allows, as shown in figure 5.15, the identification of different kind of parti-
cles. This property has been crucial in the past, allowing classification and discovery
of elementary particles.
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Fig. 5.14 Energy loss as a function of βγ , illustrating the relatively small variations of the position
in βγ of the minimum of ionization, and that curves are very similar. The correspondence in terms
of momentum with βγ for different particles is also given.

5.2.6 Orders of magnitude

The Bethe-Bloch formula allows us to answer a fundamental experimental question:
why do α , β and γ radiation travel with so different ranges in matter? We will use
Fig. 5.14 to provide a quantitative answer.

We know that α particles are helium nuclei, i.e. their mass is mα ≈ 4mp =
3.7GeV and their charge is +2e. The typical energy – kinetic energy – of α parti-
cles is of a few MeV. As the α particle is relatively heavy, 5 MeV of kinetic energy
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Fig. 5.15 The measured energy loss from different particles as a function of their momentum,
illustrating the discriminating power of the ionization energy loss measurements – combined with
momentum measurements – to identify particles.

correspond for example to

βγ =
pc

mc2 =

√
(T +mc2)2− (mc2)2

mc2 =

√
T 2 +2mc2T

mc2 ≈ 0.05.

An α particle will therefore be in the part of the Bethe Bloch formula in which the
energy loss is high; its charge is twice as much as the electron charge, which brings a
factor four higher energy loss. Depending on the material, its energy loss normalised
to the material density will be of about 8 MeV/gcm2, which leads to a range of a
few cm in air, and about 20 µm in water. This is consistent with the experimental
evidence for which α radiation can be easily stopped with a thin paper layer.
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In the case of β− and β+ radiation, i.e. electrons and positrons with me =
511keV, the typical energies depend on the decaying nucleus and are between a
few keV to about 1 MeV. An electron with 500 keV of kinetic energy from 40K de-
cays will for example have βγ ≈ 2, close to the minimally ionising particle regime;
while an electron with 100 keV from 60Co decays will have βγ ≈ 0.7, with almost a
factor 3 higher energy loss per cm. Experimentally, a thin aluminium foil is usually
enough to absorb β radiation.

As for γ radiation, i.e. massless photons with energies between a few keV to a few
MeV (or, in the case of X rays, between about 100 eV and a few keV), the energy
loss mechanisms are described in detail in the following sections. One should note
that photons can induce ionisation indirectly, via the photoelectric effect and Comp-
ton effect. We anticipate that the typical range of γ radiation in matter is higher than
for α and β radiation, and can reach a few km in air: long, high-density absorbers
(e.g. lead) must be used in order to safely stop γ radiation.

Take-home lessons

• Charged particles lose their energy, when interacting with matter, due to ioni-
sation or excitation of other atoms, to Coulomb scattering with atomic nuclei
or to radiation emission in the field of atomic nuclei (bremsstrahlung). Photons
instead undergo photoelectric effect, Compton scattering and electron-positron
pair production.

• The atomic model by Niels Bohr assumes a hydrogen atom to be composed of a
proton and an electron, kept together by the Coulomb potential. The mass of the
proton is assumed to be much greater than the mass of the electron, and the atom
is assumed to be stationary, i.e. electrons revolve in stationary, circular orbits
around the nucleus without radiating energy. Angular momentum is conserved
and is assumed to be quantised in units of }: as a result, the energy and radius
of each orbits are quantised (in agreement to the experimental observations).
This model is often sufficient to calculate with good accuracy the energy loss of
particles interacting with matter.

• In Bohr’s model, a particle which travels close to an atom with velocity v receives
a change in momentum (”momentum transfer”) due to the Coulomb interaction
between the particle and atomic electrons. The momentum transfer is only in the
directional orthogonal to the direction of the particle, and is equivalent to having
an ”average force” – independent on time – applied at a distance equal to the
impact parameter b, for a time 2b/v (”scattering time”). This calculation assumes
the electron orbit to be a straight line, an assumption which is accurate only when
v is significantly larger than the orbital velocity of the electron. One can derive,
in the non-relativistic approximation, the energy loss of the incoming particle as
a function of its impact parameter. By combining this quantity with the number
of electrons along the path of the particle, one can calculate the average energy
loss per element path length, dE

dx : it is however necessary to know the minimum
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and maximum impact parameter values of the particle. The minimum value can
be taken from the indetermination principle as the bmin = ∆x≈ }/pe, where pe is
the momentum of the electron; the maximum value can instead be taken from the
fact that the scattering time should be less than the period of the electron orbit,
and correcting the resulting value for relativistic time dilation effects. As a result,
one gets Bohr’s formula, which is able to describe energy loss of a particle in a
medium with reasonable accuracy over a limited kinematic range.

• The Bethe-Bloch formula comes from a more accurate calculation of energy loss,
based on a quantum mechanical approach which is also extended in the relativis-
tic regime. Again, the main task is to express the energy transfer as a function of
the impact parameter – the higher the first, the lower the second. The maximum
energy transfer depends on the mass of the electron, the mass of the particle and
its velocity, and can often be approximated as ∆Emax = 2mβ 2γ2c2. The mim-
imum energy transfer instead depends on the average ionisation energy of the
atom, which is proportional to its atomic number (〈I〉 ∝ Z). The Bethe-Bloch
formula is often expressed in terms of the energy loss per unit path length nor-
malised to the density of the material, 1

ρ

dE
dX , which does not depend strongly on

the material.
• The complete calculation of the Bethe-Bloch energy loss shows three different

regimes. When the incoming particle is very slow (low βγ), it loses energy as
1/β 2. The energy loss 1

ρ

dE
dX then reaches a minimum for βγ ≈ 3÷ 3.5, corre-

sponding to about 2 MeVg/cm2 (minimally ionising particle). Then, the energy
loss rises with 2ln(βγ), due to the fact that the electic field seen by the incoming
particle is increased by the Lorentz boost. For very low βγ the calculation is not
correct, and empirical models must be used; for very high βγ , radiative effects
(bremmstrahlung) become dominant and the energy loss from ionisation starts
becoming negligible. Two corrections are included, the density effect for high βγ

(the electric field is screened due to polarisation of the medium) and the shell
correction for low βγ (slow particles aren’t much faster than electrons).

• The cross-section of the ionisation energy loss can be obtained from the Bethe-
Bloch formula, and is inversely proportional to the energy loss: collisions with
high energy loss are therefore less probable than those with low energy loss.

• The Bethe-Bloch calculation gives the average energy loss. Since energy loss is
a stochastic process, in real life one needs to take into account the thickness of
the material the particle travels in. In thick materials, one can assume that the
energy loss is due to a sequence of collisions in which only a small fraction of
the energy of the particle is lost: one can therefore apply the central limit theo-
rem and calculate the mean and standard deviation of the distribution of energy
loss, when density effect and shell correction are neglected. In the limit of very
thin materials, one cannot apply the central limit theorem and fluctuations in the
energy loss will follow a Landau distribution, which has a most probable value
lower than the average energy loss from the Bethe-Block formula.

• The range of a particle in a medium is defined as its mean path before it loses
all its kinetic energy. Its experimental curve is smeared (due to straggling) with
respect to an ideal integration of the energy loss per unit path length.
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• By comparing the dE
dx of different particles, one may deduce their mass and

charge, and perform particle identification.
• Depending on the angle at which a particle travels in a medium, it may be chan-

neled in a path in which the number of encountered electrons is lowered than
the average. This phenomenon happens for small incident angles, ≈ 1deg, and
β ≈ 0.1.

Questions

• What is the trajectory of the atomic electron, as “seen” by the incident particle,
in Bohr’s calculation of the energy loss by ionisation?

• Are there more electrons in a litre of helium or in a litre of liquid lead?
• When hitting an atomic electron, what’s the particle which loses more energy:

one with a small impact parameter, or one with a large impact parameter?
• Is the Bethe-Bloch formula valid also for electrons?
• Does the mass stopping power of a particle depend on the traveled material?
• Does a particle with βγ ≈ 0.5 lose energy when traveling a material? Is it a “fast”

or a “slow” process?
• You travel with constant speed along a straight road in a region with electric field

E. Do E⊥ and E‖ change? How?
• How does the energy loss of a particle with very high βγ depend on βγ? Why?
• You select α particles and protons with the same speed. Can you tell which one

will lose more energy?
• You send a beam of protons with 3 GeV/c of momentum onto a lead target: how

much energy will they lose per cm?
• What happens when a positron travels in matter?
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5.3 The Cerenkov Radiation

Let’s consider a particle travelling through a medium with a refraction index n and
a velocity βc. It is possible that the particle travels at a speed which is higher than
the one of the light in that medium, which is c/n, if

β >
1
n
.

This phenomenon is usually associated with the emission of a radiation by the mate-
rial (Cerenkov radiation) which is represented in figure 5.162. Atoms of the material
are polarised by the motion of the particle and release radiation in spherical waves.
The envelope of these waves is a plane wave emitted at a certain angle θc. If the
distance covered by the light emission in a time t is equal to the distance covered by
the particle, then

βct cosθc =
ct
n

which gives:

cosθc =
1

nβ

Fig. 5.16 Illustration of the Cerenkov Radiation and its emission angle θ .

The emitted energy per unit of photon frequency ω by a particle of charge ze can
be computed within classical electrodynamics, and corresponds to

d2E
dxdω

=
z2e2

4πε0

ω

c2

[
1− 1

β 2n2(ω)

]

= z2 α}ω

c
sin2(θc(ω)),

where α = e2

4πε0}c = 1
137 is the fine structure constant. A typical Cerenkov detector

is sensitive (and transparent) only to some part of the photon spectrum. The number
of photons with energy equal to }ω can be written as

2 A nice animation which illustrates the effect is available at https://upload.wikimedia.
org/wikipedia/commons/8/87/Cherenkov_radiation-animation.gif.

https://upload.wikimedia.org/wikipedia/commons/8/87/Cherenkov_radiation-animation.gif
https://upload.wikimedia.org/wikipedia/commons/8/87/Cherenkov_radiation-animation.gif
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d2n
dxdω

=
z2α

c
sin2

θc(ω),

and we want to integrate it in an interval of visible frequencies. We obtain

dn
dx

=
z2α

c

ˆ
∆ω

sin2
θc(ω)dω

' z2α

c
〈sin2

θc〉∆ω,

which for a typical range of photon spectrum }ω ≈ 2eV corresponds to

〈dn
dx
〉 ∼ 700 photons cm−1× z2 sin2

θc

Cerenkov emission does not contribute to the energy loss for a particle, since its
intensity is 103 times less than ionisation energy loss, this is rather intuitive since
this emission is due to a polarisation effect. Typically, Cerenkov photon have an
energy of 4eV, and the average energy loss is around 2keV.

5.4 Multiple Scattering

We have computed the Rutherford differential cross section in Chapter 4, Eq. (4.13),
which describes the interaction between a particle of charge z and an atomic nucleus
with atomic number Z, as a function of the scattering angle θ :

dσ

dΩ
=

(
zZe2

16πε0Ek

)2

× 1

sin4 θ

2

.

Here we used Ek to denote the kinetic energy of the charged particle.
From the Rutherford formulation it is clear that the cross section diverges at small

angles,

lim
θ→0

dσ

dΩ
= ∞.

This implies that the average scattering angle is 〈θ〉= 0.
Under the hypothesis that a particle undergoes multiple independent scatterings

in a material, it is reasonable to assume the mean scattering angle to be Gaussian–
distributed. How much will the standard deviation (or the variance) of this Gaussian
be? This is the relevant experimental quantity, as a beam of particles traveling in
matter will somehow be “spread” by that amount.

In an element of solid angle dΩ = 2π sinθdθ ≈ 2πθdθ , the number of collisions
can be expressed then as a function of the kinetic energy, which can be written as
Ek = pv/2:



156 5 Interaction of Particles with Matter

Fig. 5.17 Top left: Cerenkov ring due to the emission of Cerenkov radiation. Bottom: Super
Kamiokande is a detector which is based on Cerenkov radiation detection, the radiator material
is water (50× 103kg) and it is equipped with 11k light detectors. Top right: an image of a recon-
structed Cerenkov ring produced by a muon in the Super Kamiokande detector.

d2n =
NAρ

A
dσdx

=
NAρ

A
dσ

dΩ
2πθdθdx

= 8π
NAρ

A
r2

e z2Z2 (mec2)2

p2v2
θdθdx

θ 4 ,

in which we used the complete Rutherford cross section computed in Eq. 4.13 in the
approximation of small angles.

Given that the average scattering angle is zero, the variance of the scattering
angle is simply the expectation value of the square of the scattering angle,
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θ
2
s =

ˆ
θ

2 d2n
dθdx

dθ

= 8πr2
e
NAρ

A
z2Z2

(
mec2

)2

p2v2

ˆ
dθ

θ

= 8πr2
e
NAρ

A
z2Z2

(
mec2

)2

p2v2 ln
θmax

θmin

From here we can use again the relation between the impact parameter b and the
scattering angle θ of Eq. (4.11) derived in Chapter 4, which can be written in terms
of re and replacing E = 1/2Mv2 as

tan
θ

2
= zZ

mec2

Mv2
re

b
.

For small values of θ , and taking into account the fact that θmax corresponds to
1/bmin and θmin corresponds to 1/bmax, we can write

θmax

θmin
∼ 1/bmin

1/bmax
=

bmax

bmin
.

Now let’s find an estimate for bmax and bmin. We will assume that the impact pa-
rameter must be smaller than the atomic radius in the Thomas–Fermi model, which
is given by

bmax = 〈ratom〉 ∼
(

re

α2

)
Z−

1
3 ,

and that b must be greater than the radius of the nucleus in the phenomenological
model,

bmin = 〈rnucl〉 ∼ [1.3(fm)]A
1
3 ∼ re

2
A

1
3 .

We can therefore write

bmax

bmin
=

2
α2

(
Z
A

) 1
3

Z−
2
3

=



√

2
α

(
Z
A

) 1
6

Z−
1
3




2

∼
(

183Z−
1
3

)2
.

The expression for θ 2
s , moving the square of the expression above out of the loga-

rithm, becomes
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θ
2
s =




4π

(
mec2

)2

α



(

z
pv

)2
[

4r2
e α

NAZ2ρ

A
ln
(

183Z−
1
3

)]

To further simplify this expression it is useful to define the radiation length of a
material, X0, as

1
X0

= 4r2
e α

NAZ2ρ

A
ln
(

183Z−
1
3

)
, (5.6)

and the constant

Es = mec2

√
4π

α
∼ 21MeV.

We can then compute the last integral over x,

〈θ 2
s 〉=

ˆ
θ

2
s dx,

and finally get √
〈θ 2

s 〉= z
Es

ρv

√
x

X0
.

5.5 Radiation in the Nuclear Electrostatic Field

5.5.1 Bremsstrahlung

The Bremsstrahlung (“braking radiation” in German) is a radiation emitted when a
particle is decelerated by the electric field generated by a nucleus.

The calculation of the radiation emitted by an electron which moves across the
nuclear field has been done by Bethe and Heitler in 1934 and takes into account
effects due to quantum mechanics. The process is written as

e− N→ N e− γ,

where the final state photon is emitted in the interaction.
In the reference frame of the particle, the electric field is widened by a factor γ

in the transverse direction as illustrated in Figure 5.7. Let us consider a nucleus of
charge Ze and an incoming particle with charge ze, mass M, velocity v and with
an impact parameter b (see figure 5.18). At the point of minimum distance the ac-
celeration along the direction of motion vanishes, and the velocity is orthogonal to
the particle-nucleus direction. We can write the first principle of dynamics in the
reference frame of the moving particle as

a′ =
γ

M
zZe2

4πε0r2 ,
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Fig. 5.18 Illustration of the scattering of a charged particle by the Coulomb potential of a nucleus.
The moving scattered particle has a mass M, a charge ze and a velocity v, while the nucleus has
charge Ze and the scattering angle is denoted as θ ; b is the impact parameter. The nucleus produces
an electric field which “brakes” the particle in motion and deviates its trajectory.

where we introduced the γ factor as an approximation for the averaged effect of the
force on the probe particle in the region where it is closest to the nucleus.

In classical electrodynamics the radiated power is calculated as3

W ′ =
(ze)2

6πε0

a′2

c3

= γ
2 2

3
z4Z2e6

(4πε0)
3

1
r4M2c3 . (5.7)

The scattering time will then be equal to 2r/γv, which is the time during which
the particle (in its rest frame) ”feels” effectively the Coulomb potential and therefore
the time is shorten by the length contraction due to the velocity of the nucleus in the
probe particle’s rest frame. The energy emitted during this time 2r/γv can then be
calculated as

∆E ′ =
ˆ

W ′dt ′

= γ
4
3

z4Z2e6

(4πε0)
3

1
r3M2c3v

.

The frequency of this phenomenon is ω ′c = γv/2r, and so the emission frequency
spectrum is

dE ′

dω ′
∼ ∆E ′

ω ′c
=

8
3

z4Z2e6

(4πε0)
3

1
r2M2c3v2

Since energy and frequency are linked by a constant, the frequency spectrum is
Lorentz–invariant. (The same argument does not apply for the angle of emission
of the radiation, but in the relativistic limit the bremsstrahlung is emitted at θ ' 0
and is independent on the frequency.) This allows us to use the same formula in the
laboratory reference frame, which can be written in terms of the classical electron
radius re and of the fine structure constant α as

3 See §14.2 from Ref. [1] - page 664.
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dE
dω

=
8
3

r2
e

z4Z2e2

4πε0

m2
e

M2
1

r2β 2c
=

8
3

r2
e z4Z2(}α)

m2
e

M2
1

r2β 2 .

Energy is radiated as photons, and we can calculate the number of radiated photons
with energy Eγ : since Eγ = }ω , one has

dn(Eγ) =
1

Eγ

dE(Eγ),

which can be written in terms of energy spectrum dE
dEγ

as follows (be careful: this
should not be seen as a simple derivative, but is the spectrum in bins of energies that
is divided by the emitted energy to get the number of emitted photons):

dn(Eγ)

dEγ

=
1

Eγ

dE
d}ω

.

We want to calculate the number of radiated photons per unit of length of the
path of the particle. Similarly to the case of Fig. 5.3, we first need to evaluate the
number of targets (i.e. nuclei) at reach for a given impact parameter b ∈ [b,b+db]
and per unit of length dl, which is given by

NAρ

A
2πbdbdl.

From this, we get

d2n
dEγ dl

=
1

Eγ

16π

3
z4

β 2 r2
e α

m2
e

M2
NAZ2ρ

A
b db
r2 .

If we assume that the distance at which the interaction takes place is r = b, we can
integrate over b and obtain

d2n
dEγ dl

=
1

Eγ

16π

3
z4

β 2 r2
e α

m2
e

M2
NAZ2ρ

A
ln

bmax

bmin

In order to integrate this term over the photon energy, many non–trivial effects
should be taken in consideration - in particular the shielding effect of the electrons
in the atom.

As it was done for the energy loss by ionization, it is useful to define the energy
loss in terms of the normalized path length x, where

x = ρl

is expressed in g/cm2. The energy released by bremsstrahlung per unit length will
then be

dE
dx

=

ˆ E

0

d2n
dEγ dx

Eγ dEγ .
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In principle the energy is dependent on the impact parameter: however, in this sim-
plified (approximated) approach we will assume that the energy and the impact pa-
rameter are independent. As in the case of multiple scattering, one can take as inte-
gration limits for the impact parameter the approximated expression of the size of
the nucleus and the size of the atom as a function of the atomic number, and obtain

dE
dx

=
z4

β 2
m2

e

M2 4r2
e α

NAZ2

A
ln
(

183 Z−
1
3

)
E

5.5.2 Bremstrahlung for electrons

For an electron (M = me and z = 1), which in typical nuclear and particle physics
experiments is a relativistic particle (β ∼ 1), the energy loss can be expressed in
terms of the radiation length X0 defined in Eq. 5.6 as

dE
dx
' E

X0
.

A more detailed computation,which takes into account the phenomenon of screen-
ing from the atomic electrons, gives

dE
dx

= 4r2
e α

NAZ2

A

[
ln
(

183 Z−
1
3

)
+

1
18

]
E.

5.5.3 Critical Energy

The critical energy for a given particle in a material is the value of energy for which
the energy loss by radiation equals the energy loss by ionization. For the electron,
an empiric parameterisation of the critical energy is given by

Ec =
800

Z +1.2
MeV.

5.5.4 Interpretation and summary

The radiated power via bremsstrahlung is proportional to the square of the acceler-
ation, i.e. to the inverse square of the mass (because the Coulomb potential does not
depend on the particle mass). Consequently, this phenomenon is more important for
very light particles (the electron and its antiparticle, the positron), while for particles
of higher mass the effect is appreciable only at high energies: this is illustrated by
Fig. 5.19, which shows the energy loss by bremsstrahlung and ionisation for elec-
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trons and positrons. Above a few MeV the bremsstrahlung process dominates over
ionisation: the energy threshold at which this happens is called critical energy, and
depends on the material.

We have seen that the energy loss is almost constant (if expressed as a function of
the particle energy). This is not completely true because the bremsstrahlung scales
with energy!

From Fig. 5.19 one can also see how the ionisation term (which dominates at
low energy) is different for electrons and positrons, as expected (the material is not
made of anti–matter!). Other effects are present at low energies:
• Møller scattering: e− e−→ e− e−;
• Bhabha scattering: e+ e−→ e+ e−;
• Positron annihilation in matter: e+ e−→ γ γ .

Fig. 5.19 Energy loss by bremsstrahlung and ionisation for electrons and positrons in a lead
(Z = 82) target, as a function of their energy. One can see how the ionisation term (which dom-
inates at low energy) is different for electrons and positrons. The critical energy for electrons in
typical materials is∼ 10MeV. Additional effects which give minor contributions to the energy loss
(Møller scattering, Bhabha scattering and positron annihilation) are also shown.
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5.6 Interactions of Photons in Matter

5.6.1 Photoelectric effect

For photons with energy between the ionisation energy for the material and E∼
100keV the dominant interaction is photoelectric effect.

The interaction happens between a photon and an electron which is still bound to
the atom. A similar interaction between a free electron and a photon can not happen
due to the conservation of energy and momentum. In fact, if we denote the photon
and electron energy and momentum as E, Ee and ~p, ~pe, respectively (see Fig. 5.20),
the conservation of the four-momentum norm can be written as

Fig. 5.20 Illustration of the interaction between a photon and an atomic electron and the photoelec-
tric effect. This simple diagram cannot take place alone due to energy and momentum conservation:
what really happens is that the photon interacts with the atom as a whole.

(E +m,~p)2 = (Ee, ~pe)
2 ,

E2 +m2 +2Em− p2 = m2,

Em = 0,

which is impossible.
The complete reaction for photoelectric effect is therefore

γ A→ A+ e−.

If El is the binding energy of the atom, electrons are emitted with energy

T = Eγ −El .

The cross section for this process is very small at high energy and grows when the
photon energy approaches the binding energy of the K, L, M . . . shells. Calculating
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the cross section of this process is hard, because the wave functions of the atomic
electrons are complex to write – although, for photon energies above the binding
energy of the K shell it’s mostly K electrons which contribute. For Eγ � mec2 the
cross section can be approximated as

σph ' kZ5 1
E3

γ

,

where k is a constant which depends only on re, α and mec2, i.e. does not depend
on the material.

Fig. 5.21 Left: cross section of the photoelectric effect as a function of the photon energy Eγ . We
can observe some peak near the energy of levels, which are due to the fact that electrons from more
and more external shells start contributing when the photon energy is high enough.
Right: total photon interaction cross section as a function of Eγ (bold line), with the individual
contributions from photoelectric effect, Compton scattering and pair production.

5.6.2 Compton effect

When the photon energy is much greater than the binding energy of the electron,
one can neglect the binding energy of the latter and consider atomic electrons as
free particles. In this case, the dominant interaction is Compton scattering,
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γ e−→ γ e−.

Let’s compute the energy of the scattered photon, E ′, in the reference frame of
the initial electron of mass m, which is at rest (see figure 5.22).
We will use natural units in order to simplify notation, and denote with the subscript

Fig. 5.22 Illustration of the Compton effect: γ is the photon with energy hν , e is the electron at
rest. After the collision the two particles scatter and in the picture we identify the scattering angle
as θ , i.e. the angle between the photon direction in the initial and final state.

e the electron quantities in the final state. The conservation of energy requires

E +m = E ′+Ee,

while the conservation of momentum can be written as

~p = ~p′+ ~pe,

~pe = ~p−~p′.

We are interested in the photon energy in the final state, so we square the electron
momentum with the goal of reducing the system of equations to one unknown:

p2
e = p2 + p′2−2pp′ cosθ ,

while the energy-momentum equation for the electron can be written as

p2
e = Ee−m2.

We use Ee = E−E ′+m and get

(
E−E ′+m

)2−m2 = p2 + p′2−2pp′ cosθ ,

2Em−2EE ′−2E ′m = −2EE ′ cosθ ,

E ′ (E +m−E cosθ) = Em,

which can be written as
E ′ =

mE
m+E−E cosθ

.

Finally, if we define ε = E/m, we can write the photon energy in the final state as
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E ′ =
E

1+ ε (1− cosθ)
.

In agreement with intuition, the photon energy will be maximum for cosθ = 1 and
minimum for cosθ =−1.

The energy released by the electron is

∆E = E−E ′

= hν−hν
′

= hν− hν

1+ ε (1− cosθ)

=
hν
[
1+ ε (1− cosθ)

]
−hν

1+ ε (1− cosθ)
,

∆E =
εhν (1− cosθ)

1+ ε (1− cosθ)
.

The maximum released energy corresponds to the minimum of E ′, precisely:

∆Emax =
2hνε

1+2ε
= hν

2ε

1+2ε
.

Reintroducing c, we come to the expression

∆Emax =
2ε2mc2

1+2ε
,

which is called the Compton edge.
The differential cross section for Compton scattering has been computed in 1928

by Klein and Nishina using quantum electrodynamics, and can be written as

dσ

dΩ
=

1
2

r2
e

Z
A

E ′

E

[
1+
(

E ′

E

)2

+

(
E ′

E

)
sin2

θ

]
.

Keep in mind that the photon energy in the final state depends on the original photon
energy and from the scattering angle, E ′ = E ′ (E,θ). From this differential cross
section one can compute (in a non-trivial way!) the high-energy limit of the total
cross section for Eγ � mec2,

σCompton ∼ h
Z
A

8πr2
e

3
1

Eγ

,

and the low energy limit,

σCompton ∼ h
Z
A

8πr2
e

3

(
1−2

Eγ

mec2

)
.
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Fig. 5.23 Distribution of the energy of electrons from Compton scattering, which illustrates the
dependence of the Compton edge on the energy hν of the incident photon.

5.6.3 Classical Processes

Two additional processes give minor contributions to the interaction of photons with
matter, Thomson and Rayleigh scattering, which can be calculated using classical
electrodynamics alone.

Thomson scattering corresponds to the electron–photon scattering when elec-
trons can be considered as free and the photon energy is Eγ �mec2. In this case the
process, is modeled as an atomic electron which oscillates under the presence of an
electromagnetic wave, emitting a secondary spherical wave. The cross section for
Thomson scattering is the following:

σ = Z
8π

3
r2

e

and corresponds to the low energy limit of the Klein–Nishina formula.
In Rayleigh scattering, the whole atom takes part to the elastic scattering as a

single object. For this reason this process is also called coherent scattering.
While these two classical processes are important in atomic physics, they can be

neglected when considering high-energy physics experiments, where usually – for
Eγ . 2mec2 – one takes into account only the photoelectric and Compton effects.
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5.6.4 Electron-Positron pair creation

The creation of an electron–positron pair from a single photon would be impossible
in vacuum, because of four-momentum conservation. In order to allow the process
of pair production by a photon, an external electric field is needed. Of course, this
process can happen in presence of a nucleus (“recoil on a nucleus”),

γ N→ e+ e− N,

or of another particle, like an atomic electron (“recoil on an electron”),

γ e−→ e+ e− e−.

Fig. 5.24 Illustration of the creation of an electron–positron pair in the presence of a nucleus N.

Pair production can only happen when the photon energy is above 2mec2 (when
the recoil is on a nucleus) or above 4mec2 (when the recoil is on an electron). In this
second case the cross section is lower (see Fig. 5.25).

As in the case of bremsstrahlung, pair production is screened at high energy,
which happens usually when 2mec2� Eγ � mec2Z−1/3/α . In this case, one has

σpair =
Z2

137
r2

e

(
28
9

ln
2Eγ

mec2 −
218
27

)
.

When Eγ � mec2Z−1/3/α , instead, the nucleus is screened and one has

σpair =
Z2

137
r2

e

(
28
9

ln
183

Z
1
3
− 2

27

)
.

Above the two–electron threshold the cross section rises sharply and when the nu-
cleus appears to be screened it becomes constant.

At high energy one has
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Fig. 5.25 Photon differential interaction cross sections in (a) carbon (Z = 6) and (b) lead (Z = 82),
as a function of the probe photon energy. The agreement between the data and the prediction is
clearly visible. The contributions to pair production in the presence of a nucleus or of an electron
are denoted as κnuc and κe, respectively.
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σ ∝ Z,

and one can write
σ ∼ 7

9
1

X0

A
NA

5.7 Electromagnetic showers

When they travel in a material, electrons and positrons whose energy is above the
critical energy (for electrons/positrons) of that material, or photons whose energy
is above the pair production threshold, can start a cascade process which leads to
the production of many electrons/positrons/photons in the material. This process is
called electromagnetic shower and is at the basis of the detection of these particles,
with particle detectors called calorimeters.

A schematic of this process is shown in Fig. 5.26. Bremsstrahlung and pair
production are the two effects which dominate at high (electron/positron/photon)
energy. A simplified model assumes that for each travelled X0, each photon con-
verts into an electron–positron pair and each electron/positron radiates a photon via
bremsstrahlung. Under this approximation the electromagnetic shower grows up, as
long as the particle energy remains above the critical energy (as the pair production
threshold is usually lower than the critical energy). Since the number of particles
doubles after one X0, the number of particle after a distance x (measured in terms of
radiation lengths of the material, X0) is

N = 2x.

At each step, the energy held by the particle gets divided by 2, so one has

EN =
E0

2x .

Here are some values for the critical energy in different materials:

Material Ec
Pb 5.5 MeV
Cu 24.8 MeV
Fe 27.4 MeV
Al 51.0 MeV

The maximum number of particles in the shower is reached after a certain dis-
tance xmax, for which the mean kinetic energy of the particles will be equal to the
critical energy,

〈E〉= Ec ∼
E
2x ,
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which gives

xmax =
ln E

Ec

ln2
.

For example, in the case of an electron of 100GeV, the maximum number of parti-
cles will be reached for xmax ∼ 13X0, which for lead (X0 ' 0.6cm) corresponds to
∼ 10cm.

Fig. 5.26 Schematic view of an electromagnetic shower. Here X0 indicates the length of each
interaction which causes a loss of energy, due to the splitting described in the text. The process
ends (and the shower “stops”) when the particle energy reaches E < Ec.
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5.7.0.1 Hadronic showers

High energy hadrons usually interact with matter through nuclear processes, with a
much lower cross section than electromagnetic interactions.

Fig. 5.27

For hadrons above few GeV, the nuclear inelastic cross section does not depend
on which hadron is interaction or its energy and it’s usually parameterized as:

σinel = σ0A0.7, σ0 ∼ 35mb

Elastic interaction are present, but do not contribute to the number of particles
and are not considered in the production of hadronic showers, on the other hand,
there are many different inelastic process from which many hadrons can be pro-
duced, developing hadronic showers.

Nuclear processes which leads to hadronic showers can be classified as:
• Intra–nuclear showers, in which the nucleus produces hadrons
• Inter–nuclear showers, in which secondary particles produced in the collisions

interact with other nuclei.
The main inelastic process which contribute are:

• Spallation, in which a collision between two nuclei produces a large number of
secondary hadrons. This is the most probable process;

• Nuclear evaporation, where an excited nucleus undergoes a transition to a stable
state releasing hadrons;

• Nuclear fission, induced by the capture of slow neutrons from a nucleus (see
REF TBA) or after spallation.

Among the particles produced in these interaction there are π0, which decay
immediately in two photons, which starts their electromagnetic shower. Typically
the electromagnetic fraction of an hadronic shower (composed of γ , e±, π0 and η0)
is around

fEM ∼ 30%

Also part of the energy is not transferred to the detector material:
• some nucleus can absorb energy and move to an higher stable state;
• minimum ionising muons can be produced;
• neutral stable (or quasi–stable) particles can be produced (neutrinos, K0

L or neu-
trons);
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Fig. 5.28 Top: Inter–nuclear cascade with spallation. Bottom left: nuclear evaporation. Bottom
right: Nuclear fission.

the detectable part of a shower, via the ionisation of p, π , K±, represent∼ 40% of
the energy. Since a great fraction of the initial energy can not be detected, hadronic
calorimeters have a much lower resolution than e.m. ones.

As analogy to the radiation length X0, it is possible to define the mean hadronic
interaction length λa. As shown in section REF TBA, the mean free path for
hadronic interaction can be expressed as:

〈x〉= λ =
1
µ

where µ is defined as:

µ = σ
NT

V
= σnT

where σ is the inelastic cross section, NT the number of targets, and nT the density
of targets per unit of volume, which can be written as

nT = ρ
NA

A

and finally:

λa =
A

NAρσ
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It is immediate to recognise that λa has the dimension of a length, representing
the mean free path crossed by an hadron before undergoing an inelastic nuclear
interaction.

Fig. 5.29 Hadronic interaction cross section

The inelastic hadronic cross section is quite independent on the hadron energy
(see figure 5.29) and grows at high energy.

Hadronic showers can be described in a similar way as electromagnetic showers,
let’s assume that for each inelastic interaction, which happens after a λa, 〈n〉 hadrons
are produced. The mean energy of the particles after t steps will be:

Et =
E0

〈n〉t

and we can consider that under the threshold Ec ∼ 300MeV hadrons can only in-
teract via elastic scattering or lose their energy by ionisation. This means that the
maximum number of particles is given by:

Et = Ec =
E0

〈n〉t

〈n〉t = E0

Ec

which gives:

tmax =
ln E0

Ec

ln〈n〉
An approximate formula is the following:
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tmax = 0.3ln
(
E [GeV]

)
+0.7

As shown in figure 5.30, the development of the shower along the transverse
direction is quite larger than the one of electromagnetic showers.

Fig. 5.30

Fig. 5.31
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In a very similar way as electromagnetic calorimeters, many types of different
hadronic calorimeters exists, but given also the intrinsic energy loss (which corre-
spond to undetectable energy) there’s no necessity to adopt extremely precise so-
lution. Considering also the typical size of an hadronic shower with respect to an
e.m. shower (which can be easily imagined looking at the comparison between λa
and X0 in table 5.7.0.1) the size of an hadronic calorimeter needs to be greater,
this implies the use of much more material and a greater cost. For these reason
hadronic calorimeters are usually based on sampling with high–Z material. Also, by

λa [cm] X0 [cm]

Fe 16.8 1.76
Pb 16.9 0.56
U 10.5 0.32
C 98.1 18.8

looking at the table 5.7.0.1, it’s easy to see how the use of lead is justified for elec-
tromagnetic calorimeters, but not necessary for hadronic calorimeters (e.g. ATLAS
hadronic calorimeter uses steel as sampling material).

5.8 Post Scriptum on Atomic and Nuclear properties and the
PDG

In addition to providing reviews of the status of all subjects related to particle
physics, the Particle Data Group provides a very convenient, clickable page which
covers all elements and a number of compounds: https://pdg.lbl.gov/
2020/AtomicNuclearProperties/index.html. All properties that have
been discussed in this chapter are available, such as atomic and mass numbers, mean
ionization (excitation) energies, minimum of ionization, as well as dE/dx and range
tables.

Take-home lessons

• When an incoming particle travels in a medium with a refraction index n, and
its speed is higher than the speed of light in the medium (c/n), the atoms
along the particle path will be polarised and release radiation in spherical waves.
These waves interfere constructively, with the result that one observes an enve-
lope (Cerenkov radiation) at an angle θc = arccos1/βn. From classical elec-
trodynamics, the number of emitted photons per unit path length of the in-
coming particle depends on the charge of the incoming particle and θc, 〈 dn

dx ≈
600photons/cmz2 sin2

θc. Cerenkov emission does not contribute significantly to

https://pdg.lbl.gov/2020/AtomicNuclearProperties/index.html
https://pdg.lbl.gov/2020/AtomicNuclearProperties/index.html
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the energy loss of a particle, as its intensity is much lower than ionisation energy
loss (≈ 2keV, to be compared to dE

dx from the Bethe-Bloch formula).
• When a charged particle is decelerated by an electric field, it emits bremsstrahlung

radiation. The energy released per unit path length of the incoming particle is
usually expressed in the form dE

dX ≈ E/X0, where X0 is the radiation length and
depends on the medium.

• The critical energy of a particle is the energy at which the ionisation and radiation
energy loss are equal. This quantity depends on the atomic number of the material
and on the kind of particle.

• Incoming particles can also interact with the Coulomb field of atomic nuclei, in
an extension of Rutherford scattering to multiple collisions. Since the Rutherford
cross-section depends on the scattering angle as sin−4

θ/2, the most probable an-
gle will be 〈θ〉 = 0, and one can assume a Gaussian distribution of θ centered
at zero. The variance of this Gaussian can be calculated (again, after having ex-
pressed the minimum and maximum values of θ as a function of the minimum
and maximum impact parameter values), and depends on the particle charge, the
inverse of its velocity and the square root of its path length, normalised to X0.

• Photons which travel a material with an energy between the ionisation energy of
the material and ≈ 100keV dominantly interact with matter through the photo-
electric effect. The photon interacts with the atomic electron (as required by the
conservation of four-momentum!) and extracts the electron from the atom. The
cross-section of this process depends on the atomic number of the material, Z,
and on the energy of the photon, σ ∝ Z5/E3. Experimentally, one can observe
”spikes” in the measured cross-section in correspondence of the various atomic
electron shells.

• Photons with higher energy effectively see the atomic electrons as unbound, and
undergo Compton scattering. The energy of the scattered photon depends on the
scattering angle via simple relativistic kinematics. The maximum released en-
ergy corresponds to the minimum photon energy and is called Compton edge:
experimentally, it is the point at which the spectrum of the energy released to the
material has a cutoff.

• Photons can also undergo two purely classical processes, Thomson scattering
and Rayleigh scattering. Thomson scattering happens when photons have less
energy than the electron mass, and electrons can be considered as free: the elec-
tron oscillates under the presence of the photon electromagnetic wave, and emits
a secondary spherical wave. Rayleigh scattering happens when the whole atom
takes part to the elastic scattering with the photon (coherent scattering). These
two processes are practically negligible for photons with sufficiently high energy.

• Photons with sufficiently high energy can produce, in the presence of a nucleus
or of an electron (again, as required by the conservation of four-momentum!), an
electron-positron pair. The kinematic threshold for the process in presence of the
nucleus (electrons) is 2me (4me). The cross-section of this process for sufficiently
high-energy photons grows linearly with the atomic number of the material (or,
equivalently, with the ratio between its atomic mass number and X0).
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• Electrons and positrons above their critical energy, or photons above the pair-
production threshold, can start a cascade process which leads to the production
of many of these particles in the material. This process is called electromagnetic
shower and its longitudinal and lateral development can be expressed as a func-
tion of the ratio between the energy of the particle which started the shower and
the electron critical energy in the material.

Questions

• Do neutrons produce Cerenkov radiation?
• Will a photon traveling a medium with a refractive index n = 1.33 produce

Cherenkov light?
• Does a charged particle lose more energy via ionisation or Cherenkov effect?
• Is the Bethe-Bloch equation valid for all particles?
• A charged particle travels in a material. Does it lose more energy at the beginning,

when it reaches βγ ≈ 3 or at the end?
• Which term in the Bethe-Bloch formula affects more the range R =

´ E
0 dE dx

dE of
a charged particle?

• An electron with a momentum of 1 GeV/c travels through your (full) bathtub:
does it produce Cherenkov light?

• A proton with a momentum of 1 GeV/c travels through your (full) bathtub: does
it produce Cherenkov light?

• The evil Count Olaf tries to hit your spaceship with his nasty proton beam
(300 GeV/c), but he forgets to remove the safety plug of his gun, which is made
of lead and is 5 mm thick. Olaf is 1 km apart from your spaceship: should you
worry?

• What’s the most likely energy loss mechanism of protons in Count Olaf’s exper-
iment (above)?

• Is multiple scattering more effective for high-energy or low-energy particles?
• Does brehmsstrahlung affect only electrons?
• You send a beam of 100 GeV electrons on a copper target which is 1.5 cm thick:

how much energy will these electrons lose?
• Does a beam of α particles with βγ = 3 lose more energy when traveling through

1 mm of aluminium or 1 mm of copper?
• Which material would you choose to minimize the probability of a photon to

interact with it through the photoelectric effect: lead, copper, aluminium or iron?
• Is the γ → e++ e− process allowed?
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5.9 Exercises

Exercise 19 Sezione d’urto
La reazione α +59

27 Co→61
29 Cu+2n permette di produrre l’isotopo radioattivo 61

29Cu.
Si consideri un bersaglio di cobalto 59

27Co di densità ρ = 8.9g/cm3, di area S =
2.25cm2 e spessore d = 2.5 µm. Il fascio di particelle α , di corrente I = 10 µA,
copre uniformemente il bersaglio di cobalto. All’energia delle particelle α incidenti
la sezione d’urto sia σ = 0.66barn.

1. Calcolare il numero di nuclei 61
29Cu prodotti al secondo.

Exercise 20 Perdita di energia per ionizzazione
In un centro di radioterapia, degli elettroni sono accelerati da un acceleratore

lineare fino a un’energia di 25 MeV.
1. Calcolare l’energia che depositano in 1 mm di tessuto umano, assumendo

per esso caratteristiche pari a quelle dell’acqua.
2. Quanto piombo è necessario per ridurre l’energia degli elettroni fino ad un

valore pari all’energia critica del piombo? Si trascurino le perdite di energia
per ionizzazione.

3. Trascurando le perdite di energia per irraggiamento al di sotto dell’energia
critica, qual è lo spessore di piombo aggiuntivo necessario a fermare gli
elettroni, assumendo conservativamente che la loro perdita di energia per
ionizzazione nel piombo sia costante e pari a circa 11 MeV/cm? Si assuma
che per gli elettroni valga la normale formula di Bethe-Bloch,

−dE
dx

=Cρ

(
z
β

)2 Z
A

[
log

2mec2(βγ)2

I
−β

2−δ/2

]
,

e che:

• acqua: ρ = 1g/cm3, 〈I〉 = 80eV, Ec = 80MeV, X0 = 36.1cm, Z/A =
0.55; per elettroni da 25 MeV in acqua, δ/2 = 4.5;

• piombo: ρ = 11.35g/cm3, 〈I〉 = 823eV, Ec = 7.4MeV, X0 = 0.56cm,
Z/A = 0.40, δ/2 = 0.3.

Exercise 21 Perdita di energia per ionizzazione
Nell’atmosfera si possono formare e propagare degli sciami estesi di raggi cos-

mici costituiti essenzialmente di fotoni, elettroni e muoni, questi ultimi chiamati
componente dura dello sciame.

1. Calcolare l’energia persa dai muoni in uno sciame, se essi hanno un’energia
pari a Eµ = 1000GeV nell’attraversare uno spessore di roccia di 1 cm. Si
assuma per la roccia una densità ρ = 3.0g/cm3; Z/A = 1

2 e il potenziale
medio di ionizzazione 〈I〉= 200eV.



180 5 Interaction of Particles with Matter

2. Il fascio di muoni cosmici di energia E = 1000GeV incide verticalmente
sulla superficie del terreno e si assume per semplicità che nella roccia si
abbia: 1

ρ

dE
dx =costante= 2MeV/gcm2. Calcolare lo spessore di roccia che

riduce in quiete tali muoni.

Exercise 22 Spettrometro, ionizzazione, multiplo scattering, assorbimento
Un fascio contenente muoni e pioni carichi di impulso pari a 1 GeV/c attraversa

un campo magneteico di 0.57 T. Successivamente incide su due scintillatori di
NaI(Tl) di spessore d = 5cm, posti a distanza D = 5m uno dall’altro.

1. Calcolare il raggio di curvatura della traiettoria nel campo magnetico;
2. Calcolare l’energia depositata nel primo scintillatore rispettivamente da pi-

oni e muoni (si trascuri il termine δ (γ) nella formula di Bethe-Bloch) ed il
tempo di volo tra i due scintillatori;

3. Calcolare la deviazione media rispetto alla traiettoria centrale con cui i
muoni arrivano sul secondo scintillatore, a causa dello scattering multiplo
nel primo scintillatore;

4. Per attenuare il fascio di pioni, si interpone un assorbitore in piombo tra i
due scintillatori. Assumendo per i pioni in questione una lunghezza di inter-
azione nel piombo di 20 cm, si determini lo spessore necessario affinché il
50% dei pioni interagisca prima di arrivare sul secondo scintillatore.
Si usino:

• mπ = 139.6MeV/c2, mµ = 105.7MeV/c2

• Per il mezzo, NaI(Tl), si usino ρ = 3.67g/cm3, I = 452eV, X0 = 2.59cm,
Z/A = 0.45.

Exercise 23 Spettrometro, Cherenkov a soglia
Un fascio di particelle contenente e+, µ+, π+, K+ e protoni, tutti collineari,

entra in uno spettrometro magnetico lungo L = 50 cm con un campo magnetico B =
1.7T ortogonale alla traiettoria delle particelle. In uscita dal magnete le particelle
attraversano un collimatore posto ad una distanza D = 10m lungo la loro traiettoria,
come in figura.

1. A che distanza x dalla linea di volo iniziale escono le particelle che hanno
un impulso di 2 GeV/c?

2. Quale deve essere la larghezza minima d del collimatore per selezionare
particelle prodotte con momento entro±0.5% dal valore centrale? Si trascuri
la dipendenza di x dall’impulso delle particelle.
Posizionando dei contatori Cherenkov a soglia dopo il collimatore si vogliono
identificare le particelle K+.

3. Quanti contatori Cherenkov sono necessari? Che valore di indice di rifrazione
ni si può scegliere per ciascuno di essi (si consideri per tutte le particelle im-
pulso pari a 2 GeV/c).
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Esercizio 1

Un fascio di particelle contenente e+, µ+, ⇡+, K+ e protoni, tutti collineari, entra in
uno spettrometro magnetico lungo L = 50 cm con un campo magnetico B = 1.7 T ortog-
onale alla traiettoria delle particelle. In uscita dal magnete le particelle attraversano un
collimatore posto ad una distanza D = 10 m lungo la loro traiettoria, come in figura.

B

L

x

d

D

lunedì 5 giugno 17

a) A che distanza x dalla linea di volo iniziale escono le particelle che hanno un
impulso di 2 GeV/c?

b) Quale deve essere la larghezza minima d del collimatore per selezionare particelle
prodotte con momento entro ±0.5% dal valore centrale? Si trascuri la dipendenza
di x dall’impulso delle particelle.

Posizionando dei contatori Cerenkov a soglia dopo il collimatore si vogliono identificare
le particelle K+.

c) Quanti contatori Cerenkov sono necessari? Che valore di indice di rifrazione ni si
può scegliere per ciascuno di essi (si consideri per tutte le particelle impulso pari
a 2 GeV/c).

[me = 0.511 MeV/c2; mµ = 105 MeV/c2; m⇡+ = 140 MeV/c2; mK = 494 MeV/c2;
mp = 939 MeV/c2]

Soluzione 1

a) In uno spettrometro magnetico vale p[GeV ] = 0.3B[T ]R[m], pertanto le parti-
celle con impulso P = 2 GeV/c si muovono su una circonferenza con raggio di
curvatura R = P

0.3B
= 3.92 m.

L’angolo di deflessione vale ✓ = sin�1(L/R), che per piccoli angoli si può ap-
prossimare con ✓ ⇠ L/R.
La distanza dalla linea di volo iniziale a cui escono le particelle è
x = R(1 � cos✓) ⇠ R✓2

2
= L2

2R
= 3.19 cm

1

Si usino: me = 0.511MeV/c2; mµ = 105MeV/c2; mπ+ = 140MeV/c2;
mK = 494MeV/c2; mp = 939MeV/c2

Exercise 24 Cinematica, ionizzazione, Cerenkov
Il rivelatore SuperKamiokande è un grosso cilindro verticale riempito di ac-

qua (indice di rifrazione n = 1.33, densità ρ = 1g/cm3). I neutrini atmosferici
di tipo muonico (νµ ) sono studiati rivelando la luce Cherenkov emessa dai muoni
prodotti nell’interazione con i nuclei dell’acqua. Assumendo che si vogliono mis-
urare soltanto i muoni di impulso fino a pmax = 1GeV/c si determini:

1. qual è il percorso massimo dei muoni nell’acqua, considerando un percorso
rettilineo e trascurando l’effetto del multiplo scattering

2. per quale parte di questo percorso il muone emette luce Cherenkov
3. qual è il raggio del cerchio illuminato sulla base del cilindro da un muone

di impulso pµ = 1GeV/c prodotto lungo l’asse del cilindro, ad un’altezza
h = 50cm dalla base stessa

Exercise 25 Spettrometro magnetico, perdite di energia, multiplo scattering
Un fascio di elettroni e pioni negativi aventi un impulso p = 50GeV/c attraversa

un magnete lungo L = 2m che produce un campo magnetico uniforme B = 2.2T.
All’uscita del magnete è posto uno scintillatore plastico di spessore ∆x = 2cm,
densità ρ = 1.03gcm−3 e lunghezza di radiazione X0 = 40cm. Determinare:
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1. il raggio di curvatura R e l’angolo di deviazione per i pioni
2. la distanza dalla linea di volo iniziale con cui escono dal magnete i pioni
3. l’energia persa dai pioni e dagli elettroni nell’attraversare lo scintillatore (si

trascuri l’effetto densità δ (γ))
4. l’angolo medio di deviazione dovuto allo scattering multiplo Coulombiano

(nell’attraversare lo scintillatore) per entrambe le particelle
Si usino mπ− = 139.6MeV/c2, 〈I〉= 200eV, Z/A= 0.5, me = 0.511MeV/c2.

Exercise 26 Energia di soglia, angolo di apertura nel laboratorio
Un fascio di pioni carichi interagisce con un bersaglio di protoni fermi nel sis-

tema di riferimento del laboratorio. Si vuole studiare la reazione π−+ p→Λ 0+L0.
Calcolare l’energia minima del pione affinché la reazione possa avvenire. Le masse
delle particelle della reazione sono: mπ = 140MeV/c2, mp = 938MeV/c2, mΛ =
1116MeV/c2, mK = 498MeV/c2

1. Se l’energia del fascio è Eπ = 2.0GeV, calcolare, se esiste, l’angolo mas-
simo nel laboratorio con cui viene emessa la particella Λ 0.

Exercise 27 Scattering Rutherford
Un fascio di particelle α di 100 MeV di energia e 0.32 nA di corrente4 collide

contro un bersaglio fisso di alluminio, spesso 1 cm. Una sperimentatrice prende un
rivelatore di 1cm×1cm di superficie, e lo posiziona ad un angolo di 30° rispetto al
fascio di particelle, a 1 m di distanza dal bersaglio. Quante particelle α incideranno
sul rivelatore ogni secondo?

Exercise 28 Sezione d’urto, unità di misura
Nell’interazione neutrino-nucleone, ad alta energia, si può assumere che la

sezione d’urto (in unità naturali) sia:

σνN =
2G2

F s
9π

essendo GF la costante di Fermi ed s il quadrato dell’energia totale nel sistema di
riferimento del centro di massa. La costante di Fermi vale: GF = 1.2×10−5 GeV−2.
Determinare l’energia dei neutrini in corrispondenza della quale la Terra diventa
opaca ai neutrini, cioè essi non riescono più ad attraversarla (si assuma il raggio
terrestre pari a 6000 Km, la densità media della Terra pari a 2.15 g/cm3 e la massa
del neutrino nulla).

Exercise 29 Effetto fotoelettrico, unità di misura

4 Per una spiegazione breve su come (e perché) si misura la corrente di un fascio di par-
ticelle, vedi https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.
beam_current. Una trattazione più completa è data ad esempio da https://cds.cern.
ch/record/1213275/files/p141.pdf.

https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.beam_current
https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.beam_current
https://cds.cern.ch/record/1213275/files/p141.pdf
https://cds.cern.ch/record/1213275/files/p141.pdf
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In un esperimento di Fisica dei Materiali si intende studiare l’effetto fotoelettrico
inviando fotoni di lunghezza d’onda λ = 200nm su una lastrina d’argento. Sapendo
che l’energia necessaria per estrarre un e− dall’atomo di argento è W = 4.73eV,
stabilire se l’effetto fotoelettrico si realizza e, in caso affermativo, determinare
l’energia cinetica degli elettroni che fuoriescono dal metallo.
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Chapter 6
Nuclear and Particle Decays

It is a fundamental observation that certain nuclei decay to other nuclei. For instance
the nuclear α , β and γ radiations correspond to the decay of nuclei, which implies
either a change of the nature of the nucleus (α , β radiation) or just a transition from
an excited state to a lower-energy state of the same nucleus. The decay – and, in
general the transformations – of nuclei will be extensively discussed in the following
chapters (nuclear radioactive decays and nuclear fission processes). But decays do
not involve only atomic nuclei: elementary particles are not necessarily stable and
may decay as well. Electrons, for example, do not decay, but muons do.

Quantum metastable systems can decay to different reachable favoured states
through tunneling. We will therefore first describe the decay of particles in this
context using the formalism of time-independent scattering.

6.1 Decay laws and metastable systems in the time-independent
scattering framework

As we have discussed in Chapter 4.7, a quantum bound state has negative energy,
and can be for instance modeled by a particle in a square well.

6.1.1 Scattering from a one-dimensional square well

Let’s investigate a specific example of stationary (i.e. time-independent) scattering
that will be very useful to our discussion: a square potential of width R and depth
−V0 with a “hard wall” on the left, i.e. an infinite potential for negative x). We write
this as

185
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V =





+∞

−V0
0

x < 0
0≤ x≤ R

x > R
(6.1)

Let’s consider a scattering from the right: the hard wall imposes1 that ψ(x < 0) =
0. We can solve the scattering problem, as we have seen in Chapter 4.7, looking for
solutions in the form

ψ = Aeikx +Be−ikx, where k =

√
2mE
}

.

We will do the same also when we will extend the calculation to a three-
dimensional world, with a potential with spherical symmetry. In fact, the hard wall
is not strictly necessary and the 3D problem can be solved in the same manner, con-
sidering the s−wave (l = 0) solutions to a square well in r. We are allowed to do so
provided that we consider sufficiently low-energy particles (and a sufficiently short
range of the potential). This is the case for low-energy nuclear processes, given the
fact that the force which keeps protons and neutrons together in the nucleus (the
strong force) is clearly short-ranged.

So, let’s solve the 1D problem first. The hard wall imposes that A =−B. We will
therefore be looking for solutions where the scattered wave has a simple phase shift
with respect to the incoming wave, e−ikx, i.e. the wave which propagates towards
the left. This can be written as follows for x→+∞:

ψ = A(eikx+2iδ − e−ikx) = Aeiδ 2isin(kx+δ ).

In the region of the well, the wave function will then be described by the Schrödinger
equation, with solutions

ψ = A(eik′x− e−ik′x) = 2iAsin(k′x), where k′ =

√
2m(E +V0)

}
.

We impose the continuity of the wave function and its derivative at the edge of
the well, i.e. x = R, obtaining

{
eiδ sin(kR+δ ) = sin(k′R)

eiδ k cos(kR+δ ) = k′ cos(k′R)
(6.2)

and the ratio of these two expressions yields

k cot(kR+δ ) = k′ cot(k′R).

This is where one can see that the condition A =−B is not really necessary here.
In order to simplify the notation, we can use ξ ≡ k′cot(k′R), which yields

1 It would not be the case if the potential wasn’t infinite for x < 0.
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k cot(kR+δ ) = k
cotkRcotδ −1
cotkR+ cotδ

= ξ ,

k cotδ cotkR− k = ξ cotkR+ξ cotδ ,

(k cotkR−ξ )cotδ = ξ cotkR+ k,

cotδ =
ξ cotkR+ k
k cotkR−ξ

=
ξ coskR+ k sinkR
k coskR−ξ sinkR

, (6.3)

and using the simple expression of the cot trigonometric function,

cotθ ≡ α = i
eiθ + e−iθ

eiθ − e−iθ ⇒ e2iθ =
α + i
α− i

,

we can write that

e2iδ =
ξ coskR+ k sinkR+ i(k coskR−ξ sinkR)
ξ coskR+ k sinkR− i(k coskR−ξ sinkR)

(6.4)

Now, using the optical theorem (Sec. 4.7.6), we can write the total cross section
for the s-wave process (l = 0) as

σ =
4π sin2

δ0

k2 . (6.5)

Since we can write δ = δ0, we have

sin2
δ =

1
1+ cot2 δ

=
(coskR−ξ/k sinkR)2

1+(ξ/k)2

which then results in the following expression for the cross section:

σ = 4π
(coskR−ξ/k sinkR)2

k2 +ξ 2 . (6.6)

There are many interesting properties that can be derived from this formulation of
the square well which pertain more to an in-depth discussion of scattering theory.
One of these very interesting properties will be discussed in the next section.
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6.1.2 The attractive square well in nuclear interactions: the
Breit-Wigner formula

The square well discussed above represents an attractive potential of great impor-
tance in nuclear physics. It is interesting to note from the expression in Eq. (6.5) that
the cross section will be maximal for δ = π/2. This is also the case for any of the
partial waves as is clear from Eq. (4.37).

If we call ER the energy for which this maximum is reached, we can use the
energy-momentum relation to express δ as a function of E instead of k, δ (ER) ∼
π/2. We can then expand the expression of cotδ near this maximum,

cotδ (E) = cotδ (ER)+(E−ER)
∂ cotδ

∂E
+O[(E−ER)

2].

If we define
2
Γ

=
∂ cotδ

∂E
,

given that sin2
δ = 1/(1+ cot2 δ ), using the expansion above we get

σ =
4π sin2

δ

k2

=
4π

k2
1

1+
(E−ER)

2

Γ 2/4

=
π

k2
Γ 2

Γ 2

4
+(E−ER)2

(6.7)

This leads to resonances at specific energies with a shape in energy which is very
characteristic, as illustrated in Fig. 6.1. One has an enhancement of the cross-section
when the energy is equal to ER, and the shape of the cross-section has a full-width
at half-maximum (FWHM) which is equal to Γ .

6.2 Back to the plane wave model

This transition can be treated similarly to the dumped harmonic oscillator. Let us
consider the wave function of a free particle2 (plane wave),

ψ(~x, t) = ψ(~x)e−
iEt
}

.

2 We’ll keep } in these equations.



6.2 Back to the plane wave model 189

Γ
FWHM

ER

Fig. 6.1 Illustration of the cross section distribution as a function of energy, for a resonant process.

As done for the dumped oscillator, let’s include an imaginary term at the expo-
nential, by substituting E with

E = E0− i
Γ

2
,

which implies that Γ has the same units as energy. We chose the factor 2 in order
to have a convenient expression of the probability of finding the particle in a given
point, as

ψ(~x, t) = ψ(~x)e−
iE0t
} e−

Γ t
2} , (6.8)

∣∣ψ(~x, t)
∣∣2 =

∣∣ψ(~x)
∣∣2 e−

Γ t
} . (6.9)

Let’s now consider the decay of N particles from the probabilistic point of view.
We introduce the mean lifetime of a particle τ , under the following hypotheses:3

• the decay probability is an intrinsic property of a given particle;
• the ratio between decay probability and time does not depend on time;
• given a set of N particles, the decay probability of each single particle does not

depend on N.

Under these hypotheses, the differential of the probability (i.e. the probability of
a particle to decay in a time dt) can be written as:

d p = λdt, (6.10)

where λ = 1/τ is the decay constant. If we now take back the full set of particles,
from a statistical point of view the probability that, at the time t, dN of them has
decayed, is:

d p =− dN
N(t)

3 In other words, we are assuming that particle decays are Poisson processes.
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in which we used N(t) to denote the number of particles at time t. Using Eq. (6.10)
we can write

−dN = λN(t)dt,

− [lnN]tt0 = λ t−λ t0,

and if we call N(0) = N0, and with no loss of generality set t0 = 0, we get

N(t) = N0e−λ t .

The mean lifetime of a particle can be computed from the probability of not
having decayed after a time t,

P(t) =
N(t)
N0

= e−λ t ,

as

τ ≡ 〈t〉 ≡
´

∞

0 tP(t)dt´
∞

0 P(t)dt

=

´
∞

0 te−λ t dt´
∞

0 e−λ t dt

=

´
∞

0 te−λ t dt

− 1
λ

[
e−λ t

]∞
0

= λ

ˆ
∞

0
te−λ t dt.

We can solve this integral by parts. First, identify u(x)≡ x and dv(x)/dx≡ e−x, i.e.

v(x) =−e−x.

Since udv = d(uv)− vdu, we can write

τ =

{[
−xe−x]∞

0 +

ˆ
∞

0
e−x dx

}
1
λ
.

Now, considering that

lim
x→∞

ex

x
=+∞

and that
lim
x→∞

xe−x = 0

we get

τ =
1
λ

[
−e−x]∞

0 =
1
λ
,

which defines the mean lifetime of a particle as
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τ =
1
λ
.

Some useful definitions arise from the concept of mean lifetime: the activity of a
radioactive source at a given time is defined as

A(t) = λN(t) = λN0e−λ t ,

and the half-life T1/2 is defined as the time needed before half of a set of N particles
has decayed: in formulas,

N(T1/2) =
N0

2
, which gives

e−λT1/2 =
1
2

i.e.
T1/2 = τ ln2.

We can now put in a relation the exponential law for the decay probability and
the one obtained from equation 6.8:

e−
Γ t
} = e−

t
τ ,

which leads to
Γ =

}
τ
.

This equation can be seen as consistent with Heisenberg’s uncertainty principle for
time and energy measurements.

6.3 Breit-Wigner formula and width of a resonance

As for the dumped harmonic oscillator, it is possible to compute the wave function
as a function of energy, py performing the Fourier–transform

χ(E) =
1√
2π

ˆ
∞

−∞

ψ(~x, t)ei Et
} dt.

If we assume ψ(~x, t) = 0 for t < 0, we can write

χ(E) =
ψ(0)√

2π

ˆ
∞

0
e−i

(
E0−i Γ

2

)
t
} ei Et

} dt,

and we have
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χ(E) =
ψ(0)√

2π

ˆ
∞

0
e
[
i(E−E0)−Γ

2

]
t
} dt

=
ψ(0)√

2π

−i}
(E−E0)+ iΓ

2

[
e
[
i(E−E0)−Γ

2

]
t
}

]∞

0

=
ψ(0)√

2π

i}
(E−E0)+ iΓ

2

.

Then, the probability of having a particle with energy E is

P(E) ∝
∣∣χ(E)

∣∣2 =
∣∣ψ(0)

∣∣2

2π

}2

(E−E0)
2 + Γ 2

4

,

which is known as the Breit–Wigner formula,

P(E) ∝
1

(E−E0)
2 + Γ

4

,

which has the characteristic shape of a resonance, also known as a Lorentian func-
tion. Here Γ represents the full-width at half-maximum (FWHM) of this distribu-
tion.

Fig. 6.2 Graphic of the Laurentian form of P(E)

This representation of the particle in the energy Fourier–space highlights the re-
lationship between its decay width and its decay time.

If we collide two particles A and B that produce a given final state, and mea-
sure the corresponding interaction cross-section as a function of the center-of-mass
energy, we may observe that the cross section shows “peaks” (i.e. resonances) for
certain energy values, in a very similar way as harmonic oscillators do when the
frequency of an external force varies. In particle physics processes, the presence of
a peak is associated with the formation of a quantum state, which can be a particle
or an excited state of a composite system.

For example, the reaction A+B→C+D+X , can happen through an intermedi-
ate state, such as

A+B→ Y +X →C+D+X ,
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where Y decays to C+D.4

Experimentally, one can measure the presence of resonances by measuring, for
different values of the center-of-mass energy

√
s of the system A + B (which is

obtained, for example, by measuring the energy of colliding particle beams in an
accelerator), the cross–section of production of the final state C+D+X . When the
center-of-mass energy approaches the mass of the intermediate state Y ,

√
s ≈ mY ,

one will observe a resonant increase in the cross–section. The full-width at half-
maximum of the distribution of the cross–section as a function of

√
s will be Γ =

}/τ .
Equivalently, one can observe the presence of resonances also by measuring the

invariant mass distribution of the system C+D. This distribution will show a peak
when the invariant mass equals to mY . This is the way the Higgs boson H was dis-
covered in 2012 by the ATLAS and CMS experiments at the Large Hadron Collider:
we observed for example an increase in the number of events with two photons, in
correspondence of an invariant mass of the di-photon system of about 125 GeV/c2.

6.4 Radioactive decays

Historically, three main different kinds of radioactive emission have been observed:

• alpha radiation: with the emission of α particles (i.e. helium nuclei), positively
charged (z =+2 in units of e) and a mass of 3.726GeV: if we consider a nucleus
A with Z protons and N neutrons, it will transform in the nucleus A′ via the
process

A(Z,N)→ A′(Z−2,A−4)+α;

• beta radiation: corresponding to the emission of an electron or of a positron (his-
torically also called as “beta particle”), with mass equal to me = 0.511MeV; one
can have one of the two5 processes6

4 A process like this is often also indicated as

A+B→ Y (→C+D)+X .

5 One could observe that the electron capture process

A(Z,N)+ e−→ A(Z−1,N +1)+νe

is effectively described in the same way as the beta decay, as the involved particles and the under-
lying interaction are related.
6 Note that the process with the emission of a positron would not be allowed in vacuum, as
mp < mn. It can only happen if another particle, like the nucleus, can ensure energy-momentum
conservation.
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A(Z,N)→ A′(Z +1,A−1)+ e−+ ν̄e,

A(Z,N)→ A′(Z−1,A+1)+ e++νe,

which are called β− and β+ decays, respectively;
• gamma radiation (emission of a photon), neutral and massless, due to the de-

excitation of a nucleus via a process of the kind

A(Z,N)∗→ A(Z,N)+ γ;

Note that gamma radiation does not alter the chemical properties of the nucleus (we
have A both before and after the gamma decay).

The typical momenta measured in these processes is around 1MeV for beta and
gamma emissions and around 200MeV for alpha. The underlying process which is
responsible for these radioactive decays is in general the emission of a particle in a
transition between two nuclear quantum states (from a less bound to a more bound
state).

Let’s consider the kinematics of the decay process

N→ D1 +D2.

In the reference frame of the decaying nucleus, the conservation of energy implies

EN = mNc2 = mD1c2 +KD1 +mD2c2 +KD2 ,

where KDi denotes the kinetic energy of the i-th nucleus. Defining Q = mNc2 −
mD1c2−mD2c2 as disintegration energy, energy conservation implies that

Q = KD1 +KD2

defines the amount of kinetic energy held by the decay products (also called “frag-
ments”). In general, the decay is kinematically allowed only if Q > 0.

We can estimate Q for alpha and beta decays:

• for alpha decays, given an initial nucleus with A and Z,

Q = M(A,Z)c2−M(A−4,Z−2)c2−Mα ;

• for the β− decay (i.e. the process with the emission of an electron),

Q = M(A,Z)c2−M(A,Z +1)c2−mec2;

• for the β+ decay (i.e. the process with the emission of a positron),

Q = M(A,Z)c2−M(A,Z−1)c2−mec2.

Let’s find an expression for the kinetic energy of the fragments in the reference
frame of the initial nucleus: starting from the conservation of momentum,
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~Ptot
N = 0,

PD1 = PD2 ,

we can write the energy of the daughter particle 1 as
√

m2
D1

+P2
D1

= mD1 +KD1 ,

m2
D1

+P2
D1

= m2
D1

+K2
D1

+2mD1KD1 ,

P2
D1

= K2
D1

+2mD1KD1

= K2
D2

+2mD2KD2 ,

and using the definition of Q we can write

K2
D1
−K2

D2
=
(
KD1 −KD2

)(
KD1 +KD2

)

= Q
(
KD1 −KD2

)
,

so that

K2
D1
−K2

D2
= 2mD2KD2 −2mD1KD1 ,

Q
(
KD1 −KD2

)
= 2mD2KD2 −2mD1KD1 ,

QKD1 +2mD1KD1 = QKD2 +2mD2KD2 ,

KD1

KD2

=
2mD2 +Q
2mD1 +Q

, and we can solve for the kinetic energy of particle 1, as

KD1 =
2mD2 +Q
2mD1 +Q

KD2

=
2mD2 +Q
2mD1 +Q

(
Q−KD1

)

KD1

(
1+

2mD2 +Q
2mD1 +Q

)
=

2mD2 +Q
2mD1 +Q

Q

which becomes

KD1

[
2
(
mD1 +mD2 +Q

)]
=
(
2mD2 +Q

)
Q,

i.e.
KD1 =

2mD2 +Q
2
(
mD1 +mD2 +Q

)Q,

and a corresponding analogous relation for KD2 ,
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KD2 =
2mD1 +Q

2
(
mD1 +mD2 +Q

)Q.

In other words, if we know the Q-value of a decay and the masses of the daughter
particles, we can immediately know the kinetic energy of the daughter particles.

6.5 Natural and secular equilibrium

In many different cases the number of radioactive atoms in a system can increase
with time. One example is the process

n+14 N→14 C+ p,

in which a nitrogen atom becomes a radioactive isotope of carbon (i.e. same atomic
number but different mass number as carbon). This reaction happens in the high
atmosphere, in which a flux of free neutrons is created by the scattering of cosmic
rays with air molecules. Neutrons produced in this way are slowed down due to col-
lisions with air molecules and, after their velocity has been reduced enough, they
are captured by nitrogen atoms. The reaction in which an incoming particle collides
with an atomic nucleus, producing lighter particles in the final state (like protons,
neutrons, alpha, etc...) is called spallation. An increased number of radioactive el-
ements can also be the consequence of the activity of a nuclear reactor, a particle
accelerator or the presence of a chain decay reaction.

We can write the variation in number of radioactive atoms (particles, in the fol-
lowing) in all these cases as the sum of a term which corresponds to an increase in
number of particles, and a term which takes into account their decay:

dN
dt

= R−λN, (6.11)

where R > 0 and λ = 1/τ is the decay constant of the considered particles. The
number of particles reaches equilibrium when

R = λN,

or
N =

R
λ
.

Equation 6.11 can also be integrated between a time 0 and t,
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dN
dt

= −λ

(
N− R

λ

)
,

dN
N− R

λ

= −λ dt

[
ln
(

N− R
λ

)]N(t)

N0

= e−λ t ,

which gives the following expression for N(t),

N(t) =
R
λ
+

(
N0−

R
λ

)
e−λ t ,

where we called as before N0 = N(0).
What happens if we have a decay chain

S1→ S2→ S3,

in which S1 and S2 are radioactive particles, with decay constants λ1 and λ2, and S3
is a stable particle? The corresponding populations evolve according to the laws

dN1

dt
=−λ1N1, (6.12)

dN2

dt
= λ1N1−λ2N2, (6.13)

dN3

dt
= λ2N2, (6.14)

in which (6.12) is the simple decay law, (6.13) has the contribution of the decays of
S1 and (6.14) depends only on the amount of decays of S2 (as S3 is assumed to be
non–radioactive).

Equation (6.12) can be resolved as

N1(t) = N1,0e−λ1t .

Equation (6.13) can be resolved with the method of the variation of parameters, as
it has the form

y′(t)+a(t)y(t) = f (t).

We must first find the solutions of the associated homogeneous equation,

y′(t)+a(t)y(t) = 0,

which are of the form

y(t) = K exp
[
−
ˆ

a(t)dt
]
,
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where K is a constant, and then look for a general solution

y(t) = K(t)exp
[
−
ˆ

a(t)dt
]

.
In our case the homogeneous equation is:

dN2

dt
+λ2N2 = 0,

and the candidate solution is

N2(t) = K(t)e−λ2t .

We substitute it in Eq. (6.13) and obtain

dN2

dt
+λ2N2 = λ1N1,0e−λ1t ,

K′(t)e−λ2t = λ1N1,0e−λ1t ,

K(t) =
λ1

λ2−λ1
N1,0e(λ2−λ1)t +C,

where C is a constant to determine. Therefore

N2(t) =
λ1

λ2−λ1
N1,0e−λ1t +Ce−λ2t

, and using N2(t = 0) = N2,0 we can determine C as

N2,0 =
λ1

λ2−λ1
N1,0 +C,

C = N2,0−
λ1

λ2−λ1
N1,0.

Overall, we have

N2(t) =
λ1

λ2−λ1
N1,0

(
e−λ1t − e−λ2t

)
+N2,0e−λ2t .

We also obtain the following for N3(t):

N3(t) =
ˆ t

0
λ2N2(t ′)dt ′

.
Let’s analyse the case in which λ2 � λ1, in which the term e−λ2t can be ne-

glected: we have
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N2(t) =
λ1

λ2
N1,0e−λ1t

=
λ1

λ2
N1(t),

which can be written as
λ1N1 = λ2N2,

which means that the activities of S1 and S2 are equal. This leads to the concept of
secular equilibrium,

N2

N1
=

λ1

λ2
=

τ2

τ1

where the relative concentration of different elements is equal to their mean lifetime
ratio.

The concept of secular equilibrium applies also to longer decay chains of the
form

S1→ S2→ S3→ S4→ S5→ ··· → S f ,

for which one can write

dN1

dt
= −λ1N1

dN2

dt
= λ1N1−λ2N2

dNk

dt
= λk−1Nk−1−λkNk

dN f

dt
= λ f−1N f−1.

If λ1� λ2,λ3, . . . , the equilibrium is reached:

λ1N1 = λ2N2 = · · ·= λ f N f .

6.6 Natural Radioactivity

Secular equilibrium is at the basis of natural radioactivity, in which it’s not un-
common to find nuclei with very long decay times ( τ ∼ O(109y)). An example is
uranium, 238U, whose decay chain leads to 210Pb with a decay time of 4.5×109 y.

Other examples are the alpha and beta chains of 232Th (with T1/2 = 1.4×1010 y)
and 235U with T1/2 = 7.5×108 y.

Other beta chains are 10K with T1/2 = 1.3× 109 y or 187Rb with T1/2 = 4.5×
1010 y.
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Fig. 6.3 The decay chain started by 238U . For each step, the kind of decay (in this case, alpha or
beta) is also indicated.

6.7 Alpha decays

The radio-activity α can be interpreted as a form of nuclear fission

A
ZX→A−4

Z−2 Y+4
2 He,

A known example is the process 238U→234 Th+α , and the α particle is the helium
nucleus.

As it can be seen in the Segré chart of Fig. 6.4, α decays happen only for heavy
nuclei, with A > 210. The process is a two-body decay, therefore the kinetic en-
ergy of the alpha particle is basically equal to the Q-value of the decay, Eα ∼ Qα .
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Fig. 6.4 The Segré chart, which shows for each nucleus the type of decay it can occur as a function
of its number of neutrons and protons. The dominant process which leads nuclei to the stability
region is beta decay. The plot also shows that alpha decays happen only for high-mass nuclei.
Remember that gamma decays do not affect the values of A and Z, so they are not represented in
this plot.

Experimentally one observes that, when different isotopes are considered, Q varies
following

Q = M(X)−M(Y)−M(α).

Experiments also show a strong dependence of the life-time, T1/2, on Q, following
the empirical law

lnT1/2 = a+
b√
Q
,

which is called Geiger-Nuttal law. This is illustrated in Fig. 6.5.
As we have seen in Sec. 6.4, the kinetic energy of the α particle is given by

Kα = Q
2MY +Q

2(MY +mα +Q)
,

which for example leads to

208Po : Q = 5.2MeV T1/2 ∼ 108s,

186Po : Q = 8.6MeV T1/2 ∼ 10−5s.
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Fig. 6.5 Half time measurements for alpha decays of different isotopes. One observes an exponen-
tial distribution, with deviations at low Q

6.7.1 Gamow’s Model

The Geiger-Nuttal law can be explained with a phenomenological model by Gamow.
In this model, the nucleus is made of a α particle confined by a potential generated
by the nucleus N(A−4,Z−2). The α particle then has a non-zero probability to go
through the potential barrier, as shown in Figure 6.6. Within the nucleus, the kinetic
energy of the α particle (of mass m) is given by Ek = Q+V0 =

1
2 mv2, so it moves

with constant velocity

v =

√
2(Q+V0)

m
,

and hits the potential barrier with a frequency given by f = v
2a . If P is the tunneling

probability, then the tunneling frequency (a good estimator of the alpha decay rate!)
will be f P.
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Modello di Gamow

Fig. 6.6 Alpha particle in the potential generated by the N(A− 4,Z − 2) nucleus in Gamow’s
model.

6.7.2 Tunnel effect and potential barrier

Let’s try to evaluate the probability of transmission of a plane wave over a simple
barrier show in Figure 6.7. We can write the Schrödinger equation in the various

Effetto Tunnel

Fig. 6.7 Simple potential barrier, extending in one dimension from x = 0 to x = a.

regions as

[H0 +V (x)]ψ = i}
∂ψ

∂ t
.

We look for solutions of the form

ψ(x, t) = ψE(x)e−iEt/},

which means we must solve the spatial equation

[H0 +V (x)]ψE = EψE ,

which can be written in the three regions, using the free-particle hamiltonian H0 =
p2/2m =−}2∇2/2m, as:



204 6 Nuclear and Particle Decays

• for regions I (x < 0) and III (x > a),

d2ψE

dx2 +
2m
}2 EψE = 0; (6.15)

• for region II (0 < x < a),

d2ψE

dx2 +
2m
}2 (E−V0)ψE = 0.

If we define

k0 =

√
2m
}2 (V0−E),

and

k =

√
2m
}2 E,

it is easy to solve these Schrödinger equations. Note that, while k is a real number,
k0 in general isn’t: we will focus on the case E <V0, which corresponds to a particle
whose energy is lower than the potential barrier. We are interested in knowing the
tunneling probability of a particle whose energy is quite below the potential barrier.

Let’s look for solutions of the form

• I (x < 0): ψE(x) = Aeikx +Be−ikx,
• II (0 < x < a): ψE(x) =Cek0x +De−k0x,
• III (x > a): ψE(x) = Feikx,

which correspond to an incoming wave of amplitude A, a reflected wave of ampli-
tude B and a transmitted wave of amplitude F . The transmission factor is defined
as

T =
|F |2
|A|2 ,

and can be calculated solving the Schrödinger equation. We can do it by imposing
the continuity condition to the wave function and its first derivative:

• in x = 0 they imply

A+B =C+D,

ikA− ikB = k0C− k0D,

and from the second equation we have

A−B =−i
k0

k
C+ i

k0

k
D,

which leads to
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A =
C
2

(
1+

k0

ik

)
+

D
2

(
1− k0

ik

)
,

B =
C
2

(
1− k0

ik

)
+

D
2

(
1+

k0

ik

)
;

• in x = a we have

Cek0a +De−k0a = Feika,

k0Cek0a− k0De−k0a = ikFeika,

and from the second equation we have

Cek0a−De−k0a = i
k
k0

Feika. (6.16)

To solve this system of equations, we can write it conveniently in matrix form as
(

ek0a e−k0a

ek0a −e−k0a

)(
C
D

)
=

(
eika

i k
k0

eika

)
F,

and invert the matrix,
(

ek0a e−k0a

ek0a −e−k0a

)−1

=
1
2

(
e−k0a e−k0a

ek0a −ek0a

)
,

so that we get

(
C
D

)
=

1
2

(
ek0a e−k0a

ek0a −ek0a

)(
eika

i k
k0

eika

)
F =

1
2




e(ik−k0)a
(

1+ i k
k0

)
F

e(ik+k0)a
(

1− i k
k0

)
F


 .

We can express the solutions of A and B as a function of C and D, as
(

A
B

)
=

1
2

(
1+ k0

ik 1− k0
ik

1− k0
ik 1+ k0

ik

)(
C
D

)
,

so that it is immediate to substitute the expression calculated above to get
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(
A
B

)
=

eika

4
F




(
1+ k0

ik

)(
1+ ik

k0

)
e−k0a +

(
1− k0

ik

)(
1− ik

k0

)
ek0a

(
1− k0

ik

)(
1+ ik

k0

)
e−k0a +

(
1+ k0

ik

)(
1− ik

k0

)
ek0a


=

=
eika

4
F




(
2+ i

(
k
k0
− k0

k

))
e−k0a +

(
2− i

(
k
k0
− k0

k

))
ek0a

i
(

k
k0
+ k0

k

)
e−k0a− i

(
k
k0
+ k0

k

)
ek0a


=

=
eika

4
F


 4cosh(k0a)−2i k2−k2

0
k0k sinh(k0a)

−2i k2+k2
0

k0k sinh(k0a).




In other words, we have that

(
A
B

)
= eikaF


 cosh(k0a)+ k2−k2

0
2ik0k sinh(k0a)

k2+k2
0

2ik0k sinh(k0a)


 ,

and the transmission coefficient is given by

T =
|F |2
|A|2 =

1

cosh2(k0a)+ (k2−k2
0)

2

4k2
0k2 sinh2(k0a)

=
1

1+
[
(k2−k2

0)
2

4k2
0k2 +1

]
sinh2(k0a)

,

where we used the fact that cosh2 = 1+ sinh2. After performing the sum at denom-
inator can write

T =
1

1+ (k2+k2
0)

2

4k2
0k2 sinh2(k0a)

,

and replacing the expressions of k and k0 we get

T =
1

1+ V 2
0

4E(V0−E) sinh2(k0a)
.

For the denominator, let’s remember we are considering a particle which is quite
deeply buried inside the potential, i.e. k0a� 1; we can therefore approximate

sinh2(k0a) =
1
4

(
e2k0a−2+ e−2k0a

)
∼ 1

4
e2k0a,

and neglecting the first term in the denominator we have

T ∼ 16E(V0−E)
V 2

0
e−2k0a.
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In the case in which k ∼ k0, then

16E(V0−E)
V 2

0
=

16k2
0k2

(k2 + k2
0)

2 ∼ 4,

therefore the probability to pass through the barrier will be

P ∼ 4e−2k0a = 4e
−2a

√
2m
}2 (V0−E)

.

6.7.3 Tunneling effect, generic potential

For a generic potential V (r), the complete potential can be seen as a series of in-
finitesimal barriers of length dr, where each of them has an associated probability
to be passed through expressed by

dP ∝ e−2k0dr = e
−2
√

2m
}2 (V (r)−Q)dr

,

where Q is the disintegration energy (Q-value), i.e. the total kinetic energy available
to the particle. The probability to go through the entire barrier is given by the product
of the infinitesimal probabilities

P =
∞

∏dP ∝ e−2
´

k0dr = e
−2

´ b
a

√
2m
}2 (V (r)−Q)dr

,

where the particle tunnels from r = a to r = b, which represent the intersections
between the horizontal line V = E and the potential V =V (r). We can write

P ∝ e−2G,

where G is the Gamow factor

G =

ˆ b

a

√
2m
}2 (V (r)−Q)dr.

For the Coulomb potential, represented in Figure 6.8, we have

V (r) =
2(Z−2)e2

4πε0r
=

2(Z−2)α
r

}c,

and the total available energy can be obtained (see the figure) evaluating the poten-
tial for r = b:

Q =
2(Z−2)α

b
}c,

from which one has
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Radioattività Alpha - Legge di Geigger Nuttal

Fig. 6.8 Coulomb potential.

b =
2(Z−2)α

Q
}c. (6.17)

This gives us the possibility to calculate the Gamow factor for the Coulomb potential
as

G =

√
2m
}2

ˆ b

a

√
(Z−2)2α}c

r
−Qdr =

√
2mQ
}2

ˆ b

a

√
(Z−2)2α}c

Qr
−1dr =

=

√
2mQ
}2

ˆ b

a

√
b
r
−1dr =

√
2mQ
}2

ˆ b

a

√
b− r

r
dr =

√
2mQ
}2 b

ˆ b

a

√
1− r/b

r/b
d
(

r
b

)
.

This integral is not trivial, but from the table of integrals of irrational functions we
get that ˆ √

1− x
x

dx =
√

x− x2 + arcsin
√

x.

Therefore, with x = r/b,

G =

√
2mQ
}2 b

ˆ 1

a/b

√
1− x

x
dx =

√
2mQ
}2 b



(

π

2
− arcsin

√
a
b

)
−
√

a
b
− a2

b2




=

√
2mQ
}2 b

[
arccos

√
a
b
−
√

a
b
− a2

b2

]
.

If we chose f
(

a
b

)
= arccos

√ a
b −
√

a
b − a2

b2 , given that b = (Z−2)2α}c
Q , then
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G =

√
2m
}2Q

α}c
[
2(Z−2)

]
f
(

a
b

)
.

Taking all together, under the approximation that k0 ∼ k we have that the decay
rate can be written in terms of the velocity v of the α particle as

f P =
v

2a
4e−2G =

√
2(Q+V0)

m
2
a

e−2G,

where Q+V0 is the energy of the α particle (and V0 > 0 is the depth of the potential
well). Therefore, from the decay laws we have that the decay constant can be written
as

λ = f P,

and therefore the mean lifetime τ = 1
λ

is

τ =
1
λ

=

√
m

2(Q+V0)

a
2

e2G =

√
m

2(Q+V0)

a
2

e2α

√
2mc2

Q [2(Z−2)] f (a/b).

Therefore we obtain that

lnτ = ln

(√
m

2(Q+V0)

a
2

)
+2α

√
2mc2

Q

[
2(Z−2)

]
f
(

a
b

)
,

which explains the empirical Geiger-Nuttal’s law introduced at the beginning of this
section. The result of this calculation includes a slight dependence on Q from the

constant factor ln
(√

m
2Q

a
2

)
, which leads to a family of functions in Z.

The various possible transitions through α radiation emission reflect the excited
states of the nuclei, as shown for example in Figure 6.9. The α decays of the nuclei
can lead to excited states, which then decay through the emission of γ radiation to
the fundamental states.

6.7.4 Interpretation

The fact that the Gamow potential and tunnelling theory of the α radioactivity is
very successful in reproducing the empirical Geiger-Nuttal’s law shows that the nu-
cleus can be well approximated by a 1D square well, which as we have seen in
Chapter 4.7 can also be interpreted as a spherical 3D well with a short range of the
size of the nucleus. Gamow’s model, where the potential responsible for alpha de-
cays is the Coulomb potential of the daughter nucleus, describes well experimental
data. This corroborates the overall picture of Rutherford scattering which, until en-
ergy is sufficiently high, is insensitive to the effects of the strong force that binds the
nucleus together.
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Radioattività Alpha - Legge di Geigger Nuttal

Fig. 6.9 Possible decays of 228Th through the emission of α particles.

The Gamow potential picture can equivalently be used for an α particle scattering
from outside the nucleus, as in the case of Rutherford scattering. Such scattering can
be seen as happening off a static Coulomb potential until a sufficiently large energy
is reached at which the α particle can be captured by the nucleus, as illustrated in
Fig. 4.10. This is precisely what was discussed in Section 4.6.5.

6.8 Beta decays and the Fermi theory

The study of β radioactivity is crucial in developing an understanding of the struc-
ture of the nucleus. The development by Enrico Fermi in 1934 of a theory of the β

decays has incredibly far-reaching consequences.
We can start the description of the Fermi theory starting from the most basic

observations of the β radioactivity. The two essential experimental facts, as was
discussed in Section 2.6.2, are that the nature of the β radiation is electrons or
positrons and the β decay spectrum is continuous.

This immediately brings serious interpretation challenges, which can be summa-
rized as follows:

- contrary to the α decay, the β decay process is not compatible with a two-body
decay: the electron energy spectrum would in that case be close to a Dirac delta,
and not a continuous distribution with an endpoint, as shown in Figure 6.10;
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Decadimento Beta e Ipotesi del Neutrino

Fig. 6.10 Beta decay energy spectrum

- in the case of a two-body decay n→ p+ e−, the total angular momentum would
not be conserved, since the electron has spin 1

2 and there are nuclear transitions
which do not change the angular momentum;

- how could one model the presence of electrons in the nucleus (in a similar way
to α particles)? can there really be electrons within the nucleus?

The consequences of these three challenges are:

• the hypothesis of a three-body decay, with the emission of an additional, neutral,
“invisible” particle, which is extremely penetrating and interacts weakly (this is
the hypothesis suggested by Pauli in 1932);

• this particle, named by Fermi the neutrino, must have spin 1/2, in order to ad-
dress the total angular momentum conservation issue;

• the observation of the emission of this kind of particle at the same time of the
electron is of fundamental importance for the development of particle physics.

Since electrons do not take part in the interactions in the nucleus, Fermi hypothe-
sised that they are created in pairs together with a neutrino. The concept of pair-
creation is a fundamental concept on which relativistic Quantum Field Theory is
based – which, differently from simple quantum mechanics, allows for the creation
and destruction of new particles.

Several reactions and decays of β type are observed:

• β− decay: A
ZX →A

Z+1 Y + e−+νe, which happens if

Q = M(A,Z)−M(A,Z +1)−me > 0

for the nuclei or if
Q = m(A,Z)−m(A,Z+1)> 0

for the atoms.
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• β+ decay: A
ZX →A

Z−1 Y + e+(+ν) which happens for

Q = M(A,Z)−M(A,Z−1)−me > 0,

and therefore is not possible for an isolated proton.
• electronic capture: p+ e−→ n+νe, is possible if

Q = M(A,Z)+me−M(A,Z−1)

6.8.1 The Fermi theory

In order to characterise β decays, we need to find an expression for the decay life-
time τ = 1/λ and the energy spectrum of the electron/positron in the final state.

We will use again Fermi’s golden rule, detailing the matrix element and the phase
space. In this case we can no more consider that the electron (and the neutrino)
which are emitted in decay are trapped into the nucleon before the emission, since
the electron does not interact via the strong interaction. There must be a new type
of interaction, as depicted in Figure 6.11.

Teoria de Fermi

Fig. 6.11 Sketch of the interaction.

In 1934, Fermi proposed a theory which was able to explain the β decay through
a new type of interaction. It is based on the following hypotheses and it was an
important idea towards the development of quantum field theory:

• in the β decay we address the question on the nucleon decays as

β
− : n→ p+ e−+ ν̄ ,

β
+ : p→ n+ e++ν ,

where the anti-neutrino is the anti-particle of the neutrino;
• the interaction must be able to create or absorb fermions;
• the new interaction is a short-range interaction, and in particular will be described

as a contact interaction.

Let us focus on the n→ p+ e−+ ν̄e process, where the neutron is at rest. If we
denote as HI the interaction hamiltonian responsible for this process, HI will need
to absorb the neutron and emit a proton in a point r1 and emit an electron and a
neutrino in the point r2, as depicted in Figure 6.12. The matrix element of the decay
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Teoria de Fermi

Fig. 6.12 The β− decay.

can be written as

〈pe−ν̄ |HI |n〉=
ˆ

ψ
∗
p(~r1)ψ

∗
e (~r2)ψ

∗
ν̄ (~r2)HI(~r1−~r2)ψn(~r1)d~r1d~r2,

where the double integral runs over all possible positions in space at which the
proton is emitted, and at which the electron-antineutrino pair is emitted.

Assuming that this is a contact interaction means that the Hamiltonian can be
written as the product of some constant g and a Dirac delta which imposes the
“contact”, i.e.

HI(~r1−~r2) = gδ (~r1−~r2).

Therefore, the matrix element of the decay simplifies as

〈pe−ν̄ |HI |n〉= g
ˆ

V
ψ
∗
p(~r)ψ

∗
e (~r)ψ

∗
ν̄ (~r)ψn(~r)d~r,

where the integral is extended to the whole nucleus where the β− decay is happen-
ing.

Since the electron and the neutrino do not have nuclear interactions, we can as-
sume that their wave functions are like the ones of free particles,

ψ
−
e (~r) =

1√
V

e−i~pe·~r/},

ψν̄(~r) =
1√
V

e−i~pν̄ ·~r/}.

We have chosen a normalisation such that
ˆ

V
|ψe−,ν(~r)|2 d~r = 1,

which means one particle for the volume V . Therefore,

ψe(~r)ψν̄(~r) =
e−i(~pe+~pν )·~r/}

V
.

We anticipate that, in the calculation of physical quantities such as decay rate and
spectra, the volume V will cancel.
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The electron and neutrino momenta in β decays are typically of the order of
Q ≈ 1MeV/c, and we can assume that the wave functions have small variations
within the integration volume, r0 ∼ 1fm. So we have

Qr0

}
∼ 1MeV × 1fm

200MeV · fm ∼ 10−2,

and we can expand in series

e−i(~pe+~pν̄ )·~r} = 1− (~pe +~pν̄)

}
~r− 1

2

(
(~pe +~pν) ·~r

}

)2

+ . . . .

This is a very interesting point, since the values of the total angular momentum
of the electron and neutrino system with respect to the nucleus will be small with
respect to }. This can be seen as the largest possible momentum in the decay will be
Q of the order of a MeV, with a radius of the order of a fm and }c∼ 197.3 MeV fm:
this implies (~pe+~pν̄ )

} ~r ∼ 0.5%.
In the expansion we can consider the first term alone, which is simply 1, which

yields the simplified expression for the Matrix element, which does not depend on
the electron and neutrino momenta:

〈 f |HI |i〉=
g
V

ˆ
V

ψ
∗
p(~r)ψn(~r)d~r,

or
〈 f |H|i〉= g

V
M f i.

The interaction can be generalised to the decay of nuclei

A
ZN→A

Z+1 Y + e−+ ν̄ ,

with a zero-dimensional operator Ox which can be chosen to reproduce experimental
data. All the formalism is then equivalent in the two cases, as

〈 f |HI |i〉=
g
V

ˆ
V

ψ
∗
A,Z+1(~r)OxψA,Z(~r)

can be written as
〈 f |HI |i〉=

g
V

M f i.

6.8.2 Energy density and phase space

So far we had to deal with the simple case of two-body phase space, which, as we
have discussed in Chapter 4.7 requires us to take into account only one term in the
phase space, as the number of degrees of freedom is reduced due to the energy-
momentum conservation.
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In the case of a three-body decay, things get a bit more complicated as we need
to take into account all possibilities of a spectrum of energies and momenta that can
be occupied by two of the three particles.7 In this case, it is convenient to measure
the density of states in terms of the number of possible states for the electron and
the anti-neutrino, which can individually be written as

dNe =
V 4π p2

ed pe

(2π})3 ,

and

dNν =
V 4π p2

ν d pν

(2π})3 ,

The number of possible final states altogether will then be

dN =

[
V 4π p2

ed pe

(2π})3

][
V 4π p2

ν d pν

(2π})3

]
. (6.18)

To obtain the density of the states, ρ(Ei), let’s start from the kinematics of the
decay

X → Y + e−+ ν̄ ,

which can be characterised in terms of the available energy in the final state. In this
case, this quantity will include the electron mass and will therefore differ slightly
from the definition of the Q-value of the reaction, by the amount of available energy
Ei in the transition from a nucleus X to a nucleus Y , defined as

W = MX −MY = TY +Ee +Eν .

This can immediately be written in terms of the momentum of the nucleus Y , as

W =
p2

Y
2MY

+
√

p2
e +m2

e +
√

p2
ν +m2

ν ,

where momentum conservation implies

~pY +~pe +~pν̄ =~0.

The maximum momentum will be obtained by Y when the electron and the neu-
trino are emitted in the same direction. Since in the β decays the Q-value is typically
of the order of 1 MeV, and since the mass of the neutrino is very small (. 2eV), we
can take Eν = pν . Therefore p is very small, and p2

2MY
is negligible (as it is basically

. Q×O(10−3)). This implies that W ∼ Ee +Eν , and

7 Again, as the energy-momentum conservation reduces the degrees of freedom.
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p2
ν c2 = (W −Ee)

2− (mν c2)2,

pν d pν c2 = (W −Ee) dW,

p2
ν d pν c3 = (W −Ee)

√
(W −Ee)2− (mν c2)2 dW,

where we consider the neutrino states for a fixed value of the electron state and in
this case we vary the initial available energy for the reaction, W = Ei.

If we insert this term in Eq. (6.18), we obtain

dN =
(4π)2V 2

(2π})6
1
c3 (W −Ee)

√
(W −Ee)2− (mν c2)2 p2

ed pe dW,

and if we use again the fact that Ei =W we can write the density of states as

ρ(Ei) =
dN
dW

=
(4π)2V 2

(2π})6
1
c3 (W −Ee)

√
(W −Ee)2− (mν c2)2 p2

ed pe.

The density of states can be further simplified by using the following relation
derived from the relativistic energy-momentum dispersion relation:

p2
ec2 +m2

ec4 = E2
e ⇒ 2ped pec2 = 2EedEe,

therefore
pd p =

1
c2 EdE.

Since the available energy is W = Ei, we have

ρ(Ei) =
(4π)2V 2

(2π})6c3 (W −Ee)
√
(W −Ee)2− (mν c2)2 peEedEe

1
c2 ,

=
(4π)2V 2

(2π})6c2 Eν pν peEedEe
1
c2 ,

where we used
p2

ν c2 = (W −Ee)
2− (mν c2)2.

We can finally express the density of states as a function of the typical quantity
which is measured in the β decay, the kinetic energy of the electron:

ρ(Ei) =
(4π)2V 2

(2π})6c4 pe(Te +mec2)pν Eν dTe,

where Te = Ee−mec2.
The formula above represents the density of states for electron kinetic energies

between Te and Te +dTe. We then put this together with Fermi’s golden rule,

λ =
2π

}
|〈 f |HI |i〉|2ρ(Ei),
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and obtain an expression for the decay rate dλ for electron kinetic energies between
Te and Te +dTe,

dλ =
2π

}
g2

V 2 |M f i|2
(4π)2V 2

(2π})6c4 pe(Te +mec2) pν Eν dTe, (6.19)

where volumes cancel out as expected.
If we define the Fermi constant

GF = g(}c)−3,

we get

dλ =
2π

}
G2

F(}c)6

V 2
(4π)2V 2

(2π})6c4 pe(Te +mec2) pν Eν dTe.

6.8.3 Coulomb correction and the Fermi function

So far in the calculation we have completely neglected the effect of the electrostatic
field of the nucleus with charge Z on the electron or the positron. Once emitted,
the β radiation will be subject to the nuclear electrostatic field which will affect its
momentum and thus the electron/positron emission spectrum; this will in turn also
affect the total decay rate.

Teoria de Fermi

Fig. 6.13 Momentum distribution of the electron

This Coulomb correction can however be accurately calculated through a cor-
rection function F(±Z,Ee), which looks significantly different for electrons and
positrons, as illustrated in Figure 6.13. Positrons tend to get higher momenta as they
are repelled by protons in the nucleus, while the opposite happens for electrons.

The correction depends only on the charge of the nucleus and the energy available
in the decay, F(±Z,Ee), and therefore is a function of the kinetic energy of the
electron. One can therefore write the spectrum of emission of electrons/positrons as
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1
λ

dλ

dTe
∝ pe(Te +mec2)pν Eν F(±Z,Te).

The decay probability can be evaluated through the following integral, where we
have by hand inserted a factor 1/(mec2)5 so that the factor is dimensionless:

f (Z,Q) =
1

(mec2)5

ˆ Q

0
pec(Te +mec2)pν Eν F(±Z,Te)dTe,

This is often referred to as the Fermi function, which is numerically estimated
and tabulated and depends only on the charge of the nucleus and the energy of the
β decay Q.

Eventually, the decay rate can be written as

λ =
G2

F(mec2)5

2π3}
|M f i|2 f (Z,Q). (6.20)

6.8.4 The neutrino mass

By analysing more closely the end-point of the distribution of the kinematic energy
of the electron/positron in the β decay N(A,Z)→Y (A,Z+1)+e−+ ν̄e, we observe
an interesting dependency at about

T max
e = M(Z,A)−M(Z +1,A)−mν = Q−mν .

The energy spectrum is given by

dλ

dTe
= G2

F
m5

ec
2π3}

|M f i|2F(±Z,Te)pe(mec2 +Te)(Q−Te)
√
(Q−Te)2−m2

ν c4

and therefore it depends on the mass of the neutrino. This dependence is usually
looked at in terms of the Kurie plot shown in Figure 6.14, in which one plots the
square root of the spectrum of the electron/positron kinetic energy (i.e. the number
of electrons/positrons per bin of Te), divided by the Fermi function, as a function
of Te. The end-point of this spectrum is a measure of the electron neutrino mass:
experiments typically observe few events in the Kurie plot, and so they are able to
put an upper limit on the electron neutrino mass, rather than provide a measurement
of its value.

Experimental constraints on the neutrino mass are obtained for example from β−

decays of H3 into He3 (Q = 18.574keV,T1/2 = 12.3y), and imply that mνe = mν̄e .
2eV.
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Massa del Neutrino

Fig. 6.14 End-point detail for the kinetic energy of electrons in a β− decay, for different hypothe-
ses on the neutrino mass.

6.8.5 Sargent’s law

The element of rate dλ derived from the Fermi Golden rule in Eq. (6.19) can also be
simplified assuming that the neutrino mass is negligible (a reasonable assumption
given the experimental limits discussed in Section 6.8.4). Then Eq. (6.19) can be
rewritten as

dλ =
1

2π3}7c6 g2|M f i|2[pec(W −Ee)
√
(W −Ee)EedEe]

=
1

2π3}7c6 g2|M f i|2
[

pec(W −Ee)
2EedEe

]
.

If we integrate over all possible electron energies, and neglect the Fermi function,
we get

λ =
1

2π3}7c6 g2|M f i|2
ˆ W

0
pec(W −Ee)

2EedEe ∝ W 5. (6.21)

This leads us to define a useful rule for β decays known as Sargent’s law: the overall
rate of β decays is proportional to the fifth power of the energy available to the
decay.

6.8.6 Interpretation

As was mentioned in the introduction of this section, β decays have played a crucial
role at many levels in Nuclear and Particle physics. The role of the large number of
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β decay measurements of nuclei will be discussed in Section 9.5: here we will focus
on what can be learned about the interaction underlying in β decays.

It should first be said that it is through a thorough analysis of a large number of
β decays that a regular pattern could emerge, showing that there is a fundamental
matrix element that can be factorised across all measurements done. We will illus-
trate this with only one example here, but there are many more (some discussed in
Section 9.5).

As discussed in Section 6.8.1, and as illustrated by Eq. (6.8.1), the β decays
(or transitions) that are dominant are those corresponding to a vanishing angular
momentum of the electron-anti-neutrino or positron-neutrino `eν = 0 systems. These
transitions are referred to as allowed, or in some cases super allowed, transitions.
What “allowed” really means here is that it is the favoured process, as opposed to
what will be referred to as forbidden processes, corresponding to `eν ≥ 1, which
are disfavoured (“suppressed”).

Allowed decays (`eν = 0) still correspond to a system of two particles (the elec-
tron and the neutrino) which are both fermions with spin 1/2. Therefore, if the
neutron has spin up, for example, we can put the proton spin up or down, and this
determines the total spin of the electron-neutrino system. From the composition of
the electron and neutrino spins, we can identify two types of transitions which can
occur, that characterize the electron-neutrino system and correspond to the two pos-
sible spin states seν = 0 (singlet anti-symmetric) and seν = 1 (triplet). The former
kind of transition are referred to as Fermi transitions and the latter as Gamow Teller
transitions.

Depending on the nuclei involved in the β decay, one or both are possible. A
transition from a spin-zero state to another spin-zero state cannot be a Gamow Teller
transition. Instead, a transition such as the neutron β decay, which involves only
spin-1/2 fermions, can have both types of transitions:

- Fermi transitions for the neutron (antisymmetric singlet combination of the two
spin-1/2 electron-neutrino system):

n ↑→ p ↑+ 1√
2

[
(e− ↑ νe ↓) − (e− ↓ νe ↑)

]

- Gamow Teller transitions for the neutron (symmetric triplet combination of the
two spin-1/2 electron-neutrino system):

(seν = 0) n ↑→ p ↑+ 1√
2

[
(e− ↑ νe ↓) + (e− ↓ νe ↑)

]
(ms = 0)

(seν = 1)

{
n ↑→ p ↓+e− ↑+νe ↑ (ms =+1)
n ↓→ p ↑+e− ↓+νe ↓ (ms =−1)

One assumes that all the β decays stem from an interaction with a given univer-
sal coupling constant, and that the differences in matrix element would come from
simply counting the number of possible transitions (which thus rely on the spin
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combinations). In this case, the Gamow Teller matrix element should be three times
larger than the Fermi transition matrix element. We then define the Fermi coupling
constant GF as the coupling corresponding to the Fermi transitions. The matrix el-
ement consists uniquely of a universal coupling constant g, as we have assumed in
Eq. (6.8.1), and M f i relates to the structure of the nucleus and its possible transitions
(hence the name nuclear matrix element).

The Fermi constant GF of Eq. (6.8.2) can be interpreted as the constant that scales
the Fermi transition for the neutron β decay, or in general the constant that scales the
Fermi transition matrix element (i.e. the one corresponding to the Fermi transitions
of a nucleus, and not to the Gamow Teller ones). The reason for this is that, in the
case of the neutron, there is only one possible configuration of the final state, and
the corresponding matrix element can be considered as |MF

f i|2 = 1. Since for the
Gamow Teller transitions there are three possible configurations, each reflecting a
different ms for seν = 1, then the Gamow Teller matrix element will be |MGT

f i |2 = 3.
In this case, and assuming no interference between the two processes, the overall
matrix element can be written as

|M f i|2 = |MF
f i|2 +λ

2|MGT
f i |2,

where the λ 2 factor gives the relative weight of the Gamow Teller transition matrix
element: it is measured experimentally and its value is λ = 1.24.

We can then take the estimated value of the λ factor, the calculated effect of
the Coulomb potential in the Fermi factor f , and the estimated matrix element, and
measure the neutron lifetime τ = 890 s to estimate its f τ1/2 = 1.61×103 s. With all
these ingredients, we can derive the Fermi constant, obtaining

GF = 1.14×10−5 GeV−2

The interpretation of these results in terms of fundamental interactions is made
in Section 7.4.

6.9 Gamma decays

The γ radioactive decay is an electromagnetic de-excitation process of the nucleus,
which consists in the transition of a nucleus from an excited state to a lower energy
state through the emission of a photon. In this sense this type of radioactivity is not
a decay and the nature and structure of the nucleus is unchanged. The γ rays are
more penetrating, but with much less ionizing power than the α and β radiation.
The γ radiation occurs typically after α or β decays, which leave the nucleus in an
excited state and the emitted photons have discrete energies typically in the range
from 100 keV to few MeV.
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The emission of photons carries away angular momentum of the photon. This
is a key observation for the construction of a model of nuclei. The fact that the γ

radiation is discrete suggests that the nucleus can be structure much like the atom
is structured in energy shells with varying angular momenta. The emission of en-
ergetic photons can be viewed as the de-excitation of nuclei from a given initial
excited state to a final state.

The theory of the γ decays is based on the classification of the multi-pole tran-
sitions, both electric and magnetic, with the simplest one being the electric or mag-
netic dipoles.

6.9.1 Dipole radiation

The simplest example of the nuclear radiation can be computed from the Larmor
formula, or the equivalent of the radiated power of an accelerated charge seen in
Eq. 5.7 (see [1] - page 664):

P =
1

12πε0

ω4

c3
~d2 (6.22)

where ~d = e~r = ~d0 sinωt represents the electric dipole of a charge e and radius
∼ r. The quantum mechanical version of the Larmor formula can be intuitively
constructed from the classical formulation of Eq. 6.22 by replacing the dipole oscil-
lation frequency ω by the radiated energy Eγ = }ω and taking the classical dipole
as an operator selecting specific quantified transitions from an initial state |i〉 to a
final state 〈 f | with a matrix element 〈 f | ~d |i〉. Then the power can be expressed as
follows:

P =
dEγ

dt
=

1
12πε0

ω4

c3
~d2

from this expression we can obtain an intuitive formulation of the decay constant:

1
Eγ

dEγ

dt
= λ = 1/τ =

1
}ω

1
12πε0

1
}
(}ω)4

(}c)3 | 〈 f | ~d |i〉 |
2

and therefore:

λ =
1

12πε0

1
}

E3
γ

(}c)3

as can intuitively be gathered from this expression is that it can be obtained as well
through the Fermi golden rule! From this expression, with a γ emitted with energy
Eγ = 1 MeV from a nucleus with radius R∼ 5 fm we can infer that the corresponding
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lifetimes will be of the order of 10−6 s for an order of magnitude estimate and the
following formula:

λ ∼ 1
3

αE3
γ R2

6.9.2 Magnetic dipole moment radiation

Given the very small size of the nucleus
Similarly to the electric dipole moment, a magnetic dipole radiates with an emit-

ted power that follows the Larmor formula [1]:

P =
dEγ

dt
=

1
12πε0

ω4

c5
~µ2

With the same intuitive calculation done above, and considering a typical nuclear
magnetic moment, referred to as nuclear magneton:

µN =
e}

2mp

Comparing to the previous formula one gets a ratio of the decay constants for the
magnetic dipole moment λM to that for the electric dipole moment λE of:

λM

λE
∼
(

e}
2mp

)2
1

(eR)2 = 10−3

6.9.3 Multipole radiation

Similarly to the case of the Fermi theory for the β decay, in the case of the photon
emission, the photon can carry away off the nucleus higher angular momentum than
only that corresponding to its spin i.e `= 1. The magnetic and electric dipole radi-
ations correspond to an orbital momentum of the photon the is equal to 0. Higher
angular momenta can be carried away from multipole radiation. Multipole radia-
tion can be treated in a similar way as expressed above for the dipole radiations. It
is interesting to note that in terms of orders of magnitude, the rate of the electric
quadrupole pole radiation is 10−3 smaller than the dipole radiation, and thus similar
to the magnetic dipole radiation. Then the octupole radiation is 10−3 smaller than
the dipole radiation, and of the same order as the magnetic quadrupole radiation and
son on.
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6.9.4 Internal conversions

finally another interesting process can occur for excited nuclei that can undergo γ

radiation, is the so-called internal conversion process. This process corresponds to
the emission of an electron without any transmutation of the emitting nuclei (there-
fore not corresponding to a β decay). It occurs for atomic nuclei where an electron
from an atomic inner layer, has a non vanishing probability to penetrate the vol-
ume of the nucleus. When the nucleus is in an excited state which could undergo a
γ emission, it is the electron which through the coupling to the excited nucleus is
emitted with a kinetic energy corresponding to the γ transition energy in the nucleus
to which the atomic binding energy of the electron has to be subtracted.

6.9.5 Interpretation and selection rules

As has been discussed in the introductory remarks of this section, the observation of
γ emission with a discrete spectrum is an essential feature to further understand the
how nuclei are structured. These aspects will be discussed in more detail in chap-
ter 9, when building a shell model of the nucleus.

6.10 Problems

6.1. Nel 1947, Enrico Fermi intraprese la costruzione di un acceleratore di protoni,
detto ciclotrone, alla frontiera in energia: questo ciclotrone, che accelerava protoni
ad un’energia cinetica di 450 MeV, fu per breve tempo l’acceleratore di più alta
energia al mondo. Fermi e i suoi collaboratori usarono un bersaglio mobile, che
permetteva cosı̀ di ottenere collisioni di diverse energie. Una targhetta di Berillio
permetteva di produrre pioni, e in particolare pioni negativi π− selezionati, come in
figura per avere energie diverse. Il fascio di pioni veniva successivamente mandato
su una targhetta di idrogeno liquido. La Figura 6.15 rappresenta l’apparato speri-
mentale.

Fig. 6.15 L’apparato sperimentale del Ciclotrone di Chicago, e illustrazione della produzione del
fascio di π− e del apparato di rivelazione.

1. La distanza fra il bersaglio e il centro del ciclotrone è di 76 pollici (cioè 1.90 m).
Qual è il campo magnetico B necessario ad ottenere protoni con un’energia ci-
netica di 450 MeV?
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2. Quale è l’energia nel centro di massa della reazione π−p per un fascio di pioni
negativi con un’energia cinetica di 100 MeV?

3. Che energia cinetica devono avere i pioni per produrre la risonanza ∆ 0 di massa
1232 MeV/c2?

4. Considerando pioni con energia cinetica sufficiente per produrre la risonanza
∆ 0, nella reazione π−p→ π0n quali sono l’energia minima e massima del π0 nel
laboratorio?

Dati mπ± = 140 MeV/c2, mπ0 = 135 MeV/c2, mp = 938 MeV/c2 e mn =
940 MeV/c2

Take-home lessons

• Both nuclei and particles (whether elementary or not) decay. Decays are random
processes which are denoted by a given decay probability, which is a property
of the decaying particle. The ratio between the decay probability and the decay
time does not depend on time, and the decay probability of a single particle in a
set of N particles does not depend on N.

• The description of metastable systems in the time-independent scattering theory
allows to express the cross-section of a decay process as in the case of a dumped
harmonic oscillator. The mean lifetime τ of a particle is related to its total decay
width Γ via the relation Γ = }/τ . The probability of having a particle with a
given energy is given by the Breit-Wigner formula.

• The kinematics of α , β , and γ decays can be described introducing the disinte-
gration energy Q, defined as the sum of the kinetic energies of the decay particles.

• The number of radioactive atoms in a system can be increased – for example,
due to spallation reactions, where incoming particles collide with atomic nuclei
and produce lighter particles, or due to chain decays. The number of radioactive
atoms has an equilibrium condition, in which the relative concentration of differ-
ent elements is equal to the ratio of their mean lifetimes (secular equilibrium).

• In the case of α decays, there is an empirical relation between the half-life of a
decay and its disintegration energy Q, given by the Geiger-Nuttal law, ln t1/2 =

a+b/
√

Q. Gamow’s model of α decays is able to explain this law: the α particle
is assumed to be confined in a well by a potential generated by the nucleus, with a
non-zero probability to cross the potential barrier and reach a region of Coulomb
potential. The tunneling probability is calculated by treating the potential barrier
as a series of infinitesimal barriers, i.e. the overall tunneling probability is given
by the product of the infinitesimal probabilities, P ∝ e−2G, where G is the Gamow
factor. The Gamow factor can be calculated and used to determine the mean
lifetime, which has the same dependence on Q as in the Geiger-Nuttal law.

• There are three kinds of β decays: β− decays in which a neutron in an atom
converts to a proton with the emission of an electron, β+ decays in which a pro-
ton converts to a neutron with the emission of a positron, and electron capture,
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in which a proton converts to a neutron by capturing an atomic electron. Con-
trary to α decays, β decays are not two-body decays, as determined by looking
at the experimental energy spectrum (which isn’t monochromatic). One has to
then consider the decay as a three-body decay, e.g. n→ pen̄ue in the β− decay,
where a new particle, the anti-neutrino ν̄e, has to be introduced. The neutrino
and the anti-neutrino have spin 1/2, as required by the conservation of angular
momentum. The Fermi theory of β decays introduces a new, short-range inter-
action (a contact interaction) which is able to create or absorb fermions. The
calculation of the decay cross-section is complicated by the need to take into ac-
count all possible combinations of momenta in the three-body decay to compute
the density of states. The resulting decay rate must be corrected for the effect of
the electrostatic field of the nucleus on the momentum of the emitted electron or
positron, which is expressed by the Fermi function as a function of the atomic
number of the nucleus and of the electron energy. The resulting energy spectrum
has an endpoint which depends on the neutrino mass: if the mass is neglected, the
decay rate is proportional to the fifth power of the energy available to the decay
(Sargent’s law).

• The γ decay corresponds to an electromagnetic de-excitation of the nucleus,
which transitions from an excited state to a lower-energy state by emitting a pho-
ton. Strictly speaking, the nucleus does not change nature, so the process isn’t
technically a decay. The emitted photon carries away the angular momentum of
the nucleus: from the experimental fact that γ radiation is discrete in energy, one
can deduce a structure of the energy levels of the nucleus similar to the one of
atoms. The theory of γ decays is based on the classification of multi-pole transi-
tions (electric and magnetic).

Questions

• Are all elementary particles stable?
• Are all stable particles elementary?
• Why should the neutrino have spin 1/2?
• Is the p→ n+ e−+ ν̄e possible?
• During a β decay, an electron is emitted: which decay process is it?
• Can you think of a way to determine whether the (expensive!) 3000 years old

spoon you are about to buy is a fraud or not?
• You have two isotopes, one with a Q-value for α decay of 1 MeV and another of

3 MeV. Will their decay times differ?
• Which interaction is responsible for the α decay?
• Which potential determines the potential barrier in an α decay: the electrostatic

potential, the Yukawa potential, the weak-interaction potential or the gravita-
tional potential?

• Does a plane wave eikx grow in time when it travels from the left to the right?



6.10 Problems 227

• What is the physical meaning of the points a and b in the Gamow theory of α

decays?
• Will positrons and electrons emitted in β± decays behave differently?
• What is the typical energy of electrons and positrons from β decays?
• Does the contact interaction hamiltonian depend on the momenta of the involved

particles?
• Are forbidden β decays actually forbidden?
• How much energy is transferred to the daughter nucleus in a typical β decay?
• You want to measure the neutrino mass using the Kurie plot: which experimental

challenges do you have to face?
• How does the β decay half-life depend on the available energy for electron/positron

and neutrino?
• What can be the total spin of a system of two particles with spin 1/2?
• What is the total spin state of a system of an electron and a neutrino which both

have spin “up” with respect to the quantization axis we chose?
• Does the neutron β decay n→ p+ e−+ ν̄e correspond to a Fermi transition, a

Gamow-Teller transition or a mixed transition?
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6.11 Exercises

Exercise 30 Applicazione della legge di Geiger-Nuttal al decadimento α

La relazione di Geiger-Nuttal lega in modo semplice la costante di decadimento (λ )
della radioattività naturale α e l’energia della particella α (Eα ) emessa.

1. Usando tale legge, si stimi l’ordine di grandezza per il tempo di dimezza-
mento del 210Po, che decade emettendo Eα = 5.3MeV, sapendo che il 214Po
ha un tempo di dimezzamento di 1.6×10−4 s, ed emette una particella α

con Eα = 7.7MeV.

Exercise 31 Decadimenti in sequenza
Si consideri la seguente sequenza di decadimento:

• N1→ N2, con costante di decadimento ω1 = 10 s−1;
• N2→ N3, con costante di decadimento ω2 = 50 s−1;
• N3 è stabile.

1. Assumendo che al tempo zero i nuclei di tipo N1 siano in numero N0 e quelli
di tipo N2 e N3 siano assenti, calcolare il numero di nuclei dei tre tipi per
qualsiasi tempo. In particolare, si chiede il rapporto N3/N1 dopo 1/4 di sec-
ondo.

Exercise 32 Soppressione cinematica nel decadimento β

Sebbene l’interazione debole sia universale, diversi processi regolati da essa pos-
sono avvenire con probabilità largamente diverse, a causa di motivi cinematici. Ad
esempio, nei decadimenti: π−→ µ−ν̄ e π−→ e−ν̄ , per la natura “V–A” (Vettoriale–
Assiale) delle interazioni deboli, l’elemento di matrice della transizione, M2 è pro-
porzionale a 1−β 2, dove β è la velocità del leptone carico.

1. Assumendo tale relazione per l’elemento di matrica, stimare il rapporto tra i
tassi di decadimento dei due canali:

r =
Γ (π−→ µ−ν̄)

Γ (π−→ e−ν̄)

[Dati: mµ = 105MeV/c2, me = 0.511MeV/c2, mπ = 140MeV/c2]

Exercise 33 Legge di Sargent
Nel decadimento del D0 (mesone costituito dalla coppia di quark-antiquark cū,

MD0 = 1865MeV/c2), si ha il seguente rapporto dei branching ratio (BR) tra due
modi di decadimento:

BR(D0→ K−+ e++νe)

BR(D0→ π−+ e++νe)
= 9.8±1.7



6.11 Exercises 229

Giustificare questo risultato sperimentale, sapendo che per questi stati adronici la
costante di accoppiamento dell’interazione debole è modificata, e invece di g vale
gsinθC per il decadimento D0→ π−+ e++νe e gcosθC per il decadimento D0→
K−+ e++νe, dove θC è l’angolo di Cabibbo (sinθC ≈ 0.22).

Exercise 34 Attività di un decadimento β

Ogni organismo vivente contiene circa 1.3×10−10% di 14
6C su tutto il Carbonio

in esso presente. Tale isotopo decade β− con un tempo di dimezzamento di 5730
anni.

Misurando l’attività (= intensità della radiazione emessa) di un fossile di massa
5 g, si registrano 3600 decadimenti in 2 ore. Calcolare l’età del fossile.

Exercise 35 Energia cinetica nel decadimento β

Utilizzando la formula semiempirica di massa, verificare se il nucleo 64
29Cu può

decadere β− (in 64
30Zn) e/o β+ (in 64

28Ni). Si calcoli il massimo dell’energia cinetica
per i decadimenti possibili.

Si usino i seguenti dati: Mp = 938.28MeV/c2, Mn = 939.57MeV/c2, me =
0.511MeV/c2.)

Exercise 36 Energia massima dei positroni nel decadimento β+

L’energia massima misurata dei positroni emessi nel decadimento β+ dell’isotopo
35
18Ar è 4.95 MeV. Usare questa informazione per determinare il valore del termine
Coulombiano aC nella formula semiempirica di massa di Weizsacker. Confrontare
il valore con quello trovato sperimentalmente, che è pari a aC = 0.697MeV.

Si utilizzino i dati: Mp−Mn =−1.293MeV/c2, me = 0.511MeV/c2.
N.B. - Non si deve utilizzare il valore di nessuna costante della formula di massa.

Exercise 37 Costante di Fermi e legge di Sargent
La vita media del neutrone libero è 886 s. Si chiede:
1. calcolare la costante di Fermi nel limite della regola di Sargent.
2. calcolare la vita media del decadimento β− dell’isotopo 35

16S, sapendo che
l’energia disponibile nel decadimento β , cioè W nella legge di Sargent,
risulta 168 KeV. Si assuma che sia l’elemento di matrice nucleare che il
termine coulombiano siano trascurabili (cioè = 1).

Exercise 38 Attività e massa di una sorgente radioattiva
L’attività naturale di 1 g di 226Ra è usata per definire l’unità di misura di 1 Curie

(Ci). Il tempo di dimezzamento del 226Ra è di 1620 anni.
1. Che massa ha un campione di 60Co (t1/2 = 5.26anni) se l’attività misurata

risulta 10 Ci ?
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Chapter 7
Fundamental interactions

7.1 Towards a relativistic, quantum theory

Schrödinger’s equation is inherently non-relativistic. This can be deduced doing the
operators substitution in the non-relativistic energy expression for a free particle,

E =
p2

2m
. (7.1)

Using the relations E = i} ∂

∂ t and ~p =−i}~∇, Eq. 7.1 becomes

− }2

2m
∇

2
ψ = i}

∂

∂ t
ψ. (7.2)

Time and space are treated on different grounds, as the corresponding derivatives
appear to the left- and right-hand side of the equation with different orders.

Another limit of the Schroedinger equation is its inability to describe the photon
as a particle.

7.1.1 The Klein-Gordon equation

In 1926 Klein, Gordon and Fock suggested a relativistic version of the Schroedinger
equation, in order to describe relativistic particles.

For a particle of mass m, energy E and momentum ~p, relativity tells us that

E2−~p2 = m2.

If we call Φ the solutions of the Schroedinger equation, and perform the operators
substitutions E→ i} ∂

∂ t and ~p→−i}~∇, we get

231
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−}2 ∂ 2

∂ t2 Φ +}2
∇

2
Φ = m2

Φ ,

and therefore
∂ 2

∂ t2 Φ−∇
2
Φ +

m2

}2 Φ = 0,

and using }= c = 1 (natural units) we get a simpler expression of the Klein-Gordon
equation,

∂ 2

∂ t2 Φ−∇
2
Φ +m2

Φ = 0.

Using the covariant notation,

∂
µ =

(
∂

∂ t
,

∂

∂x
,

∂

∂y
,

∂

∂ z

)
,

∂µ =

(
∂

∂ t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂ z

)
,

we can write
∂

µ
∂µ Φ +m2

Φ = 0,

where ∂ µ ∂µ is the d’Alembert operator 2, which allows us to write the Klein-
Gordon equation in its usual form,

2Φ +m2
Φ = 0.

We can search for a plane-wave solution to the equation, of the form

Φ = Nei~p·~x−iEt .

The Klein-Gordon equation imposes

(−E2 + p2 +m2)Φ = 0,

therefore E2 = p2 +m2, which has two solutions

E =±
√

p2 +m2 =±Ep with Ep = |E|> 0,

which correspond to {
Φ+ = Ne−iEpt+i~p·~x

Φ− = Ne+iEpt+i~p·~x.

One cannot discard the negative-energy solution, as the solutions Φ+ do not form a
complete basis. The challenge is to give a physical interpretation to such solutions.

Let’s evaluate in this case, as it was done for the Schroedinger equation, the prob-
ability current. We start from the Klein-Gordon equation and its complex conjugate,
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∂ 2Φ

∂ t2 −∇
2
Φ +m2

Φ = 0,

and
∂ 2Φ∗

∂ t2 −∇
2
Φ
∗+m2

Φ
∗ = 0.

Multiplying respectively by Φ∗ and Φ we get

Φ
∗ ∂ 2Φ

∂ t2 −Φ
∗
∇

2
Φ +m2

Φ
∗
Φ = 0,

Φ
∂ 2Φ∗

∂ t2 −Φ∇
2
Φ
∗+m2

ΦΦ
∗ = 0,

and subtracting the two equations we get

Φ
∗ ∂ 2

∂ t2 Φ−Φ
∂ 2

∂ t2 Φ
∗−Φ

∗
∇

2
Φ +Φ∇

2
Φ
∗ = 0,

so
∂

∂ t

(
Φ
∗ ∂

∂ t
Φ−Φ

∂

∂ t
Φ
∗
)
−~∇

(
Φ
∗~∇φ −Φ~∇Φ

∗
)
= 0.

This can be seen as the continuity equation ∂ ρ

∂ t +~∇φ = 0, where

ρ = i
(

Φ
∗ ∂

∂ t
Φ−Φ

∂

∂ t
Φ
∗
)
,

and
~j =−i

(
Φ
∗~∇Φ−Φ~∇Φ

∗
)
.

For a plane wave of the form

Φ = Ne−iEt+i~p·~x,

the density becomes

ρ = i
(
Φ
∗(−iE)Φ−Φ(iE)Φ∗

)
= E

(
Φ
∗
Φ +ΦΦ

∗) ,

therefore
ρ = 2E|N|2.

The density depends on the energy, as expected from relativistic effects, since
the volume contracts. This implies an increase of the density by factor γ (see Figure
7.1).

The two solutions of the KG equation gives respectively

ρ = 2|N|2|Ep| > 0,

and
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Equazione di Klein Gordon

Fig. 7.1 Volume contraction due to relativistic effects: a moving volume a3, when measured by a
standing observer, is contracted by a factor γ due to the contraction of lengths along the direction
of motion.

ρ =−2|N|2|Ep| < 0,

i.e. one has a negative probability for the negative-energy solutions. The current can
be written as

~j =−i(Φ∗(i~pΦ−Φ(−i~p)Φ∗) = ~p(Φ∗Φ +ΦΦ
∗) = 2~p|N|2,

therefore
~j =

2~p
2E

ρ,

and recalling that ~β = ~p
E we have

~j = ~βρ.

The Klein-Gordon equation brings us to solutions with negative probability
which are non-physical. This issue is solved by quantum field theory. Before the in-
troduction of this formalism, an appropriate description of the relativistic quantum
mechanics was looked for. This was found in 1928 by Dirac, which was looking
for an equation which satisfied the relation E2 = p2 +m2 and at the same time was
linear in the energy and the momentum. This equation will be treated in detail in the
Relativistic Quantum Mechanics (RQM) lectures.

The Dirac equation describes relativistic particles of spin one-half: it yields again
solutions with negative energy, but in this case the negative solutions have a positive
probability density, therefore they are physical solutions. A question remained: what
is their physical meaning?

7.1.2 Antiparticles

The interpretation of Dirac was that all the negative energy quantum states of such
spin one-half particles (e.g. electrons) were occupied. This is an important point,
otherwise nothing would have blocked these fermions from going to lower energy
states spontaneously, with large and indefinite emissions of energy. Instead, if those
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states are postulated to be already fully occupied, the Pauli principle automatically
prevents this situation.

The negative energy states are referred to as the Dirac sea. This picture is able
to explain a few processes involving the creation and annihilation of particles. For
example, a photon with energy E > 2me can excite an electron of the sea and create
an energy vacancy, positive with respect to the negative sea, and an electron with
positive energy. The positively-charged vacancy would represent the positron, the
antiparticle of the electron. The process can be written as

γ → e++ e−,

where one should keep in mind that conservation of energy-momentum requires the
presence of another particle, e.g. an atomic nucleus (γ +N→ e++ e−+N), for the
process to happen.

In a similar way, an electron could interact with a vacancy to produce a photon,
which would happen as a spontaneous emission due to the passage to a lower energy
state (see Figure 7.2). Dirac predicted the existence of antiparticles, in particular

Antiparticelle

Fig. 7.2 Interpretation of negative-energy solutions to the Dirac equation in terms of the Dirac sea
for fermions. Left: all negative-energy states are full. Center: electron-positron pair production can
be interpreted as a photon-induced excitation of an electron from a negative- to a positive- energy
state, creating a positive-energy particle (the electron) and a vacancy in the negative-energy states
(the positron). Right: electron-positron annihilation can be interpreted as a positive-energy electron
which fills a vacancy (positron) in the negative-energy states, releasing energy in form of a photon.

for the electrons which needed a relativistic description. The Dirac equation also
formally explains the one-half spin of the fermions (see RQM lectures).

Interpretation of Feynman-Stückelberg

However, the physical interpretation of the vacancies introduced by Dirac does not
reconcile easily with the interpretation of an opposite-charged particle propagating
with energy E > 0. (Additionally, the Dirac sea is unable to explain the existence of
the anti-particles of bosons.)

Feynman and Stückelberg gave an alternative interpretation, which starts from
the fact that the exponential term of the plane wave can be seen as
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e−iEt ≡ e−i(−E)(−t),

representing a negative-energy particle (e.g. electron) which travels back in time.
This can be seen as an anti-particle of opposite charge (e.g. positron) travelling
forwards in time, with positive energy.

The interaction between elementary particles can be represented in a space-time
diagrams as shown in Figure 7.3. This is the interpretation of anti-particles which is

Antiparticelle

Fig. 7.3 Feynman diagrams representing the interaction between a particle and its anti-particle -
electron–positron annihilation. Left: a negative-energy electron, which propagates back in time, in-
teracts with a positive-energy electron and produces a photon. Right: the same process is described
as a positive-energy electron and a positive-energy positron, both propagating forwards in time,
which interact together and produce a photon.

currently used in quantum field theory, and the possibility of creating or annihilating
particles and antiparticles forms its basis.

7.2 Strong interactions and the Yukawa potential

Since nuclei are formed of protons and neutrons, there must be a stronger force that
contrasts the Coulomb repulsion between the protons. Experiments have shown that
for distances smaller than ∼ 2 fm, the description of the scattering given by Ruther-
ford is no longer valid, since there is a great discrepancy between data and the
theoretical prediction from the Rutherford calculation. Through additional experi-
ments it can be shown that the Coulomb cross-section calculation does not properly
describe the data at high energy. These lead to an estimate of the distance for which
a Coulombian description of the interaction is valid and therefore an approximate
estimation of the nuclear radius, which is of a few fm (1fm = 1×10−15 m).

Moreover, from the measurement of the energy and scattering angle of particles
in a fixed target experiment, it is possible to evaluate the minimum approach distance
(see Eq. (4.9)) - which again is of the order of a few fm. There is therefore evidence
that some force exists which is strong enough to keep together the atomic nucleus,
but is short-ranged. How can we model this force and, in general, what happens
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inside the nucleus? A good answer (although not the ultimate answer) comes from
the Yukawa potential.

7.2.1 The Yukawa Potential

We want to find the analogous of the Coulomb potential for strong interactions. To
do so, we want to derive an expression for the potential generated by a nucleon
(i.e. a proton or neutron), which we assume central and call Φ = Φ(~r)≡Φ(r). The
idea is to proceed in a way analogous to the one followed in electromagnetism for
the Coulomb potential: derive Φ from a field equation. This equation is the Klein-
Gordon equation.

We have seen in Section 7.1.1 that the Klein-Gordon equation can be retrieved
from the energy momentum relation. A special case is the one where m = 0, for
which one has

E2 = p2. (7.3)

This is the case for the photon, which is massless, and leads to the Maxwell equation
for the scalar potential in the Lorentz gauge (see the electromagnetism lectures). If
we call Φ the solution of the Klein-Gordon equation and perform the usual operator
substitution

E→ i}
∂

∂ t
~p→−i}~∇,

we get
∂ 2

∂ t2 Φ−∇
2
Φ = 0,

which has the same stationary (i.e. time-independent) solution of the Poisson equa-
tion in the presence of a point source with charge q placed in~r = 0,

∇
2
Φ = qδ

(3)(~r).

To retrieve the potential Φ , which in this case is the Coulomb potential, we need to
solve first the Laplace equation ∇2Φ = 0, valid everywhere except in~r = 0.

In order to describe the potential of the strong interactions, we will do the same,
starting from the most general case which involves a mass m, i.e. the Klein Gordon
equation

∇
2
Φ−m2

Φ =
∂ 2Φ

∂ t2 ,

which has stationary solutions which, as for the Maxwell equations, give rise to
a scalar potential Φ when a point charge (representing a nucleon, for example at
~r = 0) is added to the equation. The difference with the Coulomb case is in the fact
that the mediator of this interaction is no longer the massless photon, but another
particle with mass m. Since the Klein-Gordon equation does not include another
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degree of freedom, the spin (differently from Dirac’s equation), the field Φ , i.e. the
mediator of the interaction, will have spin zero (a boson).

This equation can be solved, as for the Poisson equation, for every point in the
space except~r = 0. We can look for time-independent spherical solutions of

∇
2
Φ−m2

Φ = 0.

We can express the Laplace operator in spherical coordinates as

∇
2 =

1
r2

∂

∂ r

(
r2 ∂

∂ r

)
,

where we used the fact that our hypothesis is that the potential is central, i.e.

∂Φ

∂θ
= 0 and

∂Φ

∂φ
= 0,

therefore we have to solve

1
r2

∂

∂ r

(
r2 ∂Φ

∂ r

)
= m2

Φ ,

which becomes
1
r2

[
r2 ∂ 2Φ

∂ r2 +2r
∂Φ

∂ r

]
= m2

Φ ,

and therefore
∂ 2Φ

∂ r2 +
2
r

∂Φ

∂ r
−m2

Φ = 0,

so

r
∂ 2Φ

∂ r2 +2
∂Φ

∂ r
−m2rΦ = 0. (7.4)

We define f = rΦ , so that we can write

∂ f
∂ r

= r
∂Φ

∂ r
+Φ ,

and
∂ 2 f
∂ r2 = r

∂ 2Φ

∂ r2 +2
∂Φ

∂ r
,

so we can rewrite Eq. (7.4) as

∂ 2 f
∂ r2 −m2 f = 0

which has two simple exponential solutions of the form

f =C′e±mr, (7.5)
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where C′ is a constant. Taking the non-divergent solution, we find

Φ = Φ(r) =C
e−mr

4πr
, (7.6)

which represents the Yukawa potential. The 4π factor comes from the normalisation
chosen in order to have a comparison with the Coulomb potential later on in this
section.1.

7.2.2 The propagator of the Yukawa potential

The Yukawa potential is short-ranged, as desired (thanks to the decreasing exponen-
tial term). Can we use it to predict properties like the size of the nucleus and the
strength of the strong interaction?

Let’s evaluate the scattering amplitude in a scattering process between a non-
relativistic particle of mass M and the Yukawa potential of Eq. (7.6). As usual, we
assume the particle to be free before and after the scattering, i.e. we will describe
its wave function with a plane wave N exp(i ~pi, f ·~r− iEi, f t) for both the initial state
i and the final state f . By defining ~p = ~pi−~p f , and using energy conservation (Ei =
E f ), we can write

Tf i =
|N|2
4π

ˆ
V (r)ei~p·~r d3r ∝

ˆ
∞

0

ˆ
π

0

ˆ 2π

0
eiprcosθ e−mr

r
r2sinθ dθ dφ dr,

where θ is the angle between~r and ~p in space (see Figure 7.4).

Interazione Forte e Teoria di Yukawa

Fig. 7.4 Definition of the angle θ between the position and the momentum of the particle at a
given time.

With the usual substitution y= cosθ , using |N|2 = 1 over the integration volume2

and performing the integration on the azimuthal angle φ (the Yukawa potential is
central!), we obtain

1 To be precise, we put C = 4πC′ with no loss of generality
2 As usual we can assume V = 1 with no loss of generality.
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Tf i =
2πC
4π

ˆ
∞

0

ˆ 1

−1
reiprye−mr dr dy

=
C

2ip

ˆ
∞

0
(eipr− e−ipr)e−mr dr =

C
2ip

ˆ
∞

0
(e(ip−m)r− e−(ip+m)r) dr

=
C

2ip

[
− 1

ip−m
− 1

ip+m

]
=

C
2ip

−2ip
(ip−m)(ip+m)

,

so
Tf i =

C
p2 +m2 ,

which is the form of the propagator with mass m we have seen in Sec. 4.10.
The phase space for a particle of mass M which feels the Yukawa potential can

be written as
dn

d p f
=

p2
f

(2π)3 dΩ .

and in the non-relativistic case it becomes

d p f

dE f
=

√
M

2E f
,

since E f =
p2

f
2M , so

dE f

d p f
=

p f

M
=

√
2ME f

M
=

√
2E f

M
,

and

ρ(Ei) =
dn

dE f
=

M
√

2ME
(2π)3 dΩ .

Using Fermi’s golden rule

Γf i = 2π|Tf i|2ρ(Ei),

and calculate the particle flux as

φ = v =
p f

M
=

√
2ME f

M

we can express the differential cross-section which describes the interaction be-
tween a particle and the Yukawa potential as

dσ

dΩ
=

Γf i

v
,

and so
dσ

dΩ
=

1
4π2

C2M2

(p2 +m2)2 ,
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and integrating over the solid angle we obtain the total cross-section

σ =
C2

π

(
M

(m2 + p2)

)2

. (7.7)

For low transferred momentum(p� m) we have

σ ≈ C2

π

(
M
m2

)2

, (7.8)

and
dσ

dΩ
≈ 1

4π2
C2M2

m4 ,

which is a constant. This case corresponds to the scattering of a particle on a Yukawa
potential fixed in space, with low transferred momentum. The cross-section we ob-
tained can be compared to the one of the scattering over a rigid sphere, with a cross-
section of the form σ = 4πa2 (see Sec. 4.4), where a is some measure of the size of
the nucleus.

The radius of the interaction gives an idea of the mass of the intermediate particle
which mediates the interaction, which is a spin-zero boson:

1
m
∼ few fm → m∼ 100MeV.

From Eq. (7.8), if we consider that the particle is a nucleon (M ≈mp ≈ 1GeV), and
set σ = 4πa2, we have

C2 = 4π
2

(
m2

M

)2

,

therefore with M the mass of a nucleon, we get

C ∼ O(1).

Similarly, in the Coulomb case, for two unit charges the potential energy can be
written as

V =
zZe2

4πε0r
=

α2

4πε0r
,

therefore

CCoulomb =
e2

ε0
= 4πα ∼ 0.1.

For the Yukawa potential, also called “screened Coulomb potential”, the parti-
cles that mediate the interaction are the three pions π , which have electric charge
−e,0,+e. The interactions between nucleons can be represented in terms of Feyn-
man diagrams as show in Figure 7.5, in which the pion is the mediator of the strong
interaction.
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Fig. 7.5 Feynman diagrams representing the exchange of a pion in the interaction between nucle-
ons.

From the typical interaction distances of the scattering, the mass of the pion is
expected to be

mπ = O(100 MeV),

since }c∼ 197MeVfm.

7.3 Discussion on the strong interaction

We have seen that from the Klein Gordon (KG) equation the Maxwell equations can
be derived in the massless limit. It is beyond the scope of these lectures to formalise
the consequences of a field equivalent to the electromagnetic field that would be
massive, but intuitively that is what can be deduced using the KG equation which
will play a central role in establishing a theory of relativistic quantum fields.

What we have seen is that the KG equation also provides, using its stationary
solutions in a similar fashion as in the Poisson equation, a short-range potential,
where the range is controlled by the mass of the exchanged particle.

Today, we know that the strong interaction isn’t mediated by pions, which aren’t
themselves elementary particles (they are composed by quarks). Quantum chromo-
dynamics (QCD) is the underlying quantum field theory which is able to explain the
interactions between strongly-interacting particles (hadrons), through the exchange
of mediators called gluons. The Yukawa theory, however, is still sufficient to de-
scribe with good accuracy many nuclear phenomena.
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Fig. 7.6 Differential cross-section of proton-neutron scattering. The horizontal axis shows both
the angle between the final-state nucleons and the transferred momentum. The two diagrams show
the conservation of the charge in the interactions.

7.4 The weak interaction

As we have seen in Section 6.8.1, the Fermi theory leads to a very accurate descrip-
tion of all β decays, and not only the nuclear ones! The Fermi theory describes very
well the decay of the muon, and the decay of the pion. Now that we have inter-
preted the electromagnetic and strong interactions as fundamental interactions, the
question immediately emerges about the interaction responsible for the β decay.

Understanding the nature of the β radioactivity required the existence of the neu-
trino, which was already a revolution. Fermi’s paper in 1933 entitled:

“Tentativo di una teoria dei raggi β”, Ricerca Scientifica, 1933,

came after the publication by Sargent of his empirical law in 1932 [?]. One of the
great successes of Fermi’s theory was precisely that it could explain Sargent’s de-
scription of β decays.

This was clearly an interaction of a different kind. It involved the electron, a new
particle – the neutrino – and none of the known strongly-interacting particles, such
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as the pion. The β decay involves nuclei and induces their transmutation as in the
simple case

n→ p+ e+νe,

where the neutron is changed into a proton. The lifetime of this decay is long (of
approximately 900 seconds), which gives an indication that the coupling of the in-
teraction is “weak”. In fact, the Fermi constant GF is found to be extremely small:

GF = (1.14962±0.00015)×10−11 MeV−2

We saw in Section 6.8.6 a way to work our way out of giving an estimate of
the Fermi constant by estimating the nuclear matrix element M f i which appears in
Eq. 6.20. A precise determination of the nuclear matrix element requires an accu-
rate model of the nucleus. An introduction to the main models of nuclei is given in
Chapter 9. In particular, it is the nuclear matrix element which depends on the struc-
ture of the nucleus. All of the complexity that leads to different β decay lifetimes
is related to the nuclear structure, while the Fermi constant is universal and governs
the weak interaction.

Let’s consider the typical momenta involved in the β decays, q∼ 1 MeV/c: how
does the weak interaction compare to the electromagnetic one? For the latter, we
can estimate the strength of the interaction, which happens via the exchange of a
photon, from the matrix element (i.e. from the propagator), which would be

4πα

(qc)2 ∼ 0.1MeV/c2,

a number which is much higher than in the case of the weak interaction (GF is 10
orders of magnitude smaller!).

One can however note that, for momenta of the order of q ∼ 105 MeV/c, the
strengths of the two interactions will be similar. We also see that, in the case of
the Fermi theory (Eq. (6.20)), the decay rate does not depend on the exchanged
momentum. These two facts suggest we may represent also the weak interaction
with the exchange of a massive mediator, as it was done for the effective description
of the strong interaction with pions, and for the electromagnetic interaction with the
massless photon. In this picture, the matrix element can be expressed as

M =− g2
W

q2 +M2
W
,

where the interaction is carried by the charged vector bosons W (which have non-
zero electric charge, i.e. W+ and W−) and the neutral vector boson Z. Taking a cou-
pling constant gW close to that of the electromagnetic interaction, we immediately
see that to get a matrix element which can be approximated, for small momenta q,
with the Fermi constant, one should have mediator masses MW,Z ∼ 105 MeV/c2.

This prediction was confirmed by the discovery of the weak interaction vector
bosons, Z, W+ and W−, at the Super-Proton-Anti-Proton-Synchotron (SppS) col-
lider at CERN, in 1983. The measured masses of the vector bosons are
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MW± = 80.379±0.012GeV/c2,

MZ = 91.1876±0.0021GeV/c2GeV/c2.

These very high masses imply that the weak interaction is short-ranged.
The weak interaction is the only interaction whose fundamental description in-

cludes massive mediators: the electromagnetic interaction is mediated by the pho-
ton, which is massless, and the strong interaction turns out to be mediated by other
massless particles, the gluons (the Yukawa description with the exchange of pions is
just an effective description of the strong interaction). The fact that the weak interac-
tion is short-ranged has subtle implications for theoretical physics, and is explained
by the Higgs mechanism, which is quite beyond the scope of these lectures.

Take-home lessons

• The Schrödinger equation is intrinsically non-relativistic: it treats space and time
on different grounds (space derivatives appear as squared on one side of the equa-
tion, while the equation is linear in the time derivative).

• A first attempt at a relativistic version of the Schrödinger equation is the Klein-
Gordon equation, which is obtained substituting the quantum mechanical opera-
tor expressions for energy and momentum in the relativistic energy-momentum
relation. The Klein-Gordon equation is however not linear in energy and momen-
tum (as it is second-order in space and time derivatives), and violates the abstract
form of the Schrödinger equation, which is first order in the time derivative. The
Klein-Gordon equation has negative-energy solutions that lead to negative proba-
bility, and are hence non-physical. The Dirac equation is introduced to overcome
these issues and yield a first attempt at a relativistic quantum mechanics.

• Negative energy states arise from both equations, and are interpreted by Dirac
as quantum states which are always occupied (in order to explain why particles
don’t continuously go to lower energy states spontaneously). If one is consid-
ering a free electron, for example, in Dirac’s theory the negative energy states
form a Dirac sea of electrons. One electron from this sea may be excited by an
electron with E > 2me, which would then produce a positively charged vacancy
and an electron; an electron could, similarly, interact with a vacancy to produce
a photon, which would be seen as a spontaneous emission due to the passage to
a lower-energy state. Feynman and Stueckelberg, instead, give an alternative in-
terpretation than Dirac: a vacancy is seen not as an electron with negative energy
propagating back in time, but rather as its anti-particle, the positron, with positive
energy, positive charge and propagating forward in time. Anti-particles have the
same properties as particles, except that their charge has opposite sign. A photon
with E > 2me could then produce an electron and a positron (γ → e++ e−), and
a positron and an electron could annihilate into a photon (e++ e−→ γ).

• Nuclei are formed by protons and neutrons, which are held together by a force
which is stronger than Coulomb repulsion – the strong force. The effects of this
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force become evident as soon as distances of the order of a few fm are probed by
experiment, like in high-energy Rutherford scattering. The discrepancy between
the data and a purely electromagnetic theory of the interaction gives a measure
of the radius of nuclei and of the maximum approach distance.

• The Yukawa potential is a short-range potential which is useful to describe strong
interactions in nuclei. It provides stationary (time-independent) solutions to the
Klein-Gordon equation, and yields a differential cross-section which is constant.
The Yukawa interaction can be seen as mediated by a particle of a mass of about
100 MeV, with a coupling factor much higher than Coulomb interaction.

Questions

• Could the γ → e++ e− happen in vacuum? What about e++ e−→ γ?
• Can we have infinite-range interactions? Why?
• What are the differences between electrons and positrons?
• You take the Schrödinger equation and substitute H =

√
p2 +m2. Does the equa-

tion you get respect special relativity?
• Does the Klein-Gordon equation respect the “abstract” Schrödinger equation

i}d | ψ〉/dt = H | ψ〉?
• Does the Dirac equation respect the “abstract” Schrödinger equation i}d |ψ〉/dt =

H | ψ〉?
• What is the meaning of the negative-energy solutions of Klein-Gordon’s equa-

tion?
• How is the electron-positron pair production explained in Dirac’s sea interpreta-

tion?
• Does Dirac’s sea interpretation extend to bosons?
• Which interaction field describes the interaction between α particles and golden

nuclei in Rutherford-like experiments?
• When performing Rutherford’s experiment, you keep measuring α particles at a

fixed angle with respect to the incident beam, but you increase the kinetic energy
of incident particles: what happens to the impact parameter?

• What happens to the α interaction cross-section in Rutherford’s experiment if
you keep increasing the energy of the incident particles? Why?

• In Rutherford’s experiment, is the probability of observing an α particle higher
for θ → 0, θ → π/2 or θ = π/4?

• Is the strong interaction long-ranged or short-ranged?
• What is an hadron?
• Which equation does the Yukawa potential solve: Klein-Gordon’s, Dirac’s, Laplace’s

or the wave equation?
• How does the coupling constant of strong interactions compare to the one of

electromagnetic interactions?
• Which particle can be seen as the mediator of the low-energy neutron-neutron

scattering n+n→ n+n?
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• Are neutrons hadrons?
• Is weak interaction long-ranged or short-ranged? Justify the answer.
• Can you tell whether a process with a cross-section of 1 fb is more likely to be

due to electromagnetic, strong, weak or gravitational interactions?
•





Chapter 8
Symmetries and Conservation Laws

We have first discussed symmetries and conservation laws when discussing about
special relativity in Chapter 3. The reason for this is the intrinsic connection between
relativity and the invariance of physical laws under translations in space and time. In
this context we have discussed Noether’s theorem and the links between symmetries
and conservation laws.

The symmetries related to space-time are referred to as proper orthochronous
Lorentz symmetries, such as translation in time, translation and rotations in space.
For each of them there is a corresponding conservation law, i.e. conservation of
energy, conservation of momentum and conservation of angular momentum. These
transformations are called proper since they preserve the orientation in space, and
orthochronous because they preserve the orientation in time.

We will discuss more symmetries here in the context of quantum mechanics. This
will only be a very first taste of the fundamental concepts that will lead to gauge
theories, which play a central role in the description of interactions in quantum field
theory. Before we start, it is worth pointing out that physical laws are not invariant
under just any symmetry.

We will briefly brush through the formalism of conserved quantities in quan-
tum mechanics and discuss the different kinds of symmetries in nuclear and particle
physics, trying to emphasise their role in making verifiable predictions. Our dis-
cussion will try to illustrate the distinction between the symmetries of space and
time and internal symmetries of a quantum mechanical system. To the proper or-
thochronous Lorentz symmetries we will add three symmetries of space and time.
The first will be parity (P) which is the inversion of space coordinates (or a point
reflection) and is therefore not a proper transformation. We will also see the inver-
sion in time (T ) which is not orthochronous. Then, we will see that there is a related
symmetry which changes a particle into its anti-particle and is referred to as charge
conjugation (C). The latter three symmetries are a bit different from the others, as
they are discrete symmetries and lead to multiplicative quantum numbers.

In this chapter we will also detail other continuous symmetries, which are inter-
nal to a quantum mechanical system. A natural example of internal symmetries in
quantum mechanics is the change of phase of a wave function,

249
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ψ → ψ
′ = ψeiδ where |ψ ′|2 = |ψ|2,

in which case all observable properties are invariant under such transformation.
A more detailed introduction to symmetries and conservation laws can be found

in Chapter 10 of A. Das and T. Ferbel, “Introduction to Nuclear and Particle
Physics”, World Scientific[1]. Another excellent introduction to symmetries and
conservation laws can be found in Richard Feynman’s lectures [2] which are always
enlightening.

The first and perhaps most striking symmetry observed at subatomic level is that
as far as we can measure, particles (of a given fundamental type) are perfectly inter-
changeable.

8.1 Symmetries in quantum mechanics

In Section 3.7 we have seen how invariance under translations in space implied the
conservation of momentum and the invariance under translations in time implied the
conservation of energy.

In quantum mechanics, the time evolution of an operator Q is given by

i}
dQ
dt

= i}
∂Q
∂ t

+[Q,H].

Hence an operator which does not depend explicitly on time is conserved if it com-
mutes with the hamiltonian H:

[Q,H] = 0.

A transformation U doesn’t affect H if

UHU−1 = H,

so UH = HU or [U,H] = 0.
This is in the end a consequence of the requirement that physics predictions do

not change after the transformation of the wave function

ψ → ψ
′ =Uψ.

Physics predictions are the same whenever the normalisation of the wave function
does not change under the transformation U , which means requiring

〈ψ | ψ〉= 〈ψ ′ | ψ ′〉= 〈ψU† |Uψ〉,

i.e. that
U†U = I,

where we denoted the identity as I.
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If U is a continuous transformation, it may be imagined as a sequence of infinites-
imal transformations, like in the case of spatial translations. These can be written as

U(ε) = I + iεσ ,

where ε is a real parameter which is infinitesimally close to zero, and σ is called the
generator of the transformation. There is a requirement on σ which comes from the
fact that U†U = I should be satisfied:

U(ε)†U(ε) = (I− iεσ
†)(I + iεσ) = I + iε(σ −σ

†)+O(ε2),

which means that one must have

σ = σ
†,

i.e. σ must be a hermitian operator, which commutes with the Hamiltonian as

[H,U ] = [H, I + iεσ ] = 0,

and hence it corresponds to a conserved quantity!
Moving to finite transformations is easy: we can see a finite transformation,

which is a function of some parameter (or vector of parameters) α , as a sequence of
n→ ∞ infinitesimal transformations by ε = α/n, i.e.

U(α) = lim
n→∞

(
1+ i

α

n
σ

)n

= exp(iασ) .

In other words: for each symmetry of the Hamiltonian, there is an associated
observed quantity σ .

8.2 Continuous symmetries

Let’s focus on the angular momentum. In the classic treatment it is intuitive how
to combine two different angular momenta, while the task is far more complex in
quantum mechanics.

The spin angular momentum does not come from a sum of components, because
the electron for example can be considered an elementary particle. Spin is an intrin-
sic characteristic of elementary particles.

We can measure simultaneously the three components of a classical angular mo-
mentum, but in quantum mechanics we can measure simultaneously only the to-
tal amplitude L2 and one of its components (typically Lz), and the resulting values
are discrete. L2 can have eigenvalues l(l + 1)}2 , where l = 0,1,2,3, . . . while the
eigenvalues of Lz will be ml} , where ml = −l,−l + 1, . . . ,0,1, . . . , l− 1, l , so Lz
can assume 2l + 1 values. A given particle can have any angular momentum l, but
its spin is fixed – for example:
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• S = 0: pions, kaons;
• S = 1

2 : electron, muon, tauon, neutrinos, proton, neutron;
• S = 1: photon, some mesons, and the W and Z bosons;
• S = 3

2 - the ∆ and Ω hadrons.

Particles with an integer spin are called bosons, and obey the Bose-Einstein statis-
tics, while those with semi-integer spin are called fermions and obey the Fermi
statistics.

8.2.1 Internal Symmetries

We call internal symmetries the symmetries which are not related to space and time,
but rather on the relation between different particles. An example of internal sym-
metry is isospin

8.2.1.1 Composition of Angular Momenta

When L and S are non-independent, the conserved quantity is the total angular mo-
mentum

~J =~L+~S.

The question is how can we compose angular momenta in quantum mechanics, as
we cannot measure the three components simultaneously.

Let us denote as ~J1 and ~J2 the two angular momenta to be composed. The eigen-
values of the components along a given axis z can be summed directly,

m = m1 +m2

The total amplitude of ~J depends on the orientation of ~J1 and ~J2, and the possible
values are

j = | j1− j2|, | j1− j2|+1, . . . , | j1 + j2|.
Each state can be identified either in terms of j1,m1, j2,m2, i.e. in terms of the

eigenvalues of the two angular momenta being composed, or in terms of the eigen-
values j,m of the total angular momentum. The general expression to move from
the former basis to the latter is

| j1,m1〉| j2,m2〉=
j1+ j2
∑

j=| j1− j2|
c j, j1 j2

m,m1,m2 | j,m〉,

where the coefficients c of each state are the Clebsh–Gordan coefficients, which are
tabulated (and whose derivation can be found in any quantum mechanics textbook).

For example, one can compose a state with j1 = 2,m1 = −1 and another with
j1 = 1/2, j2 = 1/2, obtaining
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| 2,−1〉 | 1
2
,

1
2
〉=

√
2
5
| 5

2
,−1

2
〉−
√

3
5
| 3

2
,−1

2
〉,

where the coefficients are obtained from reading the horizontal lines of the Clebsh–
Gordan tables in Fig. 8.2.1.1.

Simmetrie Continue - Momento Angolare

Fig. 8.1 Clebsh-Gordan table entries for the 2× 1
2 composition

As for the decomposition of the states | j,m〉, one must read the tables vertically,
obtaining

| j,m〉= ∑
j1, j2

c j, j1 j2
m,m1,m2

| j1,m1〉 | j2,m2〉.

From the composition of two spins 1
2 one can immediately observe the possible

results:

• total spin 1: a triplet state, symmetric under the exchange of particles;
• total spin 0: a singlet state, anti-symmetric under the exchange of particles.

In the case of a particle with spin 1
2 , a useful representation of the eigenstates

| j,m〉 is

| 1
2
,

1
2
〉=

(
1
0

)
,

| 1
2
,−1

2
〉=

(
0
1

)
,

while a generic state of a particle with spin 1
2 can be written as

α

(
1
0

)
+β

(
0
1

)
=

(
α

β

)
,
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where α and β are complex numbers and |α|2 and |β |2 are the probabilities of
measuring Sz =

1
2} and Sz =− 1

2}. Their sum is, of course, equal to one.
The choice of Sz as a projection is arbitrary, so what are the probabilities of

measuring }
2 or−}

2 on the other components? To each component of S is associated
a matrix,

Sx =
}
2

(
0 1
1 0

)
,

Sy =
}
2

(
0 −i
i 0

)
,

Sz =
}
2

(
1 0
0 1

)
.

Each matrix has eigenvalues ±}
2 . To find the probability of measuring a given value

of Sx it is sufficient to express

(
α

β

)
in the base of eigenvectors of Sx, and sum up

the components:

S2 = S2
x +S2

y +S2
z .

One must find s(s+ 1)}2 as a result. The matrices (or operators) Sx, Sy and Sz can
be expressed using Pauli’s matrices,

Sx,y,z =
}
2

σx,y,z.

A rotation of the generic state

(
α

β

)
can be written as

(
α ′

β ′

)
=U(~θ)

(
α

β

)
,

where ~θ is a vector in the direction of the rotation and its amplitude is the angle of
rotation. It is worth stressing that this is a rotation in the abstract Hilbert space, i.e.
not a rotation in space-time: in this transformation, all space-time coordinates are
kept fixed.

A rotation in this space can also be represented as

U(~θ) = e−i~θ ·~σ2 ,
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where ~σ = (σx,σy,σz) are the Pauli matrices. 1 The matrix U(~θ) is unitary, has a de-
terminant equal to 1 and the ensemble of these rotations is represented by the group
of SU(2). The Pauli matrices are, in turn, the infinitesimal generators of SU(2).

One in general finds the following:

• particles with spin 1
2 are part of bi-dimensional representations of the group

SU(2);
• particles with spin 1 are part of tri-dimensional representations of the group

SU(2);
• particles with spin 3

2 are part of tetra-dimensional representations of the group
SU(2).

8.2.1.2 Isospin

From the point of view of strong interactions, replacing all protons with neutrons
and vice-versa gives – once Coulomb effects are subtracted – the same results. It is
then natural to consider the proton and the neutron as “the same thing”, the nucleon,
i.e. as parts of a doublet,

p =

(
1
0

)
and n =

(
0
1

)
.

Heisenberg proposed that strong interactions are invariant for rotations in the space
of isospin, whose name is in analogy with intrinsic spin. This implies, thanks to
Noether’s theorem, that the isospin is conserved in strong interactions.

We associate to particles which interact strongly (hadrons) an isospin I and its
projection Iz: we can form for example the proton-neutron doublet and the π meson
triplet,

p = |1
2
,

1
2
〉, n = |1

2
,−1

2
〉, π

+ = |1,1〉, π
0 = |1,0〉, π

− = |1,−1,〉

and also, for example,

• particles with isospin 0: (spin 1
2 )

∆ = |0,0〉
• particles with isospin 3

2 :(spin 3
2 )

∆++ = | 32 , 3
2 〉 ∆+ = | 32 , 1

2 〉 ∆ 0 = | 32 ,− 1
2 〉 ∆− = | 32 ,− 3

2 〉
As in the case of spin, the multiplicity of each multiplet is 2I +1.

Isospin has a very important predictive power. Let’s consider a system of two
nucleons: their possible configurations in terms of isospin are

1 Note that a rotation of spin is the exponential of a matrix, which is computed as

eA = 1+A+
1
2

A2 + · · ·+ 1
n!

An + . . . .
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• triplet
|1,1〉= pp |1,0〉= 1√

2
(pn+np) |1,−1〉= nn

• singlet
|0,0〉= 1√

2
(pn−np) (Deuterium)

Since there are no bound states of two protons or neutrons, the solution to be cho-
sen is the singlet, So it seems that the strong attraction between nucleons is more
important for I = 0 than for I = 1.

Isospin has implications in scattering reactions, let’s consider

• (i) p+p → d + π+,
• (ii) p+n → d + π0,
• (iii) n+n → d + π−.

Considering that the deuteron has I = 0, we can write

d +π
+ = |1,1〉, d +π

0 = |1,0〉, d +π
− = |1,−1〉,

while for the initial states we have

p+ p = |1,1〉, n+n = |1,−1〉, p+n = 1√
2
(|1,0〉+ |0,0〉).

Only the contribution I = 1 participates because the final state is |1,0〉 (and isospin
is conserved in strong interactions), so the predicted amplitudes of scattering are in
the ratios

M(i) : M(ii) : M(iii) = 1 :
(

1√
2

)
: 1,

so the cross sections are in the ratios

σi : σii : σiii = 2 : 1 : 2

The processes (i) and (ii) have been measured ( (iii) is a bit more complex) ) and
have been found in these proportions!

Another important example is the pion - nucleon scattering. Let’s consider for
example the three scattering processes

• (i) π++ p → π+ + p (elastic scattering),
• (ii) π−+ p → π− + p (elastic scattering),
• (iii) π−+ p → π0 + n (charge exchange).

We can write the initial and final states in terms of isospin states as

π
++ p = |1,1〉|1

2
,

1
2
〉= |3

2
,

3
2
〉

π
−+ p = |1,−1〉|1

2
1
2
〉= 1√

3
|3
2
,−1

2
〉−
√

2
3
|1
2
,−1

2
〉

π
0 +n = |1,0〉|1

2
− 1

2
〉=

√
2
3
|3
2
,−1

2
〉+ 1√

3
|1
2
,−1

2
〉.
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Simmetrie e Leggi di Conservazione

Fig. 8.2 Clebsch-Gordan tables for the 1× 1
2 composition

In the case of nucleon-nucleon scattering yielding deuterium and a pion, there
was only one possible value of total isopin, I = 1, so just one amplitude possible,
and the proportions were fixed by the Clebsch-Gordan coefficients. In this case,
instead, we have two different possible values for isospin, I = 3

2 and I = 1
2 , so we

consider two different amplitudes:

M3/2 for I =
3
2

〈I = 3
2
|H3/2|I =

3
2
〉,

M1/2 for I =
1
2

〈I = 1
2
|H1/2|I =

1
2
〉

The first reaction (i) however has only a I = 3
2 transition, and can be written as

π
++ p→ π

++ p,

|3
2
,

3
2
〉 → |3

2
,

3
2
〉

so
σi = k|M3/2|2.

Similarly, for the reaction (ii):

π
−+ p→ π

−+ p,

1√
3
|3
2
,−1

2
〉−
√

2
3
|1
2
,−1

2
〉= |i〉= | f 〉,

which yields

σii = k|1
3
M3/2 +

2
3
M1/2|2

While for reaction (iii),
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π
−+ p→ π

0 +n,

we have:

|i〉= 1√
3
|3
2
,−1

2
〉−
√

2
3
|1
2
,−1

2
〉,

| f 〉=
√

2
3
|3
2
,−1

2
〉+ 1√

3
|1
2
,−1

2
〉

so

σiii = k|
√

2
9
M3/2−

√
2
9
M1/2|2.

We can observe in collisions π−p and π+p a resonance (Fig. 8.2.1.2), given by
the production of a ∆ resonance with isospin 3

2 . This resonance appears at a mass
of 1232 MeV. It was empirically observed that M3/2 >> M1/2, which allows to
predict the ratios of cross sections to be

σi

σii +σiii
=

9
1+2

.

8.3 Discrete symmetries

In quantum mechanics there are various important discrete transformations:

• Parity P: ~r→−~r
• Charge-conjugation C: particle→ antiparticle
• Time reversal: t→−t

These transformations have the property that P2 = T 2 = C2 = 1 , so they are
represented by operators with eigenvalues ±1.

8.3.1 Parity

Vector quantities can have different types of parity, i.e. different behaviour after
parity transformations:

• polar vectors are vectors that change sign with parity; for example,

– coordinates~r,
– velocity~v,
– momentum ~p;

• axial vectors are vectors that do not change sign with parity; for example,
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Simmetrie Discrete

Fig. 8.3 Cross–section for π±p production as a function of the invariant mass.

– angular momentum~L =~r∧~p,
– spin.

Scalar quantities like r2, p2

2m , L2,~L ·~S do not change sign under parity transforma-
tions. Instead, dimension 1 quantities that do change sign are called pseudo-scalars.

Parity plays an important role in quantum mechanics. For a particle in a radial
field, the wave function can be written in terms of harmonic functions,

Ψn,l,m =
un,l

r
Yl,m(θ ,φ),
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where the spherical harmonics Yl,m satisfy the relation

P(Ψn,l,m) = P(
un,l

r
Yl,m(θ ,φ)) =

un,l

r
Yl,m(π−θ ,φ +π) = (−1)l

Ψn,l,m.

Assuming that the particle Ψ has an intrinsic parity RΨ , then

PΨn,l,m = RΨ (−1)l
Ψn,l,m.

In case of a system of two particles and an interaction with spherical symmetry,
we have

PΨn,l,m = R1R2(−1)l
Ψn,l,m,

i.e. the parity of a system of two particles with angular momentum l is given by

P = P1P2(−1)l ,

where P1 and P2 are the intrinsic parities of the two particles.
The electromagnetic interaction conserves parity. We can derive the parity of the

photon by observing that:

• P(~E) =−~E (i.e. the electric field is a polar vector),
• P(~B) = ~B (i.e. the magnetic field is an axial vector).

The Maxwell equations are invariant under parity transformations, as

~∇ ·~E = ρ

ε0
~∇∧~E + ∂~B

∂ t = 0

(-1)(-1) (1) (-1)(-1) (1)

~∇ ·~B = 0 ~∇∧~B−µ0ε0
∂~E
∂ t = µ0~J

(-1)(1) (-1)(1) (-1) (-1)

The interaction of the electromagnetic field has a polar nature, as

~F = (~E +~v∧~B).

Photons have spin one and negative parity: this can be seen, for example, from the
fact that transitions between atomic levels with the emission of single photons have
∆ l =±1, which implies P(γ) =−1.

Protons and neutrons are assigned positive parity,

P(p) = P(n) = +1.

This is a convention analogous to the choice that the electron has a negative charge.
Fermions (e,n, p,µ, . . .) have conventionally a positive parity, while their antiparti-
cles have negative parity.
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The parity of π− is measured from its capture at rest by the deuteron,

π
−+d→ n+n.

Experimentally this means sending a low-energy pion beam on a liquid deuterium
target: pions are slowed down by energy loss, and then are captured in the atomic
orbit to form a mesic atom with d.

We know that the pion has spin Sπ− = 0. As for the spin of deuterium, which
is the bound state of a proton and a neutron: from the point of view of isospin2,
its wavefunction should be antisymmetric under the exchange of nucleons; we have
already seen that deuterium is an isospin singlet, so its isospin wavefunction is an-
tisymmetric – and hence, its spin and spatial wavefunctions should either be both
antisymmetric, or both symmetric. The latter case is favoured by nuclear attraction,
so we consider the ground state of deuterium the one with S = 1 and l = 0. As a con-
sequence of this, in the initial state J = 1 and the conservation of the total angular
momentum implies that J = 1 in the final state as well.

In order to know the parity of the pion in the initial state, we need to know the
parity of deuterium and the spatial angular momentum of the initial state, Li, which
we can use to extract Pπ− from

Pi = (−1)Li ·Pπ− ·Pd .

Since deuterium has l = 0 and its constituents (the nucleons!) have positive parity,
its parity will be (−1)0 · 1 · 1 = 1. The initial state is in the S-wave, with the pion
being captured by deuterium after having formed a so-called mesic atom (where d
has the role of the nucleus and π− of the electron), so Li = 0. The missing piece of
information is Pi, which we assume equal to the parity of the final state, Pf .3

In order to calculate Pf , we need to know L f – we know already J, so we just need
to calculate S f . Since the final state has two identical fermions (n), Pauli’s principle
dictates that the final state must be anti-symmetric. What does it mean in terms of
S f ?

• if S f = 0, we would have an antisymmetric spin wave function (singlet), so the
spatial wave function would have to be symmetric, i.e. L f = 0,2, . . . – and having
J = L f +S f = 1 would be impossible!

• if S f = 1, we would have a symmetric spin wave function (triplet), so the spa-
tial wave function would have to be antisymmetric, i.e. L f = 1,2 . . . – and this
satisfies the requirement J = L f +S f = 1 when L f = 1.

As a consequence of this, the final state (or initial state) parity can be written in terms
of L of the initial and final state (subscripts i and f ) and of the parity of neutrons
(final state) and deuterium (initial state) as

2 Which means: assuming that looking at the deuterium world without distinguishing between
neutron and proton is correct. Or, more formally: assuming that isospin is a conserved symmetry –
which in reality isn’t.
3 This is true only since this reaction happens though the strong force - we will see that parity isn’t
a conserved quantity in weak interactions.
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Pf = (−1)L f ·Pn ·Pn = Pi = (−1)Li ·Pπ− ·Pd ,

or
Pf = (−1) · (+1) · (+1) =−1 = Pi = (+1) ·Pπ− · (+1),

i.e. the parity of π− is −1.
Since we do not observe the interaction π−d→ nnπ0 , we can say that P(π0) =

−1. The parity of π0 can be measured directly in the decay:

π
0→ e++ e−+ e++ e− (8.1)

where each couple e+e− corresponds to an ”inner photon” or a ”virtual photon” ,
and the couples give the plane of polarization of the photons.

Parity is conserved in electromagnetic interactions, but it is not conserved in
weak interactions, as it was discovered by Wu’s experiment.

8.3.2 Charge Conjugation

The transformation of charge conjugation exchanges particles with their anti-
particle:

C(e−) = e+ C(e+) = e−.

Under this transformation, every quantum number is inverted; C2 = 1, and the
charge conjugation eigenvalues are ±1. A few consequences follow:

• charged particles cannot be eigenstates of C;
• charge conjugation applied to a photon changes the sign of both the electric and

the magnetic field, so C(γ) =−1;
• from the fact that the interaction π0→ γγ exists, we can deduce the relation

C(π0) = (C(γ))2 = 1.

From this follows that the decay π0→ γγγ is forbidden.
The charge conjugation is conserved in the strong interactions and in electromag-

netic interactions, but not in the weak interactions.

8.3.3 Time reversal

Time reversal is a very interesting subject. We will neither discuss here the second
law of thermodynamics, which states that the entropy of an isolated system cannot
decrease with time, nor make any probabilistic considerations of configurations of
an ensemble of particles in motion. We will focus on the reversibility in time of
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fundamental physical laws and concentrate on what happens under a very specific
transformation, which is not quite as simple as just changing t→−t.

In quantum mechanics, if we were to take the time reversal operator T acting on
a wave function |ψ(t)〉= e−iHt/} |ψ(0)〉 as:

T |ψ(t)〉= |ψ(−t)〉= eiHt/} |ψ(0)〉 ,

then, since T |ψ(0)〉= |ψ(0)〉, we would have that

T |ψ(−t)〉= e−iHt/} |ψ(0)〉= e−iHt/}T |ψ(0)〉 ,

which, given that T |ψ(−t)〉= TeiHt/} |ψ(0)〉, yields the relation

e−iHt/}T = TeiHt/}.

Taking an infinitesimal change in time will then yield:

−iHT = iT H.

This means that such time reversal operator would not commute with the Hamilto-
nian, but instead would anti-commute. As a consequence, for an energy eigenstate
|En〉 one has

HT |En〉=−T H |En〉=−EnT |En〉 ,
which implies that the T operator would produce energies that could be indefinitely
negative, and therefore the absence of a ground state.

This can be avoided, by taking T as an antilinear operator, where an antilinear
transformation f : V →V ′ from a complex vector space V to another V ′ is

f (a~x+b~y) = a∗ f (~x)+b∗ f (~y) ∀ a,b ∈ C and ~x,~y ∈V.

As an antilinear operator, T , will then act on the above wave function as

T (ψ(~r, t) = ψ
∗(~r,−t).

In this case, from the complex conjugate Schrödinger’s equation we have that

i}
∂ψ(~r, t)

∂ t
= Hψ(~r, t),

−i}
∂ψ∗(~r, t)

∂ t
= Hψ

∗(~r, t),

i}
∂ψ∗(~r,−t)

∂ t
= Hψ

∗(~r,−t),

so ψ∗(~r,−t) is still a solution of the Schröedinger’s equation with the same energies,
if T HT−1 = H.
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8.4 CPT Theorem

The symmetries C and P are not fundamental symmetries of nature, as they are not
conserved in weak interactions. On the other hand one can demonstrate that any
quantum field theory which

• is invariant under Lorentz transformations;
• is local;
• has an hermitian hamiltonian;

must be invariant under the sequence (in any order!) of the three transformations
CPT . As a consequence, particles and their antiparticles must have the same mass
and the same lifetime.

8.4.1 CP Violation in weak interactions

TBA

8.5 Summary of conservation laws

Some fundamental symmetries can be related to conservation laws through Noether’s
theorem:

• Time translations - Energy conservation
• Space translation - Momentum conservation
• Rotations - Angular momentum conservation

Take-home lessons

• Symmetries and conservation laws play a crucial role in fundamental physics.
Symmetries are observed in nature and encoded in the mathematical description
of physics; conservation laws arise as a consequence, through Noether’s theorem.

• Invariance of physics laws by space translations implies the conservation of mo-
mentum, while invariance by time translations implies the conservation of en-
ergy. In quantum mechanics, quantities represented by operators are conserved if
this operator commutes with the Hamiltonian.

• Angular momentum conservation is implied by rotational invariance. In quantum
mechanics, one cannot simply sum angular momenta as in classical mechanics,
but one rather applies composition laws (i.e. Clebsh-Gordan coefficients).
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Quantum number Strong Nuclear Electromagnetic Weak interaction
Continuous symmetries

Energy-momentum X X X
Electric charge X X X
Angular momentum X X X
Isospin X
Baryon number X X X
Lepton number X X X
Lepton flavor X X X
Strangeness X X ∆s =±1
Beauty X X

Discrete symmetries
Parity (P) X X
Charge conjugation (C) X X
CP (or T) X X
CPT X X

Table 8.1 Summary of conserved quantities relative to associated symmetries for the electromag-
netic, strong nuclear, and weak interactions.

• Since the strong interaction seems to treat protons and neutrons in the same way,
one may see atomic nuclei as composed by nucleons, and protons and neutrons
as two different states of the nucleon. Isotopic spin, or isospin, is introduced in
analogy to spin. The same composition laws as angular momentum can be used
to determine how probable it is for two strongly-interacting particles to interact
together and produce two or more particles, based on the intrinsic isospin of each
of them.

• Symmetries which can be seen as a sequence of infinitesimal hermitian transfor-
mations are called continuous. Symmetries which can’t are called discrete: for
example, parity, charge-conjugation and time-reversal are all discrete transforma-
tions, with eigenvalues ±1 (as applying them twice yields the same eigenstate).

• Parity (P) corresponds to flipping the sign of the spatial vector. Quantities are
classified depending on how they transform under a parity transformation: for
example, one may have polar vectors (which change sign after a parity trans-
formation, e.g. position or momentum) and axial-vectors (which do not change
sign, e.g. angular momentum and spin). The parity of a multi-particle system C
composed by two particles A and B is given by the product of the parity of the
components, with a sign which depends on the total angular momentum of the
system: PC = (−1)LC PAPB.

• Charge conjugation (C) is the operation of flipping one particle with its anti-
particle – which has the same mass and spin of the original particle, but all other
quantum numbers inverted (e.g. charge, isospin...).

• Time reversal T does not simply correspond to changing t with −t, as this would
imply that the operator T does not commute with the Hamiltonian, yielding the
absence of a ground state in energy. Instead, time reversal is represented by an



266 8 Symmetries and Conservation Laws

anti-linear operator, and the transformed wave function T ψ is still a solution to
the Schrödinger equation with the same energy as ψ .

• It is up to experiments to determine which interactions conserve which quantum
numbers. Parity and charge conjugation are conserved in electromagnetic and
strong interactions, but are not in weak interactions; similarly, the sequence of C
and P is conserved in electromagnetic and strong interactions, but not in weak
interactions. The sequence of C, P and T is instead conserved by all interactions:
this is a consequence of the CPT theorem, which implies that particles and anti-
particles have the same mass and mean lifetime.

Questions

• Weak interactions do not conserve strangeness. Does it mean that all processes
mediated by the weak interaction imply a change of strangeness? Make an ex-
ample.

• Make an example of pseudo-scalar quantity.
• Explain all reasons why the decay n→ p+ e− is forbidden.
• You want to produce an anti-neutron, and you must choose between the following

reactions; which one will you pick?

p+ p→ n̄+ p+ p,

p+ p→ n̄+n+ p,

p+ p→ n̄+ p+ p̄+ p,

p+ p→ n̄+ p+ p+n.

• Do hadrons interact only via strong interactions or also via strong interactions?
• Do leptons interact only via weak interactions or also via weak interactions?
• Do neutrinos interact only via weak interactions or also via weak interactions?
• Do photons interact only via electromagnetic interactions or also via electromag-

netic interactions?
• What is an internal symmetry? Can you make some examples?
• An operator U commutes with the hamiltonian of a system, and preserves the

normalization of a state (the normalization of U | ψ〉 is the same as the one of
| ψ〉). Is U unitary? Is U hermitian?

• An operator U commutes with the hamiltonian of a system, preserves the normal-
ization of a state and is hermitian. Can you tell anything about its eigenvalues?

• An operator U commutes with the hamiltonian of a system, and preserves the
normalization of a state. Does this imply there is a conserved quantity? If so, is
it U?

• You measure I2 of a proton: what will you get?
• Can a nucleon be in the isospin state (0.555,0.832)?
• Can you measure the projection of the isospin of a neutron onto some axis, I3,

and get 0?
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• Is velocity a scalar, a pseudo-scalar, a vector or an axial-vector?
• Is angular momentum a scalar, a pseudo-scalar, a vector or an axial-vector?
• Is spin a scalar, a pseudo-scalar, a vector or an axial-vector?
• Is the projection of spin along the direction of motion of a particle a scalar, a

pseudo-scalar, a vector or an axial-vector?
• Is the spatial wave function of a system with L = 2 a parity eigenstate?
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Chapter 9
Nuclear Models and Nuclear Processes

Atomic nuclei are complex systems which would be very hard, if not impossible, to
describe in terms of their individual components.1 One therefore needs to describe a
nucleus in terms of a few collective static properties, such as its radius and binding
energy, and of a few dynamic properties which describe its decays. The challenge is
to find models of what happens inside the nucleus which are accurate at reproducing
experimental observations.

9.1 Towards a model of the nucleus

The development of nuclear models became necessary after the various observations
of the emission of radiation, with kinetic energies of the order of a few MeV (about
106 times greater than the typical chemical reactions scales) and different electric
charges. The results of Rutherford-like experiments support the hypothesis that all
positive charges within an atom are concentrated inside the nucleus. The nucleus
itself is composed by protons and neutrons, collectively called as nucleons, particles
that are held together by a new force, the strong force. As shown in Fig. 4.10, the
striking aspect of the results of the measurements of Rutherford scattering at various
energies is that, within a large energy range, there is no deviation from the cross
section one would expect if all positive charges were concentrated in a single point.
This means that whatever the force that binds the nucleus together, if the α particles
have sufficiently low energy that they are deviated by the electromagnetic force, then
the strong interaction must be short-ranged. As the kinetic energy of the α particles
is increased above a certain threshold (in the figure, when T ≈ 30MeV) there is a
clear break in the cross section, which deviates from the Coulomb result and starts
falling sharply.

1 As K. Krane points out in his book “Introductory nuclear physics”, it would take about 50!≈ 1064

“instructions” to describe a nucleus with A = 50, much more than needed to describe how to build
an exact replica of a French colonial house.

269
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9.1.1 Nuclei dimensions

In the Rutherford experiment the dimension of the nucleus cannot be resolved. It
can be estimated using α radiation, which has a typical energy of Tα ∼ 5MeV,
and therefore particle momenta pα ∼

√
2mα Tα ∼ 200MeV (as α particles are not

relativistic at 5 MeV).
Assuming that the α particle is confined within the nucleus before being emit-

ted, its momentum can be very roughly approximated as being of at least the same
order of the uncertainty with which it is measured, pα = ∆ p. The indetermination
principle2 states that ∆x∆ p ∼ 1, therefore ∆x ∼ 1

∆ p , which means ∆x ≈ 1fm. We
have already seen that at low momentum the nuclear cross-sections can be well
approximated by collisions between rigid spheres. The approximation of spherical
symmetry is a good approximation. Quantum mechanics tells us we cannot really
expect the nucleus to sharply “end” after some distance, so there is no unique defi-
nition of the nuclear radius. Several methods to evaluate it have been developed, for
example:

• measurement of the scattering with electrons, where the distribution of the cross-
section as a function of the momentum transferred to the nucleus can be ex-
tended3 to the spatial distribution of the charges inside the nucleus;

• measurement of the emission spectrum of X rays by the atomic electrons, where
the internal orbitals are influenced by the finite dimensions of the nucleus.

The subtle difference between the many experimental techniques arises from the fact
that each of them may be sensitive to the distribution of either the nuclear charge or
the nuclear matter, depending on whether probe particles interact with the nucleus
through the electromagnetic or the strong interaction.

However, all these methods yield results of the same order, and in particular show
that the volume of a nucleus is proportional to its mass number A. If we approximate
the nucleus as a sphere of radius R, we’ll therefore have

4
3

πR3
∝ A,

and therefore
R = R0A

1
3 , with R0 ∼ 1.2fm.

One needs of course to keep in mind this is an approximation – as in the case of
atoms, one should not think of the nucleus as a sphere (or other distribution) with
an abrupt boundary. In the end, both the Coulomb and strong potentials extend to
infinity...

2 In natural units and neglecting the factor 1/2 - we are interested in orders of magnitude here...
3 One can see the spatial distribution of charges inside the nucleus as the Fourier transform of the
momentum distribution.
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9.1.2 Binding energy and nuclear mass

If nuclei exist, they must live in a favourable energetic condition, which allows them
to exist as bound states. Any reasonable nuclear model should be able to quantita-
tively explain the existence of given nuclei and their stability.

The binding energy of a nucleus is defined as the difference of the masses of its
A constituents,

Mnucleusc2 =
A

∑
h=1

mhc2−EL,

where EL is the binding energy and the index h runs over all nucleons. EL can there-
fore be obtained experimentally by measuring masses, for example using mass spec-
trometry.

For the simplest nucleus, deuterium 2
1H, we have

E
2
1H
L = mp +mn−M(2

1H) = 2.225MeV.

For an α particle (4
2He) we have

E
4
2He
L = 2mp +2mn−M(4

2He) = 28.3MeV.

It is observed that for low A, the binding energy per nucleon increases with A. For
nuclei with A > 12 (i.e. elements after carbon in the periodic table) the binding
energy is in good approximation proportional to the number of the constituent nu-
cleons,

EL

A
∼ const∼ 8MeV/nucleon.

The mass of a nucleus is always lower than the mass of its constituents, and the
energy difference is the binding energy: one writes

M(A,Z)< Zmp +(A−Z)mn.

This fact guarantees the stability of the nucleus. The average binding energy per nu-
cleon is shown in Figure 9.1 as a function of the number of nucleons in the nucleus.

Different species of nuclei are called nuclides, a term which identifies a config-
uration with a given number of protons Z and of neutrons A−Z). Nuclides which
share the same atomic number Z but have different A are called isotopes (e.g. 12

6 C,
which makes 98.9% of carbon on the Earth, vs 13

6 C, with 1.1% abundance), while
nuclides with the same A but different Z are called isobars (e.g. 40

18Ar and 40
19K).

Nuclides with the same A−Z are instead called isotones.
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Energia di Legame per Nucleone

Fig. 9.1 Binding energy per nucleon as a function of the number of nucleons in the nucleus.

9.1.3 Atomic masses

The atomic mass4 instead includes the mass of the electrons and their binding en-
ergy:

m(A,Z) = M(A,Z)+Zme−Be(Z)/c2,

and is expressed in atomic mass units, or unified mass units, (u), where 1u is de-
fined5 as 1/12 of the mass of a 12C atom,

1u = 931.49MeV/c2 = 1.6605×10−27 kg.

The Avogadro number, NA = 6.02×1023 mol−1, is the number of atoms in 12 grams
of 12C.

The mass excess is defined as the difference m(A,Z)−Au.

9.1.4 Nuclear interaction

As we have seen, the strong interaction is a short-range interaction. We can therefore
think of the nucleus as a system of nucleons (protons and neutrons), where:

• particles interact mostly with their first neighbors;
• the energy of adding an additional particle does not change the energy of the

system: the energy per particle is proportional to the number of particles, E ∝ A.

4 Usually denoted in nuclear physics textbooks with a lower-case m
5 To be precise, as “1/12 of the mass of a free 12C atom, at rest and in its ground state” (Bureau
International des Poids et Mesures).
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For a long-range interaction, as the Coulomb interaction, each particle would inter-
act with all the other particles (as shown in Figure 9.2), and therefore the energy of
a particle is En+1 ∝ En, therefore the total energy will be proportional to A(A−1).

Interazione a Corto Raggio

Modello a Goccia

Fig. 9.2 Short-range interaction (left) versus long-range interaction (right)

A few experimental facts constrain our search for a quantitative description of
nuclear interactions:

• once Coulomb effects (which clearly happen only for protons) are subtracted,
neutrons and protons behave similarly;

• stable nuclei typically have Z ∼ A/2 (i.e. there must be some reason why one
does not observe isotopes of hydrogen with hundreds of neutrons);

• nucleons tend to couple together in a few stable configurations: most stable nu-
clides have an even number of neutrons and protons (i.e. configurations with an
odd number of neutrons and an odd number of protons must be somehow dis-
favoured).

9.2 The liquid drop model of the nucleus

The liquid drop model has been suggested by N. Bohr in order to explain the exper-
imental observations. It is based on two assumptions:

• the nucleus is incompressible and shperical: R ∝ A1/3;
• the interaction between nucleons is short-ranged: EL ∝ A.

The model has been inspired by liquid drops, where water molecules are held to-
gether by inter-molecular forces.

9.2.1 The Bethe-Weizsaecker formula

Across most of the range of Fig. 9.12, the binding energy is proportional to the mass
number of the nucleus, EL(A,Z) ∝ A. If we see the nucleus as a sphere filled with
nucleons, the internal nucleons have bindings in all directions. The external nucle-
ons, which occupy a surface 4πR2, are instead only bound towards the nucleons in
the internal part of the nucleus: this results in another term
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EL ∝ A
2
3 ,

therefore we can sum up the two effects (nucleons in the bulk and nucleons at the
surface) and write

EL(A,Z) =−a1A+a2A
2
3 ,

where the coefficients ai are taken to be positive numbers, and the signs associated
to each term take into account their contribution in making the nucleus more stable
(negative sign) or less stable (positive sign) than an unbound state.

Protons, however, repel each other through electrostatic forces. This results in a
contribution to EL which is:6

• inversely proportional to the nucleus radius, ∝ A−
1
3 ;

• proportional to the charge of the nucleus, ∝ Z2 (as the Coulomb interaction is
long-ranged).

Therefore, one could write

EL(A,Z) =−a1A+a2A
2
3 +a3

Z2

A1/3 ,

which is the expression of the binding energy in a pure liquid-drop model. Note that
this model does not use the individual quantum properties of nucleons in any way.

To a better approximation, the binding energy expression is supplemented by
two additional semi-empirical terms, which can be justified with a more complex
quantum model of the nucleus and take into account:

• the observed symmetry in the number of neutrons and protons (N = A−Z ∼ Z),
which (see the discussion on the shell model) is related to the quantised structure
of the energy levels (and the Pauli exclusion principle), and leads to a term ∝

(A-2Z)2

A ;
• the fact that nuclides with an even A tend to be less stable if they have both Z and

N = A−Z that are odd, which leads to a pairing term ∝±asA−
3
4 , related to the

magnetic interactions of nucleons, which is 0 for odd A, < 0 when A−Z and Z
are even (even-even), and > 0 when A−Z and Z are odd (odd-odd).

All these terms gives the complete Bethe-Weizsäcker formula for the binding
energy,

EL(A,Z) =−a1A+a2A
2
3 +a3

Z2

A1/3 +a4
(A-2Z)2

A
±a5A−

3
4 .

This formula is semi-empirical, in the sense that most terms have a justification
in some model of the nucleus and nuclear interactions, and the parameters ai are
measured experimentally. The a3 coefficient can be evaluated from the potential
energy contained in a uniformly-charged sphere,

6 Formally, this term is the electrostatic energy of an uniformly-charged sphere.
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Ep =
3
5
(Ze)2

4πε0R
,

where R = R0A
1
3 , therefore

Ep =
3
5

α
}c
R0

Z2

A
1
3
,

where we used α = e2/4πε0}c. Therefore,

a3 ∼
3
5

α
}c
R0
∼ 0.7MeV.

The other coefficients are greater: they are found to be

• a1 ∼ 16MeV,
• a2 ∼ 18MeV,
• a3 ∼ 0.7MeV,
• a4 ∼ 24MeV,
• a5 ∼ 34MeV.

The minimum of the binding energy (i.e. the most favoured configuration in
terms of atomic and mass numbers) is obtained for

∂EL(A,Z)
∂Z

= 2a3
Z

A
1
3
−4a4

A-2Z
A

= 0,

which defines the relation
Z =

2a4A

a3A
2
3 +4a4

.

This relation defines the valley of stability, which shows two regimes:

• for small A (since a3 is small) it can be approximated as Z∼ A
2 ;

• for high A it can be approximated as Z∼ 2a4
a3

A
1
3 .

Both approximations are in good agreement with observation for light and heavy
stable nuclei.

If we evaluate the binding energy EL for isobars (i.e. for a given value of A),
we find a parabola for nuclei with odd A, and two parabolas for nuclei with even
A. In the first case, there is only one stable isobar for a fixed (odd) A, which can be
reached through β+ or β− decays. In the second case, instead, there are many stable
isobars for a fixed (even) A.

From the Bethe-Weizsäcker formula, one can also see7 that for A higher than
about 150 nuclei are predicted to be stable against the emission of α particles, while
for A higher than about 90 nuclei can decay by fission into two lighter nuclei (frag-
ments) of approximately the same mass number.

7 One should express the mass of a nuclide in terms of Z,A and of the binding energy, and then
require that the Q-value of each decay is positive.
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https://www.nndc.bnl.gov/nudat2/ 

Decadimenti 
β

Decadimenti α

Fig. 9.3 Valley of stability. Source https://www.nndc.bnl.gov/nudat2/.

9.3 Fermi gas model

The Fermi gas model is a first attempt at including quantum effects in a nuclear
model. It assumes that protons and neutrons confined in a potential well with spher-
ical symmetry in the nucleus region, with radius R = R0A1/3.

Modello a Gas di Fermi

Fig. 9.4 Fermi gas model representation of nucleons within a potential well.

If we ignore spin, the number of states neutrons (or protons) can occupy can be
calculated starting from the phase space element

dn =
4π p2d pV
(2π})3 ,

which must be integrated over the particle momentum, which will have a maximum
value pF (Fermi momentum), i.e. the maximum momentum of the fundamental state.
In formulas, we have
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n =

ˆ pF

0

4π p2d pV
(2π})3 =

V p3
F

6π2}3 .

But neutrons and protons have spin 1/2, so we must take into account the fact that
there are two possible particle states for each energy state, separated for neutrons
and protons. For neutrons, we have a number of states

N = A−Z = 2n =
V p3

F
3π2}3 ,

and for protons

Z =
V p3

F
3π2}3 .

If we approximate the nucleus as a sphere as discussed before,

V =
4
3

πR3 =
4
3

πR3
0A

in the approximation Z∼ N ∼ A
2 we obtain

A
2
=

4
3

πR3
0

3π2}3 Ap3
F ,

which leads to

pF =
}
R0

(
9π

8

) 1
3
∼ 250MeV/c,

and the Fermi energy will be8

EF =
p2

F
2mN

∼ 33MeV,

which represents the energy of the highest-energy occupied nucleon state. The sum
of the Fermi energy and of the binding energy of the nucleus (which, as we have
seen, is approximately 8 MeV per nucleon for sufficiently heavy nuclides) will give
the depth of the potential well of the Fermi gas model.

9.4 Shell model and Magic Numbers

The atomic model of Bohr-Sommerfeld, based on a Coulombian potential with
spherical symmetry (with a well defined centre: the nucleus) is based on the laws
of quantisation of the angular momentum and on the Pauli exclusion principle. It is
able to reproduce the phenomenology of the atoms. The atomic energy levels are
identified by the quantum numbers

8 Again, at these momenta the non-relativistic approximation is accurate.
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Modello a Gas di Fermi

Fig. 9.5 Pothole.

|n, l,m〉

where n = 1,2,3, . . . , l = 0, . . . ,n−1 and m =−l, . . . , l. The number of electrons per
level is given by

Zn =
n−1

∑
l=0

2(2l +1) = 2n2.

The elements with complete levels, Z = 2,10,18,36, . . ., are the noble elements (he-
lium, neon, argon, etc), and have a total angular momentum J = 0 and a high binding
energy.

Can we proceed in an analogous way in the case of nuclei? A similarity is sug-
gested from the experimental evidence that there are particular nuclide configura-
tions which are stable. These are obtained for the magic numbers of number of
neutrons (N = A− Z) equal to 2,8,20,28,50,82,126. These nuclei have particu-
larly large binding energy, and a satisfactory model of the nucleus should be able
to reproduce this experimental fact. It would be actually tempting to explain the
sharp discontinuity in the binding energy (or, equivalently, in the relative abundance
of nuclides) in correspondence of the magic numbers, as the result of the filling of
some nuclear shells occupied by nucleons.

Actually, it is not trivial to find a model which describes the nucleus: solving the
Schrödinger equation is hard, because the nuclear potential is not known, and the
symmetry centre is as easily defined as in the case of the atom. Moreover, while
electrons can be regarded as relatively free from collisions with other electrons, the
nucleons occupy the nucleus in a continuous way, therefore the concept of orbital
cannot be trivially “ported” from electrons to nucleons. Definite spatial orbits how-
ever should exist, due to the Pauli exclusion principle (nucleons are fermions).

The first (quite complex!) task is to find a model of the nuclear potential: in the
shell model, one assumes that a single nucleon feels the potential due to all other nu-
cleons. If we model this potential with an armonic potential, we get solutions which
are close (parabolas) to the magic numbers. Such potential is able to reproduce only
the N = 2, 8 and 20 nuclides, then the N = 40, 70 and 112 nuclides. The other magic
numbers cannot be explained with an armonic potential. Similar disagreement with
the observation is obtained in the case of an infinite-well potential.
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Fig. 9.6 Nuclei distribution in the N,Z plane.

The potential proposed by Woods-Saxon,

V (r) =
−V0

1+ e(r−R)/a
,

represented in Figure 9.7, provides a more accurate description of the nuclear in-
teraction, but is not able to reproduce by itself the exact numbers, as it predicts
N = 2,8,20,40,58,92 and 112. The parameters R and a represent the nuclear ra-
dius and its skin thickness, respectively; one has V0 ≈ 50MeV, R ≈ 1.2A1/3 and
a ≈ 0.5fm. The Woods-Saxon potential removes the degeneracy in the quantum
number l of the major shells, but still isn’t enough.
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Modello a Shell

Fig. 9.7 The Woods-Saxon potential

Using this model, Maria Meyer and Hans Jensen (Nobel prize in 1963), with the
addition of a term depending on the spin (a spin-orbit term analogous to the one of
atomic physics), managed to obtain more accurate results when compared to data.
Their model uses a Woods-Saxon potential, and assumes that a nucleon-nucleon
spin-orbit interaction proportional to ~L ·~S exists, which is due to the nuclear inter-
action (not to the electromagnetic one!). The nucleons have an orbital momentum
~L, which can be seen from the nucleus reference frame or from the reference frame
fixed with a nucleon, as shown in Figure 9.8. The orbital angular momentum brings

Interazione Spin-Orbita

Fig. 9.8 Two ways of seeing the nucleus-nucleon system.

a magnetic momentum,~µ , which generates a magnetic field as shown in Figure 9.9.

The magnetic field generated by a dipole in a point of space identified by the
radius vector~r is

~B =
µ0

4π

[
3~r · (~µ ·~r)

r5 − ~µ

r3

]
,

and can alternatively be written using the unit vector r̂ as
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Interazione Spin-Orbita

Fig. 9.9 Magnetic field generated by a magnetic momentum.

~B =
µ0

4π

[
3r̂(~µ ·~r)−~µ

r3

]
.

The spin of the nucleon gives an additional magnetic momentum. Since the potential
energy for a magnetic momentum in a field ~B is

U =−~µ ·~B,

Referenza a Jackson
the interaction between the magnetic momentum of the spin (subscript S) and the

orbital magnetic momentum (subscript L) will be

U =− µ0

4π

[
3(~µL · r̂)(~µS · r̂)−µl µS

r3

]
.

Given the small dimension of the nucleus (r ≈ R), this term is not negligible, as U
is of the order of a few keV (to be compared to the case of atoms, where U ≈meV.

The energy term that describes the spin-orbit interaction will be

U ∝~L ·~S.

With this term, the shell model is able to predict the magic numbers, i.e. the most
stable configurations in terms of N and Z. In fact, similarly to the case of atomic
physics, each level is split into two levels,

J = l +
1
2

and J = l− 1
2
.

Since the total momentum operator can be written as Ĵ = L̂+ Ŝ, then

L̂ · Ŝ =
1
2

[
Ĵ2− L̂2− Ŝ2

]

therefore the separation ∆ between the levels is given by
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L̂ · Ŝ =
1
2
[
J(J+1)− l(l +1)− s(s+1)

]

and can be expressed as

∆(L̂ · Ŝ) = Jl+S(Jl+s +1)− Jl−S(Jl−S +1)

= (l +
1
2
)(l +

3
2
)− (l− 1

2
)(l +

1
2
) = 2(l +

1
2
),

so the separation between the levels is increasing with l, as shown in Figure 9.10.
This explains the magic numbers.

Interazione Spin-Orbita

Fig. 9.10 Splitting of levels predicted by the nuclear shell model using three different potentials:
the harmonic potential, the Woods-Saxon potential and the Meyer-Jensen model (which extends
the latter with spin-orbit interactions).

The nuclei in which the protons and/or neutrons cover complete states are called
doubly magic. A few of them are:

• 4He: 2 protons, 2 neutrons;
• 16O: 8 protons, 8 neutrons;
• 42Si: 14 protons, 28 neutrons;
• 40Ca: 20 protons, 20 neutrons;
• 48Ca: 20 protons, 28 neutrons;
• 48Ni: 28 protons, 20 neutrons;
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• 208Pb: 82 protons, 126 neutrons.

They are particularly stable against decays.

9.4.1 Interpreting the fourth and fifth terms of the
Bethe-Weizsäcker formula

While the first three terms in the Bethe-Weizsäcker formula have an empirical jus-
tification in the liquid drop model, the last two terms can be understood in terms of
the shell model.

The fourth term

We have seen as in the Bethe-Weizsaecker formula the fourth term includes the
contribution of the symmetry between protons and neutrons. Keeping in mind the
Pauli exclusion principle, this term can be explained by the fact that keeping the
equilibrium between protons and neutrons, a favorable energy configuration can be
achieved.

Spin-spin interactions and the fifth term

In the same way of the spin-orbit interaction, there must be a spin-spin interaction
term between two nearby nucleons. This term is called paring energy, and favours
the situation in which the two spins are anti-aligned, resulting in a spin-zero state.

The nuclei in which Z and N = A−Z are both even (also called even-even nuclei)
have their fundamental state with J = 0.

From the spin-spin interactions one can deduce that the configuration on the left
of Figure 9.11 is favoured, while the one on the right is disfavoured. The spin-spin
interaction term is

• negative for even-even configurations;
• null for odd A;
• positive for odd-odd nuclei

9.4.2 Isotopic spin

We have seen that neutrons and protons have nearly the same mass, and the nuclear
interactions does not distinguish between protons and neutrons. One can therefore
assume that, from the point of view of the nuclear interaction, only one kind of
particle exists, the nucleon N, which can be found in one of two possible states, the
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Interazione Spin-Spin

Fig. 9.11 Favoured and disfavoured conditions in a nucleus.

neutron and the proton. This implies the existence of a degree of freedom similar to
spin which is identified as the isotopic spin, or isospin.

|p〉=
(

1
0

)
and |n〉=

(
0
1

)

The eigenvalue of the squared isotopic spin operator Î2 of a nucleon N is 1
2 , and

the proton and neutron can be identified – similarly to what is done in the case of
ordinary spin – in the basis of Î2, Î3 as the states

|p〉= |1
2
,+

1
2
〉,

|n〉= |1
2
,−1

2
〉.

Using this symmetry, we can build the shell model without differences between
protons and neutrons. (In a similar way of how the Bohr-Sommerfeld model was
initially not considering the spin of the electrons). The interaction that allows the
interchange between protons or neutrons is the β decay, which plays an essential
role in the valley of stability.

9.5 Nuclear beta decays, corroborating the nuclear models

Beta decays do not change the mass number of nuclides, but only their atomic num-
ber Z, transmuting one proton in neutron (or vice-versa) via the three processes



9.6 Nuclear fission 285

N(Z,A)→ N(Z +1,A)+ e−+ ν̄e,

N(Z,A)→ N(Z−1,A)+ e++νe,

N(Z,A)+ e−→ N(Z−1,A)+νe,νe,

where the last process is called electron capture and can happen whenever β+ de-
cays are allowed.

As such, beta decays are the process via which isobars transform in each other,
decaying towards more stable states with the same A. For example, the processes

137
55 Cs→137

56 Ba+ e−+ ν̄e,

22
11Na→22

10 Ne+ e++νe,

22
11Na+ e−→22

10 Ne+νe,

correspond to different transitions in the parabola(s) of the Bethe-Weizsäcker for-
mula of the binding energy. If A is odd, all isobars (nuclides with the same A) lie
on the same parabola and will tend to decay towards its point of minimum (a given,
stable nuclide) via beta decays. If A is even, instead, odd-odd nuclides will decay to
a even-even nuclide (which is in general not only one).

9.6 Nuclear fission

Fission is the process by which a nuclide separates into two lighter nuclides, called
fragments. We have already seen a specific case of nuclear fission: the α decay. This
process (α) is spontaneous and happens by the tunneling effect through the potential
barrier (short range) of the nuclear interaction.

Consider the following fission reaction:

A
ZX→A1

Z1
X1 +

A2
Z2

X2,

where A = A1 +A2 and Z = Z1 +Z2. The reaction can happen if

Qfission = M(A,Z)−M(A1,Z1)−M(A2,Z2)> 0,

which can be written as

Qfission = EL(A,Z)−EL(A1,Z1)−EL(A2,Z2)> 0.

The available energy in the nuclear fission processes is typically 0.9 MeV per nu-
cleon. Since 1 Kg of nucleons equals 6 ·1026 nucleons, the energy density will be

0.9 ·6 ·1026MeV / Kg = 8.6 ·107MJ / Kg.

For comparison, a chemical combustible reaches 20-50 MJ/Kg.
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In the case of the α decay, fission happens when the atomic number is large and
the electrostatic repulsion between the nuclei becomes strong. Following the liquid
drop model, we can imagine the fission process as the splitting process of a liquid
drop, as represented in Figure 9.12.

Fissione Nucleare

Fig. 9.12 Liquid drop separation as a model of nuclear fission

The system can be visualised through a potential, where the nucleus exists if a
meta-stable state exists, as represented in Figure 9.13. For nuclei with large value of

Fissione Nucleare e Stabilità

Fig. 9.13 Potential energy as a function of the distance r from the center of the nucleus.

A, the spontaneous fission typically happens promptly, and a meta-stable state does
not exist. For some nuclides like 238U, the spontaneous fission through tunnelling
effect can happen, but has an half-life T1/2 ∼ 1015yr.

The spontaneous fission becomes the main process that, probably, forbids the
formations of extremely heavy nuclei.
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9.6.1 Stability and fission

Let’s represent the deformed nucleus (which is, in the liquid drop model, a sphere)
with an ellipsoid of axes 2a, 2b and 2c = 2b, as in Figure 9.14 – in other words,
let the deformation happen along one of the three directions. We assume that the

Fissione Nucleare e Stabilità

Fig. 9.14 Illustration of the ellipsoid model for Nucleus

nucleus is incompressible, therefore its volume will remain constant during the de-
formation:

V =
4
3

πab2 =
4
3

πr3.

The deformations can be parameterized as

a = r(1+ ε), b =
r√

1+ ε
.

How much would the binding energy change after such deformation?
The volume term in the Bethe Weizsäcker equation does not change, while the

surface term a2A2/3 becomes a2A2/3(1+ 2
5 ε2), as the surface of the ellipsoid is given

by

S = 4πr2
(

1+
2
5

ε
2
)
.

The electrostatic energy term is modified in a non-trivial way. One has

U =
1
2

ˆ ˆ
1

4πε0

ρ(r1)ρ(r2)dr1dr2

r12
,

an integral which is not trivial, and for the ellipsoid yields

U =Usphere×
(

1− ε2

5

)
,

therefore
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a3
Z2

A1/3 → a3
Z2

A1/3

(
1− ε2

5

)
,

and so

U =
3
5

1
4πε0

Q2

R

(
1− ε2

5

)
.

Therefore, after the deformation:

• the surface energy term increases;
• the electrostatic term decreases.

The changes to the Bethe-Weizsäcker equation are

a2A2/3
(

1+
2
5

ε
2
)
+a3

Z2

A1/3

(
1− ε2

5

)
= a2A2/3+a3

Z2

A1/3 +

(
2
5

A2/3a2−
a3

5
Z2

A1/3

)
ε

2,

and therefore the difference in energy ∆E between the sphere and the ellipsoid will
be

∆E =
2
5

a2A2/3

(
1− a3

2a2

Z2

A

)
ε

2.

The spherical nucleus will be stable if ∆E > 0, and therefore

∆E ∼ 2
5

a2A2/3

(
1− 1

50
Z2

A1/3

)
ε

2.

Using the coefficients a2 and a3 discussed before, we find that

Z2

A
< 50,

which holds also for very heavy nuclei. This implies that it is not obvious that nuclei
should undergo spontaneous fission.

9.6.2 Induced fission

Through collision with other particles, and in particular with neutrons, the potential
barrier of the fission process can be reduced. For the isotope 235U the threshold
kinematic energy of neutrons to obtain the fission is very low (the same reasoning
holds for e.g. plutonium):

E < 0.1 eV.

With the capture of a neutron, 235U becomes 236U which is a even-even nucleus, and
therefore has a negative paring term (a5 in the Bethe-Weizsäcker formula). For 235U
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this term is null, as A is odd. The fission threshold for 238U with neutron capture is
much higher, > 2 MeV.

235U is in the 0.7% of the natural uranium and undergoes fission with low-energy
neutrons, called thermal. A neutron is thermal when its kinetic energy is comparable
to the one of the surrounding atoms (i.e. the neutrons are slowed down to the thermal
equilibrium):

kT = 25 meV at 300 K,

where k is the Boltzmann constant.
235U is the only fissile material with fission induced by thermal neutrons which

is significantly abundant in nature. Fissile materials can be produced from fertile
materials, as the 239Pu, 233U from the 238U and 232Th. There are auto-fertilizing
reactors which burn 239Pu and produce 239Pu from 238U.

Fissione Indotta

Fig. 9.15 Scheme of the induced fission.
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Sezione d’Urto Neutroni

Fig. 9.16 Neutron cross-section for fission of uranium and plutonium

9.6.3 Chain reactions

The chain reaction is the base principle of nuclear reactors:

n+235 U→ fission products+2.5 neutrons (mean)

For example:

1
0n + 235

92 U → 236
92 U → 141

56 Ba + 92
36Kr + 3 1

0n.

When the nucleus breaks, it generates:

• neutrons;
• nuclei (and their β and γ decays) with kinetic energy which generates heat in the

material;
• additional neutrons emitted by the produced nuclei, called delayed neutrons.

Produced neutrons can also be captured by other nuclei and produce a chain reac-
tion, as represented in Figure 9.17.

A fundamental aspect of the chain reaction is its control:

• an insufficient production of neutrons stops the chain;
• an over-production of neutrons leads to an exponential process which lead to the

explosion of the system.

The reaction chain can be modelled in terma of a few parameters:

• N(t): number of neutrons at time t;
• τ: mean time for a neutron to produce a primary fission;
• ν : mean number of neutrons produced in a fission process;
• q: probability for a neutron to produce a fission (taking into account the absorbed

neutrons which do not produce any fissions).
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Reazione a Catena

Fig. 9.17 Chain reaction. The blue arrows indicate the late emission of neutrons. The red arrows
indicate the capture of neutrons by other nuclei.

For each passage from the i-th step of the chain reaction, called generation, to
the i+1-th, we have a variation dN in the number of neutrons, which can be written
as

dN
N

= λ (−1+νq) dt (9.1)

where the −1 is due to the primary fission while the term νq accounts for the effec-
tive number of neutrons which contribute to the chain. If we integrate and use λ = 1

τ

we obtain
N(t) = N(0) e(νq−1) t

τ ,

where:

• for νq < 1 the regime is called sub-critical, and the chain reaction does not de-
velop: the number of neutrons decreases with time;

• for νq = 1 the regime is called critical, and the number of neutrons (and sec-
ondary fission processes) is stable;

• for νq > 1 the regime is called super-critical, and the number of reactions in-
creases exponentially.
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9.6.4 Cross section and critical mass

The neutrons generated in the fission process can undergo several processes:

• they can be captured by other nuclei, emitting γ radiation (without producing
fission) – a process with a cross-section σn,γ ;

• they can undergo elastic scattering or lose energy through inelastic scattering
processes;

• they can produce a new fission – a process with a cross-section σfission.

Typically neutrons lose energy through collisions. The factor q in Equation 9.1
can be written as

q =
σ̄fission

σ̄fission + σ̄n,γ
. (9.2)

For 238U and Tneutron = 2 MeV:

• σtot = 7.3 b;
• σfission = 0.53 b;
• σn,γ = 0.048 b.

Therefore, most of the collisions are scatterings with loss of energy in which the
neutron is not absorbed.

For 235U, again with Tn = 2 MeV, the picture is similar:

• σtot = 7.15 b;
• σfission = 1.89 b;
• σn,γ = 0.059 b.

The situation totally changes for thermal neutrons with a kinematic energy of
25 meV. For neutrons of 2 MeV, the cross section is low for both 235U and 238U.

σtot σfission σn,γ
235U 703 b 589 b 95 b
238U 12 b 2 ·10−5 b 2.7 b

Table 9.1 Summary table of cross sections for two isotopes of uranium (for neutrons of 25 meV)

However, for 235U and Tn = 25 meV the cross section is two orders of magnitude
higher. For energies lower than 2 MeV (fission threshold of 238U) the condition q�
1 is easily verified, since the neutrons are mainly subject to scattering without any
absorption process, and therefore they lose energy.

Tn = 2 MeV is exactly the mean kinetic energy of the neutrons emitted through
the fission process.
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Fig. 9.18 Cross section as a function of incident energy for 235U.

Fig. 9.19 Cross section as a function of incident energy for 238U.
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9.6.5 How nuclear reactors work

A nuclear reactor is typically composed by the following elements:

• combustible: contains 235U and 238U;
• absorber: material to absorb neutrons (boron, argon, cadmium);
• moderator: material to thermalise neutrons (H2O, graphite, beryllium);
• heat exchanger: a means to exchange heat and transfer it, in order to generate

electric current.

Through several reactions and absorptions it is possible to maintain the reactor
in the critical state, meaning that the reaction is controlled and the system in stable.
The critical regime is the normal functioning state of a reactor.

The critical regime is also related to the mean path of the neutrons before they
are captured or initiate another fission process. Therefore, there is a minimum dis-
tance needed for the reaction to self-sustain, and therefore there a critical volume,
or critical mass, which can be evaluated. This critical mass is controlled through the
use of the absorbers, which are used to control the chain reaction.Reattori Nucleari (Cenni)

Reattore con:  
- Combustibile: Uranio naturale

- Controllato da Boro

- Moderato con grafite

- Scambio di calore a gas (CO2)

Fig. 9.20 Scheme of a nuclear reactor with: gas (CO2) heat exchanger, natural uranium as com-
bustible, boron as absorber, graphite as moderator element.
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9.7 Nuclear fusion

The behaviour of the binding energy per nucleon for A < 60 suggests that another
process may be favoured to bring two light nuclei into a more stable final state,
fusion, which can be written in general as

a
z X+A−a

Z−z →A
Z N +Q,

where Q represents the corresponding release of energy.
As 2H is the only stable bound state formed by two nucleons, the simplest fusion

process is
p + p→2 H + e++νe.

Fusion happens in general when A < 60, as the fusion product must be stable. Fig-
ure 9.21 shows two examples of basic fusion processes, the deuterium-deuterium
reactions (D-D reactions). Their final states include a neutron or a proton that take
about 75% of the total available kinetic energy in the reaction, which is of the order
of 4 MeV. The more stable the nucleus produced in the fusion process, the higher
the Q-value of the reaction: the process

2H +3 H→4
2 He+n,

where an α particle is produced, has a Q-value of about 17.6 MeV, and can be
regarded as a source of fast neutrons.

In general, a fusion process can happen only if the two initial state nuclei can
overcome the Coulombian potential barrier (i.e. the repulsion between their protons)
and form a bound state. If we consider nuclei as spheres, the distance between the
nuclei when they are in contact (and fusion occurs) can be approximated as 2×R =
2R0×A1/3, so to have the fusion process X +Y → None needs enough energy to
win the electromagnetic repulsion, i.e.

VXY = α
}c
2R

ZxZy,

which in the case of X = Y = p is Vpp ∼ 0.7 MeV.
The nuclear fusion is the process active in our Sun – a star mostly composed by

hydrogen (a source of “proton fuel”!) – which produces energy. Since the tempera-
ture at the center of the Sun is T ∼ 15×106 K, the mean energy of the protons will
be

kT ∼ 1.3keV,

which is about 600 times less than the energy needed to overtake the pp potential
barrier. The pp fusion process must therefore happen through quantum tunneling: if
we consider the protons inside the Sun as a gas of protons, their velocity distribution
will follow a Maxwellian distribution,
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dN
dv

=
v2

(
2kT/mp

)3/2 e−
mpv2

2kT ,

where k is the Boltzmann constant9, T the temperature of the proton gas and mp is
the proton mass. It will be the protons in the tails of this distribution which will have
a chance to undergo tunneling, overcome the Coulomb barrier and undergo fusion.
The treatment of this process is similar to the Gamow theory of α decays, i.e. the
tunneling probability will be ∝ exp(−2G), where G is the Gamow factor for fusion.

9.7.1 Fusion processes in the Sun

The fusion processes in the Sun are induced by two main cycles, i.e. cyclic processes
where hydrogen contained in the Sun acts as a fuel, with the emission of energy:

• the pp cycle (proton-proton chain) transforms protons into helium: this cycle,
which starts with the process p+ p→2 H + e++νe (which is the bottleneck of
the cycle, as it happens about 10−18 times per second per proton10), is made by
several branches which go through heavier elements like beryllium or boron, but
end in helium (see Fig. 9.22);

• the CNO cycle, which uses carbon contained in the Sun as a catalyst11 to produce
4He with the provision of a total of 4 protons, through the following reactions
(see Fig. 9.23):

12C + p → 13N + γ +1.95 MeV
13N → 13C + e+ + νe + 1.37 MeV
13C + p→ 14N + γ +7.94 MeV
14N + p→ 15O + γ +7.39 MeV
15O → 15N + e++νe +1.86 MeV
15N + p → 12C + 4He+4.96 MeV

These reactions all produce energy and neutrinos, as they can be summarised as

• pp cycle: 4p→2 He+2p;
• CNO cycle: 4p→4 He+2e++2νe

with a release of energy Q∼ 25MeV.

9 In natural units one has kT = 25meV for room temperature.
10 This is a weak-interaction process!
11 This means that the net amount of carbon after one cycle is the same: its presence is only needed
for the cycle to happen.
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Fusione (Cenni)

Fig. 9.21

Take-home lessons

• An estimation of the size of atomic nuclei can be obtained from the typical kinetic
energy of α particles, from which one can derive their momentum and – through
Heisenberg’s indetermination principle – the size of the nucleus.

• There are in general different possible ways to measure the radius of nuclei. For
example, by measuring the differential scattering cross section with electrons as
a function of the transferred momentum, one can extract the spatial distribution
of the charges in the nucleus. Or, one can measure the emission spectrum of X
rays by atomic electrons, and use the fact that the internal orbitals are influenced
by the finite dimension of nuclei. Similar results are obtained, which indicate that
the nucleus can be approximated with a sphere with a volume proportional to the
atomic mass number A: the radius of the nucleus is therefore R = R0A1/3, with
R0 ≈ 1.2fm.
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Processi di Fusione nel Sole

Fig. 9.22 Processi di Fusione nel Sole

Ciclo CNOCiclo pp (Ramo I) Ciclo pp (Ramo II)

Fig. 9.23

• The binding energy EL of a nucleus is given by the difference between its mass
M(A,Z) and the sum of masses of its constituents (Z protons and A−Z neutrons).
For A > 12, the ratio EL/A is almost constant (8 MeV per nucleon).

• The atomic mass m(A,Z) includes the mass of the electrons and their binding
energy, m(A,Z) = M(A,Z)+Zme−Be(Z)/c2. The mass excess is defined as the
difference between m(A,Z) and Au, where 1u = m(12C)/12.

• Nuclear interactions are short-ranged. Nucleons interact mostly with their first
neighbours; adding another nucleon does not cost more than the previous ones,
in the sense that the total energy (the binding energy) is proportional to the num-
ber of particles, EL ∝ A. This is different from long-range interactions like the
Coulomb interaction, where a particle interacts with all particles and En+1 ∝ En,
and the binding energy is EL ∝ A(A−1).

• A first model of atomic nucleus is the liquid drop model, which – similarly to
water drops which are held together by inter-molecular forces – assumes that the
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nucleus is an incompressible sphere with radius R ∝ A1/3 and that the interaction
is short-ranged. The binding energy is parameterised by the Bethe-Weizsaecker
formula, EL(A,Z) = −a1A + a2A2/3 + a3Z2/A1/3 + a4(A− 2Z)2/A± a5A−3/4.
The term multiplied by a1 accounts for the fact that the interaction is short-
ranged, so that nucleons inside the sphere have bindings in all directions with
their first neighbours. The term multiplied by a2 is a surface term, which takes
into account the fact that external nucleons have only bindings with the internal
part. The term multiplied by a3 accounts for the Coulomb electrostatic repulsion
between protons. The term multiplied by a4 takes into account the quantization
of the energy levels and the Pauli exclusion principle. The term multiplied by
a5, or pairing term, is related to the magnetic interaction between nucleons. By
minimizing the Bethe-Weizsaecker formula, one can find the relation between Z
and A which defines the stability valley, which for small A includes elements for
which Z ≈ A/2, and for high A those which have Z ≈ 2a4/a3A1/3.

• The Fermi gas model, instead, assumes that protons and neutrons are confined in
a pothole with spherical symmetry with the size of the nuclear radius R=R0A1/3.
The pothole is a box for neutrons, while in the case of protons the potential
outside it follows the Coulomb dependence on radial distance from the nucleus
center. From the corresponding density of states, one can compute the momentum
and energy (Fermi energy) of nucleons, which for elements with Z ≈ A/2 are of
about 250 MeV/c and 33 MeV, respectively.

• The shell model is based on the Bohr-Sommerfeld atomic model, which uses a
Coulomb potential with spherical symmetry, centered around the nucleus, and
includes the quantization of angular momentum and respects the Pauli exclusion
principle. Energy levels are defined by three quantum numbers (n, l,m). In anal-
ogy to the atomic model (and with differences related to the difficulty of defining
an analogous of electron orbitals), one can develop a shell model of the nucleus,
where protons and neutrons are treated as two different isospin eigenstates of the
same particle, the nucleon.

• Experiments show that there are a few particularly stable elements, i.e. with a
large binding energy, that have a specific number of neutrons. These numbers of
neutrons form the so-called nuclear magic numbers, which are observed to be
2,8,20,28,50,82,126: the better a model of the nucleus, the more magic num-
bers are ”explained” by its predictions.

• The complex theoretical task is that of finding a nuclear potential which is able
to explain as many magic numbers as possible. An harmonic potential is able to
explain only a few of them; the Woods-Saxon potential, which depicts the nu-
cleus as a ”smooth” 3D box, isn’t fully accurate as well. Meyer and Jensen found
that, in order to find predicted magic numbers which match the observed magic
numbers, one needs to include a term analogous to the spin–orbit interaction in
atomic physics, which isn’t however of electromagnetic nature. This induces a
splitting of energetic levels, which reproduces the observed magic numbers.

• The term proportional to a4 in the Bethe-Weizsaecker formula takes into account
the symmetry between protons and neutrons, for which the most stable configu-
ration is the one in which the number of protons and neutrons in a nucleus are
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identical. The term proportional to a5, instead, takes into account the fact that
two neighbouring nucleons have spin-spin interactions, which leads to the so-
called pairing energy, favouring the case of unaligned spins. Nuclei with Z and
N = A−Z which are bot even, have a fundamental state with spin zero.

• Nuclear fission is a spontaneous process in which a nucleus transforms in dif-
ferent fragments. An example are α decays, which happens due to the tunneling
through the short-range potential barrier of the nuclear interaction. Fission hap-
pens when the atomic number of an element is large, so that the electrostatic
repulsion between nucleons becomes strong. Fission can be visualized as the
splitting process of a liquid drop. It can be modelled by considering the nucleus
as described by a potential, which determines whether a given state of a nucleus
exists (as a meta-stable state) or not: the higher the tunneling probability, the
lower the lifetime of the nucleus. In order to determine the stability conditions
of a nucleus, one can represent it as an incompressible ellipsoid and compute the
difference in binding energy with respect to an undeformed sphere. One finds
that the stability condition is Z2/A < 50, which is verified for most nuclei.

• If one scatters other particles (e.g. neutrons) with nuclei, the potential barrier
of fission reduces and fission may be induced. Depending on the nucleus, the
threshold kinetic energy may be as low as 0.1 eV (235U), which requires thermal
neutrons, i.e. neutrons whose kinetic energy is comparable to the one of the sur-
rounding atoms (kT ≈ 25meV at 300 K). One can also induce chain reactions,
as fissions usually produce neutrons and other nuclei: while these nuclei may
decay to a ground state with the emission of photons, or undergo radioactive de-
cays, the additional neutrons could induce other fissions, or be captured by nuclei
which then produce γ radiation, or undergo elastic or inelastic scattering. Chain
reactions can be described with a simple mathematical model, which identifies a
sub-critical, a critical and a super-critical regime, which correspond to decreas-
ing, stable and increasing number of neutrons as a function of time, depending
on the mean number of neutrons produced in a fission process and on the proba-
bility of those neutrons to produce a fission. Nuclear reactors exploit the critical
regime, using 238U or 235U as fuel, a neutron absorber, a moderator to thermalise
neutrons and a heat exchanger to transfer the heat released in the chain reaction
processes into electric current. As the critical regime depends on the free mean
path of neutrons before being captured or undergoing fission, there is a minimal
distance which is necessary to allow the self-sustain of the chain reaction, which
corresponds to a critical volume (or critical mass), which is controlled with neu-
tron absorbers.

• Fusion processes, like p+ p→2 H + e+ + νe, happen naturally in stars. In or-
der for the two protons to fuse together in a bound state, one needs them to
overcome a Coulombian potential barrier with a size of ≈ 1fm (higher than the
range of the weak interaction which allows charge exchange, 1×10−18 m), cor-
responding to about 0.7 MeV. Since the temperature at the center of the Sun is
about 15×106 K, the average energy of protons is kT ≈ 1.3keV i.e. much lower
than the potential barrier: also the fusion process therefore happens thanks to the
tunneling effect.
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• Fusion processes in the Sun happen mostly due to two main cycles, the pp cycle
which transforms protons in helium after passing through more complex nuclei,
and the CNO cycle which starts from carbon and allows to produce 4He by pro-
viding a total of 4 protons. All of these reactions imply the release of energy, and
the production of neutrinos.

Questions

• Do β decays involve transitions between isotopes, isobars or isotones?
• Is the binding energy of the α particle higher or lower than the one of the

deuteron?
• How much is the binding energy of 56Fe?
• Do nuclides with Z < 56 tend to fuse together or to divide into lighter nuclei?
• In the liquid drop model, do all nucleons interact with all other nucleons?
• In the liquid drop model, does the surface term make the nucleus more stable or

less stable?
• Do the volume and surface terms in the binding energy formula have the same

sign or opposite sign?
• If you fix the number of nucleons, what happens to the mass of a nuclide if its

surface grows?
• How is the nuclear charge assumed to be in the calculation of the third term of

the binding energy formula: localised at the center of the nucleus, an uniformly
charged sphere or a sphere charged on its surface?

• Are there more stable nuclei with an odd number of neutrons and an odd number
of protons, or with even-even numbers?

• What happens if A is small and Z/A≈ 0.4? What if A is large and Z/A≈ 0.5?
• You have a nuclide with A = 102: will a series of β decays bring it to the absolute

minimum of the binding energy, Z = 44?
• Is the electron capture process n+ e−→ pν

e or p+ e−→ n+νe?
• In the Fermi gas model, how can the nuclear binding energy be interpreted in

terms of energy levels?
• In the Fermi gas model, is the potential well identical for neutrons and protons?
• What are magic numbers?
• What are the differences between the atomic spin-orbit interaction and the nu-

clear spin-orbit interaction?
• Do all nuclides tend to divide into fragments with the same mass?
• Does the Q-value of a fission affect its probability?
• How can a fission happen?
• Which assumptions are behind the idea of modeling fission with an ellipsoid?
• How probable is spontaneous fission for A = 238,Z = 92? What about A =

300,Z = 150?
• Express kT in eV for T = 100deg.
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• You have a neutron of 40 meV: will you get more fissions if you send it over one
kilogram of 235U or 238U?

• Does the interaction cross-section of neutrons always decrease with their speed?
• How does a neutron lose energy when interacting with nuclei?
• What is the typical energy of neutrons produced in a fission process?
• What happens when neutrons undergo elastic and anelastic scattering?
• Why are the activation energies for nuclear fission so different for 235U and 238U?
• The nuclear reactor of the town you live in is in sub-critical regime: should you

worry?
• What is the average energy emitted in a fission process (Q-value)?
• What is the role of a moderator in a nuclear reactor?
• How does a neutron interact with matter?
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9.8 Exercises

Exercise 39 Densità nucleare e unità di misura
Si stimi la densità nucleare in gcm3, approssimando mp = mn = 938.3MeV/c2.

Exercise 40 Termine coulombiano della formula di Weiszacker
Considerando che l’energia elettrostatica di una carica Q uniformemente dis-

tribuita su una sfera di raggio R è uguale a 3
5 ·

Q2

4πε0R , stimare il termine coulombiano
della formula semi-empirica delle masse dei nuclei.

Exercise 41 Termine coulombiano della formula di Weiszacker
Gli stati stabili di 13

6C e 13
7N appartengono allo stesso doppietto di isospin, e la

loro differenza di massa è dovuta principalmente dalla diversa energia coulombiana,
e in modo sottodominante dalla differenza di massa tra neutrone e protone.

1. Considerando entrambe le cause di differenza di massa, si stimi la differenza
di massa dei due nuclei.





Chapter 10
Founding Experiments and Notions of Particle
Accelerators and Detectors

10.1 Particle accelerators

We have seen the importance of probing nuclei and particles at high energy. One
clear example is given by the weak interactions, where new phenomena (propagator
of the interaction) are expected at an energy of the order of 105 MeV. In order to
reach high energies, at the beginning cosmic rays and radioactive sources were used;
later on, people started building particle accelerators.

Particle accelerators are extremely complex machines which are based on funda-
mental, but simple, principles. Those are:

• source of particles to be accelerated;
• accelerating elements (with electric field);
• magnetic elements to bend or focus the beams of particles.

10.1.1 Electrostatic accelerators

The simplest particle accelerator is the cathodic tube of Thomson, described in
Chapter 2. A static electric field, however, is limited by discharging effects.

The two main static accelerators are:

1. the Cockcroft-Walton accelerator;
2. the Van der Graaf accelerator.

The Cockcroft-Walton accelerator, schematized in Figure 10.1, is able to raise
a low alternate current to an high direct voltage trough a system of diodes and ca-
pacitors, placed in a tower structure in order to raise and level the voltage. It is
possible to obtain voltages of the order of 1 MV and consequently they can be used
to accelerate particles to energies of about 1 MeV.

The second type of accelerator is the Van der Graaf accelerator. As for the
Cockroft-Walton accelerator, this has been developed between 1929 and 1930. Rep-
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Principi e Acceleratori Statici

Tensione V 
(uscita)

Vac

Condensatori di livellamento

Condensatori per alzare la tensione

Fig. 10.1 Schematic view of a Cockcroft-Walton machine. The primed capacitors (C′) are the one
used to increase the voltage while the other ones are used to level the output of the machine.

resented in Figure 10.2, the Van der Graaf accelerator is an electrostatic machine
featuring a transport belt (made of insulating cloth) which is used to move the elec-
tric charges. The belt, moved by an engine, accumulates the charges onto a conduc-
tive sphere which is located in a elevated position in order to isolate the charges
from the ground.

In this way it is possible to reach voltages of the order of a few MV. The highest
value ever reached with this kind of machine is 25 MV. To go to higher energies new
techniques are needed, like for example having particless pass more times through
the accelerating fields.

Principi e Acceleratori Statici

Fig. 10.2 Schematic view of a Van der Graaf generator.

10.1.2 Wideroe’s linear accelerator

The first linear accelerator featuring an alternated electric field was built by Wideroe
(1928) and is represented in Figure 10.3. In order to accelerate the particles without
using high voltages, it is possible to use oscillating voltages built in a way that in
each passage the field is in phase with the particles to be accelerated. The path of the
particles is fragmented into a series of metallic pipes which act as Faraday’s cages.
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Accelerator Lineare di Wilderoe

Fig. 10.3 Schematic of the Wideroe’s linear accelerator

The poles from a single generator are connected in order to invert the voltage of
the accelerating fields in the time interval in which the particles goes through the
pipe. Increasing lengths of the Faraday’s cages, li, are chosen, in order to maintain
constant the time needed to go trough them, which is the inverse of the frequency of
the generator, t = 1/ fRF .

10.1.3 Cyclotrons

Another way to achieve multiple passages through an oscillating electric field is
adopted in cyclotrons. These machines are circular accelerators in which the fre-
quency of the oscillating field is by construction constant, while the path of particles
is controlled by a fixed magnetic field.

The functional principle is obtained equating the Lorentz force to the centripetal
acceleration,

qvB =
mv2

r
, (10.1)

where q is the electric charge of the particle, v its velocity, B the magnetic field, m
the mass and r the curvature radius. From Eq. (10.1), one immediately obtains

mv = qBr,

so
r =

mv
qB

is the curvature radius in a magnetic field. Keeping in mind that the angular velocity
is ω = v

r , the rotational frequency is obtained as

fc =
ω

2π
=

v
2πr

=
qB

2πm
,
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and does not depend on the radius of the trajectory. As a consequence, it is enough
to fix an alternate voltage to obtain, by construction, a synchronisation.

This principle is valid until particles reach the relativistic regime. In this case a
correction needs to be applied to the voltage frequency, which becomes

f =
fc

γ
.

This means that the frequency is no more fixed, but must be adjusted during the
accelerating procedure. To achieve this, two options are available:

• adjust the cyclotron frequency while operating: Cyclo-synchrotrons;
• adjust the intensity of the magnetic field: Isosynchronos-cyclotrons - the mag-

netic field is increased as the radius increases.

The first concept of a 9 in ( 23cm) cyclotron is represented in Fig. 10.4.

Primi Acceleratori di Particelle

Lawrence’s 27 inches cyclotron

Cyclotron patent

Primo concetto nel 1931 - 9 inches cyclotron

Accelerated Deuteron             
to 4.8 MeVs in 1936

H+
2

<latexit sha1_base64="doABkr+9zat8W5wF3zh+FsJufMw="></latexit><latexit sha1_base64="doABkr+9zat8W5wF3zh+FsJufMw="></latexit><latexit sha1_base64="doABkr+9zat8W5wF3zh+FsJufMw="></latexit><latexit sha1_base64="doABkr+9zat8W5wF3zh+FsJufMw="></latexit>

Fig. 10.4 Cyclotron patent from 1931.

With simple cyclotrons it was possible to accelerate particles up to 100 MeV,
while with cyclo-synchrotrons up to 1 GeV.

10.1.4 Synchrotrons

The idea of the synchrotron is to have a fixed-radius orbit, in order to be able to build
larger machines with the same principle of the linear accelerators: while the electric
field is in a decelerating mode, the particles are screened by Faraday’s cages. The
longitudinal electric field is created by resonant cavities with radio frequencies that
produce electromagnetic waves with a longitudinal component which could either
accelerate or decelerate charged particles. Therefore, particles need to be synchro-
nised with the machine.
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Magnetic elements are used to bend particles in order to constrain them to cir-
cular paths. The bending power must increase with higher energies and frequency
needs also to be increased in order to maintain synchronisation. An important as-
pect of the circular motion with fixed radius is that relativistic particles start to loose
energy due to irradiation (bremsstrahlung). This plays a central role in setting the
maximum achievable energy, and is related to the kind of particle which is acceler-
ated. In fact, the irradiated power of an accelerated charge with acceleration a and
charge e can be expressed as

W =
1

6πε0c3 e2a2,

and taking into account relativistic effects it becomes

W =
1

6πε0c3 γ
6e2
(

a2− 1
c2 (~v×~a)

2
)
.

For a circular motion of radius R, the following relations hold:

~v×~a = va and a =
v2

R
,

therefore the irradiated power can be expressed as

W =
e2

6πε0c3
γ4v4

R2 .

Using the relation E = γmc2, for v→ c one gets

W =
e2c

6πε0R2
E4

(mc2)4 . (10.2)

Equation 10.2 shows that the irradiated power grows with the fourth power of the
energy, and it is inversely proportional to the fourth power of the mass. The irra-
diated power of an electron is 1013 times greater than the one of a proton with the
same energy. This energy loss is commonly referred to as synchrotron radiation.

For an electron synchrotron, the maximum reachable energy is therefore lim-
ited by the maximum acceleration reached in the radio-frequency cavities needed
to compensate the energy loss due to irradiation. For a proton synchrotron, instead,
the maximum energy is limited by the bending power of the magnets used in the
machine, which are needed to maintain the circular orbit. A schematic view of the
elements of a synchrotron is shown in Fig. 10.5, while a picture of the Cosmotron
built in Brookhaven is shown in Fig. 10.6.
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From V. Kain (CERN)

Synchrotrons

Fig. 10.5 Schematic view of the elements of a synchrotron by V. Kain (CERN).

Synchrotrons
The Cosmotron at Brookhaven

Fig. 10.6 Picture of the Cosmotron, a proton synchrotron which operated at Brookhaven laborato-
ries until 1968.

10.2 Particle Detectors

The main purpose of particle detectors is to detect particles and to measure their
properties, such as:

• trajectory in space and time;
• charge and momentum;
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• deposited energy when interacting with matter.

These three properties are well known and constitute a well-motivated way to dis-
criminate between (“identify”) particles.

The detection process is strictly related to the way particles interact in the mate-
rial of which the detector is composed. The energy of the particle is transferred to
the medium and undergoes a process of conversion into another form which can be
detected.

Fig. 10.7 Electrometer sensible to ionisation, developed by T. Wulf (1909).

Fig. 10.8 Rome, 1910: using the Wulf electrometer, Pacini measured a significant rate variation of
cosmic ray interactions with height, in particular under 3m of water.
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Fig. 10.9 1912: Hess installed an electrometer on a balloon and measured that the counting rate
at 5300m was four times the observed rate at ground level. The hypothesis that this radiation
originated from the Sun was excluded because the measure had been repeated during an eclipse.
The radiation observed was due to cosmic rays.

10.2.1 Detectors of charged particles

It is possible to identify, between the various processes which are today used in
particle detectors, four main processes – and, correspondingly, four different kinds
of detectors:

• ionisation detectors;
• scintillation detectors;
• semiconductors;
• Cherenkov detectors.

Ionisation detectors

In a gaseous medium, ionisation corresponds to the creation of electron–ion (or
electron–nucleus) pairs along the path of a particle which crosses its material. The
minimum energy to create a pair is ∼ 20÷30eV.

The ionisation can be measured in many different ways. One simple method con-
sist in applying a very strong electric field to observe a discharge when a charged
particle crosses the medium. This is the principle on which the Geiger–Muller
counter is based (1913).
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Fig. 10.10 After a charged particle has crossed the detector, a discharge is observed.

Electrons produced in the ionisation are immediately accelerated by the electric
field, originating further (“secondary”) ionisations which start an avalanche process
(Townsend avalanche).

Fig. 10.11 Example of an avalanche process originated after the primary ionisation using an elec-
tric field E.

Scintillation detectors

If a charged particle crosses a solid (or liquid) medium, the energy is first transferred
to the atoms and then released in form of light. This emission is at the origin of the
term scintillator.

The first particle physics experiments were based on phosphorescent screens,
which can be seen as primitive scintillators.

Modern experiments typically measure this light emission with a photomulti-
plier, which is based on the emission of electrons in a photocatode (a cathode cov-
ered with a material which can expel electrons via photoelectric effect). Electrons
in the photomultiplier are then accelerated and collected in electrodes which emit
secondary electrons, amplifying the signal which can be collected and measured.

Semiconductors

In an inversely-polarised junction of a semiconductor, the ionisation left by a particle
leads to the creation of an electron–hole pair which is collected by the two terms of
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the junction and can be measured as a small electrical signal. The measure obtained
by detectors based on semiconductors can be extremely precise.

Cherenkov detectors

Cherenkov radiation is emitted by the polarised medium which is crossed by a parti-
cle travelling faster than the speed of light in that medium. This light can be detected,
measuring also the angle of emission and the intensity to obtain informations on the
particle.

10.2.2 The first detectors

The electrometer of T. Wulf (figure 10.7) was introduced in 1909. It allows to detect
the ionisation using two gold leafs which are able to move. As charge is released
on the electrometer by ionisation (or by electrostatic induction), the two leafs repels
themselves and, measuring the angle in between, it is possible to obtain the amount
of charge left on them.

The experiments made by D. Pacini were based on this electrometer. Pacini mea-
sured the ionisation rate under 3m of water. In 1912 V. Hess installed the electrom-
eter on a balloon and measured the rate of detected particles at 5300m above the
sea level. He observed four times the rate which was measured at ground level. This
experiment brought him to the discovery of cosmic rays, for which he received the
Nobel prize in 1936.

Another type of detector, widely used in the experiments which led to the dis-
covery of many fundamental particles, is the Cloud chamber introduced by Wilson
(Fig. 10.12). It is a closed vessel in which a cold plate (T ∼ −20°C) and a liquid
solvent (e.g. ethanol) are present; the solvent is kept around its boiling point in a
meta–stable liquid–gaseous state. A particle which crosses this chamber creates an
ionisation track, due to the voltage applied, around which the alcohol condensates,
producing small condensation drops which can be seen or photographed.

Ionisation can be also detected via photographic emulsions, in a very similar way
as photos are captured. Usually a gelatin containing photo–sensible crystals (like
AgB2) is used: once exposed to light, these crystals can be detected using common
photographic processing techniques. In the case of ionising particles, the track can
be detected with high precision.

This kind of detection technique (which takes the name of nuclear emulsion) has
been developed by Powell in 1939 and has been used recently in neutrino experi-
ments like Chorus and Opera.

The bubble chamber was introduced in 1952 by Glaser and is based on the same
principle as cloud chambers. In this case a super–heated liquid (brought under pres-
sure at a temperature above its boiling point) is used. When a particle crosses the
chamber, the pressure is decreased with a piston and the ionisation induces the for-
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Fig. 10.12 Illustration of the cloud chamber created by Wilson. Particles leave different tracks
which help to identify them.

mation of small bubbles, which can be photographed. The main improvement with
respect to the Wilson’s cloud chamber is the possibility of making these vessels very
large to allow a precise three–dimensional reconstruction.

Fig. 10.13 Left: scheme of a bubble chamber. Right: 2m bubble chamber at CERN.
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10.2.3 Measurements on particle tracks

Charged particle detectors allow to measure and identify particles; for example:

• the amount of ionisation that the particle leaves in the material gives information
on its velocity βc;

• some information on particle momentum can be extracted from multiple scatter-
ing.

Many additional information, and a precise measurement of momentum can be
extracted from a precise measurement of the particle track. In particular, by having a
charged particle travel through a region with a known magnetic field it is possible to
extract information on its charge and momentum from the curvature of the particle
track.

A particle with charge q and mass m, which moves with velocity~v in a constant
magnetic field ~B is affected by the Lorentz force

~F = q~v×~B

Let’s study the motion of a particle in the plane orthogonal to ~B (see figure 10.14).

Fig. 10.14 Illustration of the geometry of a tracking detector immersed in a magnetic field. The
particle curvature is described by the curvature radius ρ , which can be deduced for example from
a measurement of the sagitta s.

We can write

m
v2

ρ
= qvb,

mv = qBρ

which gives
p = qBρ. (10.3)

It is useful to express this equation in the following way (assuming q= e, using tesla
and meters for B and ρ , respectively):

p [GeV] = 0.3q [C] B [T] ρ [m] . (10.4)
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This formula can be obtained by multiplying both members of 10.3 by c and using
natural units.

Let’s now consider again figure 10.14, and assume that we measure the track of
the particle in the region where the magnetic field acts. We can write

ρ
2 =

(
R
2

)2

+(R− s)2

=
R2

4
+ρ

2 + s2−2ρs,

s2−2ρs = −R2

4
,

and in the limit of very small s we can neglect the term proportional to s2, and obtain

s =
R2

8ρ
.

Using Eq. (10.4) we get

s =
0.3BR2

8p
, (10.5)

which finally gives:

p =
0.3BR2

8s
.

It is clear that the accuracy on momentum measurement, assuming B to be sta-
tionary and well known, depends on the measurement of R and s. Considering only
the uncertainty on s, the uncertainty on momentum ∆ p can be written ads

∆ p =
0.3BR2

8

∣∣∣∣∣
∂

1
s

∂ s

∣∣∣∣∣∆s

=
0.3BR2

8s2 ∆s

=
0.3BR2

8

(
8p

0.3BR2

)2

∆s

=
8p2

0.3BR2 ∆s,

in which we used equation 10.5. This can be written as

∆ p
p2 =

8
0.3BR2 ∆s

Since the resolution on position measurement, and then on s is constant, we get
that:
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∆ p
p

∝ p

This means that the resolution on the momentum measurement is directly propor-
tional to the momentum itself.

Another typical case is the one of the magnetic analyser, shown in figure 10.15.
In this case, we measure the track of the particle before and after it gets deflected by
a magnetic field.

Fig. 10.15 Illustration of a magnetic analyser. We measure the track of the particle before and after
the region where the magnetic field is present, i.e. we effectively measure the vertical displacement
x – or, equivalently, the angle θ between the initial and final directions of the particle.

From the figure it’s easy to get

R
2
ρ

= sin
θ

2
,

which for small angles becomes

R
2
ρ
∼ θ

2
R ∼ ρθ ,

and using Eq. (10.4), in natural units, we have

p = 0.3Bρ

= 0.3B
R
θ
,

pθ = 0.3BR,
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i.e.
θ = 0.3B

R
p
.

Since the displacement x can be expressed as

x = Rsin
θ

2

' R
θ

2

=
0.3BR2

2p
,

i.e.

p =
0.3BR2

2x
,

as before we get

∆ p =
0.3BR2

2x2 ∆x,

and the resolution on p is
∆ p
p2 =

2
0.3BR2 ∆x.

Again, the resolution on momentum is proportional to the momentum itself since
∆x can be treated as a constant.

Key points

• In order to reconstruct particle tracks, a strong magnetic field is required. High–
momentum tracks need intense magnetic fields to be detectable.

• There’s a wide variety of detectors suitable for tracking (the one listed here are
just few examples).

• Some detectors can measure the velocity of the particle, or the ionisation re-
leased, or the transition radiation emitted.

• The precision on the momentum measurement is strictly related to the precision
on the position of the track points.

• The choice of which kind of detector to use is strongly dependent on the volume
which needs to be covered, the resolution or the rapidity of the emitted signal
(some detectors with a very fast response are used as trigger).





Chapter 11
Fundamental Discoveries

In order to fully grasp the importance of major discoveries in particle physics, it is
important to underline how, why and when they happened.

11.1 Discovery of the positron

In 1928, Paul Dirac published a paper introducing his famous equation, known as
Dirac equation: the paper did not explicitly predict a new particle but did allow for
electrons having either positive or negative energy as solutions.

In 1932, thanks to Carl Anderson, the positron was discovered: he studied cosmic
rays passing through a cloud chamber (Wilson chamber) and a lead plate. Through
a magnetic field, he was able to distinguish different particles thanks to the different
bending caused by their electric charge: doing so, he was able to detect a parti-
cle with a charge-over-mass ratio similar to the one of electrons, but with a positive
charge, as shown in figure 11.1. Anderson observed a positive-charge particle travel-
ing from below, with a momentum of about 63 MeV/c measured from its curvature
radius, and then emerging with a momentum of 23 MeV/c.

The mass of the positron was obtained measuring the energy lost by the particle
while interacting with the lead plate, caused by bremsstrahlung. The radiation length
X0 of lead (Pb) corresponds to 6 mm, which is exactly the thickness of the lead plate
chosen by Anderson.

Therefore, if the particle detected was an electron, we would expect an energy
loss of ≈ 1/e of its initial energy (the momentum of the particle implies an energy
above the critical energy for electrons in lead, 7 MeV). Experimentally, the results
were:

Eentrance(e+) = 63 MeV Eexit(e+) = 23 MeV

Consequently, the event observed is consistent to what expected for an electron, but
with positive charge!

321
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Fig. 11.1 A positron event photographed by Anderson in his Wilson chamber.

11.2 Discovery of the neutron

11.2.1 Consequences of the discovery of the nucleus

Rutherford’s experiment was the first evidence of the existence of the atomic nu-
cleus: its discovery inevitably led to the problem of defining its components and
how they are kept together (i.e. how they interact). It was previously known that
its mass was a multiple of the proton’s mass, and its charge was a multiple of the
elementary charge. However, since Mnucleus > Zmp, it could not be made just of
protons! Consequently, other options had to be considered. First of all, the hypothe-
sis of having some electrons confined inside the nucleus. Let’s compute how much
kinetic energy T an electron should have for being inside the nucleus. The kinetic
energy T of one electron would be

T = E−me =
√

m2
e + p2−me ≈ p.

Considering p≥ ∆ p and ∆ p∆x≥ }, a lower bound for p can be found, using ∆x'
1 f m (order of size of nucleus): the resulting kinetic energy is

T ≈ p≥ }
∆x
' 200MeV.

The final result is higher than the kinetic energy measured in nuclear phenomena:
this hypothesis must therefore be wrong. In fact, Tmeasured is approximately T ≥
20 MeV , for a particle as massive as a proton, but electrically neutral.
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11.2.2 Experiments 1930 - 1932

In 1930, Bothe and Becker discovered that α particles passing through a berillium
target (9

4Be) were emitting a neutral and penetrating radiation. Since it was neutral,
the first hypothesis considered to explain this radiation was γ rays. However, this
hypothesis could not justify the fact it was far more penetrating than expected.

Then, in 1932, Frédéric and Irène Joliot showed that these particles, going
through paraffin, emitted high energy protons (∼ 5MeV), as in Figure 11.2.

Fig. 11.2 Chadwick’s experiment: α particles interact with berillium and produce a neutral radia-
tion, which then interacts with paraffin producing protons with a typical energy of ∼ 5MeV.

Meanwhile, all these evidences led Ettore Majorana in Rome to suppose that
the particle could be a neutral version of the proton, the neutron. The same year,
James Chadwick performed an experiment, changing several targets, and proved
the existence of a neutral particle, with approximately the same mass as a proton.
This discovery turned out to be fundamental for the development of nuclear physics.

It is easy to see that the kinetic energy needed for a photon or another parti-
cle with mass lower than the proton would be too much. Let’s try to compute the
maximum transmitted energy.

Fig. 11.3 Scattering configuration for Chadwick’s experiment.
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As already seen for Bethe-Bloch equation in section 5.2.3, the maximum trans-
mitted kinetic energy of the system described in Fig. 11.3 is

Tmax =
2m2 p2

1

m2
1 +m2

2 +2E1m2

where we performed the substitution E→ E1,m→m2,M→m1, p→ p1. Therefore
from,

E1 = T1 +m1,

and
E2

1 = p2
1 +m2

1.

we get

p2
1 = (T1 +m1)

2−m2
1

= T 2
1 +2T1m1 +m2

1−m2
1

= T1(T1 +2m1).

Then, the final result is:

Tmax = T1
2m2(T1 +2m1)

(m1 +m2)2 +2T1m2
.

Curie and Joliot measured a recoil energy of approximately 5 MeV. Could this
neutral radiation be caused by photons? If particle 1 is a photon, then m1 = 0 and
m2 ∼ mp (1 GeV), and Tmax becomes

Tmax = Eγ

2Eγ m2

m2
2 +2Eγ m2

.

Therefore, Tmax ∼ 5MeV would correspond to an energy of ∼ 50MeV, too much
to be caused by nuclear processes. Chadwick’s experiment, which used a 14N target
(m∼ 14GeV), would have found

Tmax = 50 · 2 ·50
14 ·103 +2 ·50

MeV = 0.35MeV.

Instead, he measured ∼ 1MeV.
Let’s write the kinetic energy expected for hydrogen (paraffin) and nitrogen tar-

gets:

TH = T1
2mH(2m1 +T1)

(m1 +mH)2 +2T1mH
,

TN = T1
2mN(2m1 +T1)

(m1 +mN)2 +2T1mN
.
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Their ratio, which depends on one unknown (the mass of the new, neutral particle),
can be put equal to the experimental value:

TH

TN
=

5MeV
1MeV

=
mH

mN

(m1 +mN)
2 +2T1mN

(m1 +mH)2 +2T1mH
.

We can solve this equation to derive m1: by considering that T1�mH ,mN , one finds
immediately that m1 ∼ mH = mp, i.e. that the mass of the neutron is very close to
the proton mass.

11.2.3 The neutron

Accurately measured, the mass of the neutron is:

mn = (939.565379±0.000021)MeV

Then, the difference between mn and the mass of the proton mp is

mn−mp = (1.2933322±0.0000004)MeV

The fact that the two masses are almost the same resulted in a crucial element for
particle physics.

Outside the nucleus, free neutrons are unstable and they decay into a proton,
while emitting an electron (e−) and an electron anti-neutrino (ν̄e). The beta decay
of the neutron, described above, can be denoted as follows:

n→ p+ e−+ ν̄e.

The lifetime of the neutron is τn = (880.3±1.1)s.

11.3 Mesons: the muon and the pion

11.3.1 First experiments: Neddermeyer, Anderson, Street and
Stevenson (1937)

In the same years (1932), another important accomplishment was achieved in Cam-
bridge, with the introduction of a “trigger” in cloud chambers. Triggering a cloud
chamber, with two appropriately connected counters, means that the chamber could
expand (and detect a particle) only when connected electronic tubes revealed the
passage of a particle in the chamber itself (as showed in Fig. 11.4). Using this tech-
nique, particles could actually take photographs of themselves!
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Fig. 11.4 Cloud chamber: the principle of triggering

This new apparatus was able to efficiently collect photographs of cosmic-ray
particles and it proved to be fundamental for later discoveries. In fact, in 1936 the
American physicists Carl D. Anderson and Seth Neddermeyer detected a new par-
ticle using cosmic rays: it was named “meson”, from mesos (the Greek word for
“intermediate”) because its measured mass was between those of an electron and a
proton. More accurate measurements enabled to define its value: Street and Steven-
son deduced it by measuring its momentum and velocity. Through the radius of
curvature caused by a magnetic field, it was possible to measure the momentum of
such particle. Instead, the velocity could be measured by comparing the energy of
shower particles with the ionization energy released by the collisions with matter
(see the low-velocity behaviour of the the Bethe-Bloch equation).

Yukawa had predicted the existence of a particle (the pion) of m ∼ 100−
200MeV: could this new particle be the one he was looking for? It took a few years
to prove it wasn’t.

11.3.2 The Conversi, Pancini and Piccioni experiment (CPP) and
the Tomonaga and Araki theory (1940 - 1941)

In 1941, Conversi and Piccioni developed a better version of the previous experi-
ments to detect the meson, by splitting the particles according to their electric charge
using “magnetic lenses”.
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Fig. 11.5 Experimental apparatus of the Conversi-Pancini-Piccioni experiment: positioning of
counters, absorber and magnetized iron plates. All counters labeled as D are connected in parallel.

The outcome of this experiment did not agree with the theory of Tomonaga and
Araki (1940), denying the cosmic rays mesotron was actually the Yukawa meson
(i.e. the particle used to explain the short-range nuclear force with the Yukawa po-
tential). This theory described the effect of the nuclear Coulomb field on the capture
of slow mesons, stating that different charged mesons have a different behaviour
when it comes to the competition between nuclear capture and spontaneous decay.
Positive mesons would be repelled by the positive charge of the nucleus, and there-
fore would tend to encur in decays as in vacuum.

Instead, according to Tomonaga and Araki, the capture probability would in-
crease for negative mesons (by atoms with Bohr radius }

mecα
), that would be more

likely to be attracted by the nucleus, interact with it and lose energy before decay-
ing. Consequently, an anomalous absorption was to be detected: the first results,
obtained using iron (Fe), apparently confirmed the theory.

It was only by switching material, passing from iron to graphite (C), that incom-
patible results came out (see Fig. 11.7): using carbon, negative particles behaved
like positive ones, with a similar decay rate. In 1942, Rasetti measured the mean life
of this new particle as approximately τ ∼ 1.5 µs, as shown in Fig. 11.8.
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Fig. 11.6 Tomonaga and Araki Theory article, published in 1940.

Fig. 11.7 Results of measurement of the Conversi-Pancini-Piccioni experiment with iron and car-
bon

Fig. 11.8 Rasetti’s apparatus to measure the mesotron mean life
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11.3.3 Nuclear interaction (1947)

In 1947, D. H. Perkins performed other experiments using emulsions as shown in
Fig. 11.9. His results seemed to confirm the hypothesis of nuclear interaction and
capture discarded by Conversi’s experiment. So, what is the nature of cosmic rays?

Fig. 11.9 D.H. Perkins emulsion experiment.

During the same year, Marshak and Bethe suggested the existence of two dif-
ferent particles: the pion and the muon. Meanwhile, Fermi, Teller and Weisskopf
wrote an article called “The Capture of Negative Mesotrons in Matter”1, explaining
why the mesotron could not be the same particle as the Yukawa meson. Finally, the
problem was solved by Lattes, Muirhead, Occhialini and Powell. They observed an
event showing the existence of two particles: the pion, predicted by Yukawa, and the
muon. It took a quarter of century to finally understand that the Yukawa force is not
the fundamental strong nuclear interaction, and that the pion itself is a composite
particle made of two elementary particles (quarks).

When the American physicist Rabi heard the news of the discovery of the muon,
he replied: “Who ordered that?!”. In fact, it was not known why this new particle
existed: why a particle should have the same charge as the electron, but bigger mass?
After measuring all its properties, this question became quite relevant. Even today,
we have no answer.

11.4 The discovery of Strangeness

Until the 1940s, known particles included: e−, e+, γ , p, n and the pion (and, later,
the muon).

1 Phys. Rev 71, 314-315 (1947) (Fermi - Teller)
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Fig. 11.10 Discovery of the pion

In 1943, Leprince-Ringuet and L’Héritier, working in a laboratory on the Alps
with a triggered cloud chamber 75cm× 15cm× 10cm in a magnetic field B =
0.25T, discovered a particle with a mass of (506± 61) MeV . The measurement
was based on the event they observed in almost 10000 photos, as shown in Fig.
11.12.

Let’s try to derive the mass M from the setting described in Fig. 11.4. Using the
conservation of momentum and energy,

~p = ~pe + ~p f ,

Ei +me = Ee +E f ,

and so
E f = Ei +me−Ee.

Squaring both sides,

(Ei +me−Ee)
2 = E2

f = M2 + p2
f = M2 +(~p− ~pe)

2,

E2
i +m2

e +E2
e +2Eime−2EiEe−2Eeme = M2 + p2 + p2

e−2ppecosχ.



11.4 The discovery of Strangeness 331

Fig. 11.11 Le Prince Ringuet and L’Héritier experiment in 1943

Fig. 11.12 Effect observed on 10000 photos by Leprince-Ringuet and L’Héritier

Fig. 11.13 Illustration of the scattering,described physically in this section

Since M2 + p2 = E2
i , then

m2
e +E2

e +2Eime−2EiEe−2Eeme = p2
e−2ppecosχ.

Let’s add m2
e on both sides:

2m2
e +E2

e +2Eime−2EiEe−2Eeme = m2
e + p2

e−2ppecosχ.
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Since m2
e + p2

e = E2
e , then

2m2
e +2Eime−2EiEe−2Eeme =−2ppecosχ.

Therefore we can write

me(me +Ei)−Ee(me +Ei) =−ppecosχ

(Ei +me)(Ee−me) = ppecosχ

Ei +me = ppecosχ

Ee−me

Hence, considering Ei� me,

E2
i ≈ p2( pecosχ

Ee−me
)2,

M2 + p2 = p2 E2
e−m2

e
(Ee−me)2 cosχ2,

M2 = p2
[

E2
e−m2

e
(Ee−me)2 cosχ2−1

]
,

and the final expression is

M = p

√
E2

e −m2
e

(Ee−me)2 cosχ2−1∼ 540 MeV.

The mass of this new particle was approximately half of the mass of the proton and
four times bigger than the mass of the pion.

Fig. 11.14 Original paper by Rochester and Butler from 1947

Only in 1947, it was possible to collect evidence of a neutral particle with similar
mass: Rochester and Butler were able to detect the decay

K0
S → π

+
π
−,

Followed shortly after by
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K±→ µ±ν ,

K±→ π±π±π∓.

Fig. 11.15 Picture of the other decays related to K±

These particles were considered ”strange” because their mean life is not com-
patible with strong interaction (i.e. it showed a slower decay than expected), while
their final states contain strongly-interacting particles. In order to explain this par-
ticular behaviour, in the 1950s Pais introduced the idea of a new quantum number,
called strangeness, that was preserved during their creation, but not conserved in
their decay.

Fig. 11.16 Pictures from the Rochester-Butler experiment
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11.5 Helicity and Wu experiment

11.5.1 Helicity

One of the most important quantities regarding parity and symmetry is the projec-
tion of the angular momentum or the projection of the spin onto the direction of
momentum, called helicity.

h =
~p ·~s
|~p ·~s|

This observable physical quantity is not conserved and is not Lorentz invariant: it is
always possible for a massive particle to find a frame of reference where h changes
sign. However,for mass-less particle, the helicity seems to be a conserved quantity.
Furthermore, helicity is a pseudo-scalar quantity: in linear algebra, a pseudo-scalar
is a quantity that behaves like a scalar, except that it changes sign under a parity
inversion. This notion will be crucial to understand Mme. Wu experiment, as well
as for weak interactions theory and field theory (particularly for fermions).

11.5.2 Wu experiment

The Wu experiment was a nuclear physics experiment conducted in 1956 by the
Chinese American physicist C.S. Wu. The experiment’s purpose was to establish
whether or not conservation of parity (P-conservation) also applied to weak interac-
tions, through cobalt-60 (Co) β - decay:

60Co→60
28 Ni∗+ e−+ ν̄e

The experiment was conducted at the cryogenic temperatures of approximately
10−3 K, in order to preserve 60Co polarization with a strong magnetic field ~B. In
fact, a low temperature is necessary to satisfy the condition ~µB ·~B� KBT .

An other important feature of 60Co is that it decays in an excited 60Ni∗ nucleus,
that emits a photon: measuring the anisotropy of the photon emission, it is possible
to measure the polarization of cobalt.

Photon and electrons counters (figure 11.17) reported a correlated asymmetry
between the polarization of the source and the asymmetry of β -decays (even chang-
ing the polarization of the field). How can we explain the observations made? Let’s
focus on figures 11.18 and 11.19:

if parity is conserved, then both symmetrical configurations (I) and (II) should
have the same rate. The experiment showed that only (I) was observed! Therefore,
it proved that conservation of parity was violated by weak interaction. Furthermore,
for massless particles, helicity is Lorentz invariant: this conservation law could be
extended to neutrinos, for their mass being ∼ 0 compared to the other masses of
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Fig. 11.17 Wu’s experimental apparatus, with details of the cryostat

Fig. 11.18 Description of the cobalt decay

Fig. 11.19 Two possible configurations under parity of the cobalt decay

standard model particles. Consequently, it could be produced only neutrino with
helicity −1 (left-handed) or antineutrino with helicity +1 (right-handed).

Let’s note that the material loses its polarization with the passing of time and
the consequencial increasing in temperature (photons rate becomes equal to the one
with higher temperature). Let’s consider that:
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Fig. 11.20 Experimental data from the Wu experiment

60Co→60
28 Ni∗+ e−+ ν̄e

↪→60 Ni+ γ

11.6 Discovery of resonances

Considering both the development of accelerators and how high energy hadrons in-
teract, during hadrons avalanches a big amount of particles is produced, like pions
and kaons. These kind of particles can be selected (using a magnetic field) and colli-
mated using shields to get a particle beam. These beams were used for fundamental
discoveries in hadronic resonances. Figures 11.6, 11.6 and 11.6 show a few exam-
ples of experimental apparatuses and their results in terms of measured cross-section
as a function of the center-of-mass energy.

In 1955, in Berkeley, anti-protons were discovered through particles beams: the
importance of the discovery of the resonance is further discussed in chapter 13.

11.7 Discovery of the anti-proton (1955)

The Bevatron (Synchrotron at the BeV, where BeV stands for Billion electron volt)
was a particle accelerator — specifically, a weak-focusing proton synchrotron —
at Lawrence Berkeley National Laboratory, U.S., which began operating in 1954.



11.7 Discovery of the anti-proton (1955) 337

Fig. 11.21 Experimental apparatus used in Chicago for the measurement of the π+p interaction
cross section

Fig. 11.22 Resonances with strong isospin produced in the π−p interaction.

The antiproton was discovered there in 1955, resulting in the 1959 Nobel Prize in
physics for Emilio Segrè and Owen Chamberlain. It accelerated protons into a fixed
target, and was named for its ability to impart energies of billions of eV.

The Bevatron produces antiprotons with momentum ∼ 1.2 GeV and measures
the momentum and the velocity with a system of Time-of-Flight (TOF) detectors.
Figure 11.7 shows the experimental apparatus: protons are expected to have 50 ns
of TOF, while pions of 40 ns, so this measured quantity can be used to discriminate
the two kinds of particles (thus reducing background from pions).

Figure 11.7 shows on the left the measured mass of the antiproton, relative to the
proton mass. On the right, a result from a contemporary experiment with emulsions
by Amaldi et al. is shown: the photograph shows the evidence of the production of
an anti-proton from cosmic rays.
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Fig. 11.23 Measurement of the π+p interaction cross section

Fig. 11.24 Chamberlain, Segrè, Wiegland, Ypsilantis experiment on the observation of Antipro-
tons

11.8 Discovery of the Ω−

More complex resonances were found with similar approaches. Fig. 11.8 shows the
experimental apparatus, based on a bubble chamber operated at the Brookhaven Na-
tional Laboratory, used for the discovery of the Ω− resonance. The resonance was
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Fig. 11.25 BeVatron experiment

produced with a kaon beam and can identified by its cascade decays, a photograph
of which is shown in Fig. 11.8 together with its interpretation in terms of identi-
fied particles. A detailed analysis of the decays showed that the strangeness of this
particle was S =−3.

Fig. 11.26 Illustration of different decays from the reaction K−+ p
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Fig. 11.27 Illustration of the scientific article on observation of strangeness of −3.

11.9 Discovery of the muon neutrino

Pions collimated beam can be used to produce a neutrino beam, since pions most
often decay into muon neutrinos:

π
+→ µ

+
νµ

Let’s consider the frame of reference of the pion, as shown in figure 11.9.

Fig. 11.28 π+ decay

The negative pion has spin zero; therefore the lepton and the antineutrino must
be emitted with opposite spins (and opposite linear momenta) to preserve net zero
spin (and conserve linear momentum). However, because the weak interaction is
sensitive only to the left chirality component of fields, the neutrino has always left-
handed. This implies that the muon must be emitted with spin in the direction of its
linear momentum (i.e., also left-handed).

The polarization of fermions in the direction of motion is:
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〈p̂ · ŝ〉= Nn=1−Nn=−1

Nn=1 +Nn=−1

For a fermion (as e−, νe) 〈
p̂ f · ŝ f

〉
=−β

i.e. weak interaction is mostly producing left-handed fermions. For anti-fermions,
the previous formula becomes

〈
ˆpa f · ˆsa f

〉
= β

i.e. weak interaction is mostly producing right-handed anti-fermions.
Since the π+ decay is weak and βν ∼ 1, the neutrino must be left-handed, and

hence the anti-muon must be left-handed, too. Therefore, the decay π+ → e+νe,
having a bigger β value (the positron) is less likely to happen, compared to the pion
decaying into muons.

Once we are able to produce a neutrinos beam, along with muons, it shall be
verified that it can have a reaction like

ν + p→ µ
−+X

Figure ?? shows an example of such event: when a neutrino interacts with matter
(the proton in the figure), a muon is produced along with other particles. This sug-
gests the existence of a second type of neutrinos, the muon neutrino, as opposed to
the electron neutrino (the one which, when interacting with matter, produces elec-
trons). We now know that there are three families of leptons - electrons, muons,
tauons, each associated with their corresponding neutrinos.

Fig. 11.29 Discovery of the neutrino
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Questions

• How can you tell the track of a particle traveling through a cloud chamber?
• What can you measure when a particle travels a detector in magnetic field?
• Does the positron travel faster in the upper or in the lower part of Anderson’s

experiment?
• How much energy does an electron of 63 MeV/c lose when passing through

6 mm of lead?
• What is the main energy loss mechanism for electrons and protons passing

through 6 mm of lead?
• How was the electron anti-neutrino discovered? Explain the mechanism through

which the final state of the reaction ν̄e + p→ n+ e+ was reconstructed.
• A neutron, an electron or a muon: which particle will give rise to “more sparks”

in a spark chamber?
• How would you define a strange particle?
• Are strange particles always produced in pairs?
• Why doesn’t the K0 decay into strange particles?
• You observe a decay with a half-life of about 1×10−10 s: do you suspect this

decay is due to electromagnetic, strong or weak interactions?
• You observe a reaction where the difference in strangeness between the initial and

final state is Si−S f =+1: do you suspect this process is due to electromagnetic,
strong or weak interactions?

• You observe a reaction where the difference in strangeness between the initial
and final state is Si− S f = +1: is this process due to electromagnetic, strong or
weak interactions?

• You observe a reaction where the difference in strangeness between the initial
and final state is Si − S f = +2: is this process allowed, forbidden or strongly
suppressed?

• What is the baryon number of the Σ+, which has I3 = 1 and strangeness S =−1?
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Part. Anti-p. M [MeV/c2] I JP(C) B S τ [s]
Scalar (spin J = 0) mesons

π+ π− 139.6 1 0− 0 0 2.6 10−8

π0 own 135.0 1 0−+ 0 0 2.6 10−8

K+ K− 493.7 1/2 0− 0 1 1.2 10−8

K0 K0 497.7 1/2 0− 0 1 -1

K0
S own 497.7 1/2 0− 0 -2 8.95×10−11

K0
L own 497.7 1/2 0− 0 -3 5.12×10−8

η own 547.9 0 0−+ 0 0 5.0×10−19

η ′ own 957.7 0 0−+ 0 0 3.2×10−21

Vector (spin J = 1) mesons
ρ+ ρ− 775.1 1 1− 0 0 4.41×10−24

ρ0 own 775.3 1 1−− 0 0 4.45×10−24

K∗+ K∗− 891.7 1/2 1− 0 1 3.26×10−23

K∗0 K∗0 895.8 1/2 1− 0 1 1.39×10−23

ω0 own 782.7 0 1−− 0 0 7.75×10−23

φ own 1019.4 0 1−− 0 0 1.54×10−22

J/ψ own 3096.9 0 1−− 0 0 7.09×10−21

ϒ (1S) own 9460.3 0 1−− 0 0 1.22×10−20

Octet baryons (spin JP = 1/2+)
p p 938.3 1/2 1/2+ 1 0 stable
n n 939.6 1/2 1/2+ 1 0 8.79×102

Λ 0
Λ 0 1115.7 0 1/2+ 1 -1 2.63×10−10

Σ+
Σ− 1189.4 1 1/2+ 1 -1 8.01×10−11

Σ 0
Σ 0 1192.6 1 1/2+ 1 -1 7.4×10−20

Σ− Σ+ 1197.3 1 1/2+ 1 -1 1.48×10−10

Ξ 0
Ξ 0 1314.9 1/2 1/2+ 1 -2 2.90×10−10

Ξ− Ξ+ 1321.7 1/2 1/2+ 1 -2 1.64×10−10

Decuplet baryons (spin JP = 3/2+)
∆++

∆−− 1232 3/2 3/2+ 1 0 5.63×10−24

∆+
∆− 1232 3/2 3/2+ 1 0 5.63×10−24

∆ 0
∆ 0 1232 3/2 3/2+ 1 0 5.63×10−24

∆− ∆+ 1232 3/2 3/2+ 1 0 5.63×10−24

Σ ∗+ Σ ∗− 1382.8 1 3/2+ 1 -1 1.83×10−23

Σ ∗0 Σ ∗0 1383.7 1 3/2+ 1 -1 1.83×10−23

Σ ∗− Σ ∗+ 1387.2 1 3/2+ 1 -1 1.67×10−23

Ξ ∗0 Ξ ∗0 1531.8 1/2 3/2+ 1 -2 7.23×10−23

Ξ ∗− Ξ ∗+ 1535.0 1/2 3/2+ 1 -2 6.6×10−23

Ω− Ω− 1672.5 0 3/2+ 1 -3 8.21×10−11

Table 12.1 Isospin (I), spin (J), parity (P), charge conservation (C), strangeness (S), baryon num-
ber (B) and mean lifetime τ . The charge C is a multiplicative quantum number only for neutral
particles. The mass and lifetimes are given with reasonable significant numbers for the purpose of
these lectures and the experimental precision is not mentioned, for more information see [1].
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Chapter 14
Units

14.1 Microscopic Units for Nuclear, Subnuclear and particle
physics

For all measurements we have seen it appears clearly that the MKSA (kilograms,
Kelvin, seconds and Ampers) is not well adapted. It is more convenient to use a
redefined set of units based on a redefinition of the energy units.

Definition 14.1. The electron-Volt: Equivalent energy of an elementary charge ac-
celerated by an electric field of 1 V/m over a distance of 1m. i.e.

1eV = 1.6 ·10−19 J

Using the relativistic formulae of rest mass that are detailed in Chapter 3, the
mass of the proton can be expressed in terms of energy as:

mpc2 = 1.66 ·10−27 [kg]× (3 ·108)2[m.s−1]2 = 1.5 ·10−10 J

Therefore

mpc2 = 1.5 ·10−10[J]/1.6 ·10−19 [J/eV] = 0.94 ·109eV = 938MeV

The natural unit for Nuclear and lowest to intermediate energy sub-nuclear
physics process is the Mega-electron-volts MeV.

14.2 Natural units

We have already seen how keeping fundamental constants in calculation (like c, } or
e) is quite uncomfortable. We have also expressed energy and masses in electronvolt,
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which allows us to write particle masses using simple prefixes in spite of using
factors like 10−27 to write the mass of a proton in kilograms.

It is common practice, in particle physics but also in other fields, to use a system
of units in which c = } = 1. In this way the velocity is dimensionless, time has the
same measure of lengths and masses and momentum are measured as energies. This
system is called System of natural units.

In some cases is also useful to adopt a system in which ε0 = µ0 = 1 (Heavyside–
Lorentz units).

In the S.I. we have:
[}] = [M][L2][T−1]

then, in natural units:
[M] = [L−1] = [T−1]

and we are allowed to write:

1kg = 5.6 × 1024 GeV
1m = 5.1 × 1015 GeV−1

1s = 1.5 × 1024 GeV−1

and also:

1s = 3 × 108 m

1Å =
1

200eV

MKS Natural

Quantity [M]p [L]q [T ]r E p−q−r

Action 1 2 -1 0
Velocity 0 1 -1 0
Mass 1 0 0 1
Length 0 1 0 -1
Time 0 0 1 -1
Momentum 1 1 -1 1
Energy 1 2 -2 1
α 0 0 0 0
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14.3 Units of radioactivity

The activity of a radioactive source is defined as the number of decays per unit of
time. An unit often associated with the activity is the curie:

1Ci = 3.7×1010decays per s

and the Becquerel corresponds to one decay per second, so:

1Bq = 0.27×10−10Ci

Let’s consider Radium as example, a nucleus of 226Ra decays emitting an alpha–
particle with E = 4.5MeV, with a T1/2 = 1602y = 5.052×1010 s. A gram of radium
is made of

NA

A
=

6.022×1023

226
= 2.7×1021

nuclei, and has a corresponding activity of:

A =
NA

Aτ
= 3.7×1010 s−1 = 1Ci

. For comparison, the uranium 235U has an half–life of T1/2 = 7.4×108y.





Solutions

Answer of exercise 1

1. L’osservatore S′ sta viaggiando a una velocità v, tale che vede il lampo rosso
(evento R) e poi arriva in B esattamente nel momento in cui avviene il lampo blu.
Quindi nel suo sistema di riferimento:

x′R = x′B
xR− vtR = xB− vtB,

e quindi

v =
xR− xB

tR− tB
=

1210m−480m
0−4.96×10−6 s

=−1.47×108 m/s

2. Sebbene la misura degli intervalli temporali possa cambiare nel passare da S a
S′, l’ordine degli eventi deve essere lo stesso in qualsiasi sistema di riferimento.
Quindi l’osservatore in S′ vede l’evento R avvenire prima dell’evento B.
Adesso troviamo l’intervallo temporale in S′, che si muove a velocità v =
−1.47×108 m/s rispetto a S. Applicando le trasformazioni di Lorentz abbiamo:

t ′R = γ

(
tR−

v
c2 xR

)
=

1√
1−
(

1.47×108 m/s
3×108 m/s

)2

[
0− −1.47×108 m/s

(3×108 m/s)2
(1210m)

]
= 2.27 µs

t ′B = γ

(
tB−

v
c2 xB

)
=

1√
1−
(

1.47×108 m/s
3×108 m/s

)2

[
4.96×10−6 s− −1.47×108 m/s

(3×108 m/s)2
(480m)

]
= 6.59 µs

Quindi l’evento R accade prima dell’evento B, con una differenza temporale
∆r′ = t ′B− t ′R = 4.32 µs.

353
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Possiamo anche calcolare ∆ t ′ usando l’intervallo invariante dello spazio tempo,
tenendo conto del fatto che in S′ i due eventi accadono nello stesso punto dello
spazio (i.e. ∆x′ = 0):

(c∆ t ′)2− (∆x′)2 = (c∆ t ′)2 = (c∆ t ′)2 = (c∆ t)2− (∆x)2

∆ t ′ =

√
(∆ t)2−

(
∆x
c

)2

=

√√√√4.96×10−6 s2−
(

1210m−480m
3×108 m/s

)2

= 4.32 µs

ottenendo lo stesso valore che avevamo trovato con le trasformazioni di Lorentz.

Answer of exercise 2
La lunghezza a riposo è legata alla lunghezza misurata quando l’asta è in movi-

mento dalla relazione L = L′/γ , per cui γ = 2. La velocità dell’asta è dunque

γ =
1√

1−β 2
= 2

1
2
=
√

1−β 2

β
2 =

v2

c2 =
3
4

v =

√
3

4
c = 2.6×108 m/s.

Answer of exercise 3
La legge di decadimento dei muoni è di tipo esponenziale, e quindi:

N
N0

= exp
(
− t

τ

)
= exp

(
− vt

vτ

)
= exp

(
− l

βcγτ0

)
=

1
2

da cui segue che

− log
1
2
=

l
βγcτ0

βγ =
β√

1−β 2
=− l

log 1
2 cτ0

≡ λ ,

ed elevando al quadrato

β =

√
λ 2

1+λ 2 ≈ 0.80.
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Answer of exercise 4
Mettiamoci nel SR di uno dei razzi (razzo 1) e calcoliamo quanto viaggia velo-

cemente l’altro (razzo 2) rispetto al SR del razzo 1. Il testo ci dice che nel sistema
della Terra, il razzo 1 ha velocità c/2 e il razzo 2 ha velocità −c/2. Applicando
la composizione delle velocità, e indicando con l’apice il SR del razzo 1 nel quale
vogliamo misurare la velocità:

v′2 =
(v2− v1)

1− v1v2/c2 =
(−c/2)− (c/2)

1− (c/2)(−c/2)/c2 =−4
5

c,

quindi il razzo 2 appare come se si stia avvicinando a 0.8c. Una volta nota la velocità
del razzo 2 nel SR del razzo 1, la contrazione delle lunghezze di Lorentz dà:

L′ =
L0

γ
= L0

√
1−
(

4
5

)2

=
3
5

L0.

Answer of exercise 5
In classe abbiamo svolto l’esercizio dal punto di vista (sistema di riferimento)

della Terra. In quel caso il muone viaggia per una distanza media d = vγτ0 prima di
decadere, cioè:

d = vγτ =
(2.997×108 m/s)(2.2×10−6 s)√

1−
(

2.997×108 m/s
3×108 m/s

)2
= 14.5km

Quindi con un fattore:

γ =
1√

1−
(

2.997×108 m/s
3×108 m/s

)2
' 22

invece che la breve distanza d′ = vτ0 = 660m che penseremmo, non tenendo conto
della dilatazione dei tempi.

E nel sistema di riferimento del muone? Nel SR solidale con il muone, è
l’atmosfera a viaggiare con vatm = 0.999c e quindi il suo spessore si contrae di
un fattore γ simeq22, e quindi la lunghezza misurata da lui è:

L′ =
Latm

γ
=

15×103 m
22

= 450m

Il muone, che vive in media un tempo τ0, può volare per una distanza media pari
a cτ0 = 660m, che per lui è maggiore dello spessore dell’atmosfera, e quindi può
raggiungere terra prima di decadere.
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Answer of exercise 6
A questi elettroni dovremo dare una certa energia cinetica K, in modo da far

passare l’energia totale da quella a riposo (γ = 0), cioè

Ei = mc2,

a
E f = K +mc2.

notare che la massa dell’elettrone m è la massa a riposo. Dalla relazione

E f = mγc2

segue

K = E f −mc2 = m(γ−1)c2 = m


 1√

1− v2

c2

−1


c2,

per cui nei tre casi indicati servono rispettivamente 79 keV, 3.1 MeV e 10.9 MeV.

Answer of exercise 7
Usiamo la relazione

E = mγc2 = K +mc2 = m(γ−1)c2 +mc2,

assieme alla definizione
γ =

1√
1− v2/c2

,

per cui si ha che

v =

√
1− 1

γ2 c,

e quindi

• K = 2mc2 = m(γ−1)c2→ γ = 3→ v≈ 0.94c≈ 2.8×108 m/s;
• E = 2mc2 = mγc2→ γ = 2→ v = 2.6×108 m/s.

Answer of exercise 8
Se nel suo sistema di riferimento il pione decade dopo τ = 35ns, nel sistema

di riferimento del laboratorio questo tempo si sarà dilatato, diventando t = τγ . In
questo tempo t, prima di decadere il pione avrà percorso una distanza

L = vt = (βc)(γτ).

L’espressione di γ in funzione delle variabili note, E ed m, la ricaviamo da E =mγc2

segue che γ = E/(mc2). Per ottenere quella di βγ , invece, osserviamo che dalla
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relazione p = mγv = mγβ/c segue che βγ = pc/m, e che da (pc)2 +(mc2)2 = E2,
si ha che

βγ = pc/m =

√
E2− (mc2)2

m
=
√

γ2−1 =

√(
E

mc2

)2

−1.

Poiché la massa del pione è di 139.6 MeV/c, questo decadrà nel laboratorio dopo
aver percorso

L = βγcτ ≈

√√√√
(

1.35×105 MeV
139.6MeV/c2c2

)2

−1 ·30cm/ns ·35ns≈ 10.1km,

ovvero a 120km−10.1km≈ 110km sul livello del mare.

Answer of exercise 9
La massa a riposo dell’elettrone è m = 0.511MeV/c2, e identifichiamo con la

direzione positiva dell’asse x il suo vettore impulso p, e con K la sua energia cinet-
ica. L’energia totale del sistema si può ottenere come somma di energia cinetica e
energia a riposo:

E = K +2mc2 = 2.022MeV

Poiché i due fotoni hanno stessa massa (nulla, in particolare), essi emergono dalla
collisione con la stessa energia. Applicando la conservazione dell’energia dallo stato
iniziale allo stato finale:

Eγ =
1
2

E = 1.011MeV

Per ottenere l’impulso, considerando che il fotone ha massa nulla:

pγ =

√
E2

γ

c2 −m2
γ c2 = Eγ/c = 1.011MeV/c

Per calcolare l’angolo θ con cui emergono i due fotoni (uno con +θ e uno con theta
rispetto alla direzione dell’asse x), applichiamo la conservazione dell’impulso lungo
la direzione x:

p = 2pγ cosθ

Dobbiamo trovare p del sistema, che è quello dell’elettrone incidente, poiché il
positrone è fermo. Quindi:

p2c2 = E2−m2c4 = (K+mc2)2−m2c4 = K2+m2c42mKc2−m2c4 = K(K+2mc2)

e quindi:

p =
√

K(K +2mc2)/c =
√

1MeV(1MeV+20.511MeV/c2c2)/c = 1.422MeV/c
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Usando questo valore di p si ottiene θ = 45.3◦.

Answer of exercise 10
La risoluzione del problema è facilitata calcolando la massa invariante in due

sistemi di riferimento diversi. Nello stato iniziale, i quadrimpulsi nel laboratorio
sono:

P1 = [E1/c,~p1]

P2 = [mpc,~0].

La massa invariante è quindi:

√
s =

√
2m2

pc4 +2E1mpc2.

L’energia minima per far avvenire la reazione è quella per cui le particelle dello
stato finale sono a riposo nel sistema di riferimento del centro di massa. In questo
sistema di riferimento si ha: √

s = 2mΛ c2.

Applicando la conservazione della massa invariante prima e dopo la reazione:

4m2
Λ c4 = 2m2

pc4 +2E1mpc2

da cui si ottiene:

E1 =
2mΛ c2−m2

pc2

mp
= 1.72GeV.

Da questo, l’impulso del fascio alla soglia deve essere:

p1c =
√

E2
1 −m2

pc4 = 1.4GeV.

Quindi con un fascio di antiprotoni con impulso di soli 0.65 GeV/c su targhetta non
si possono produrre delle coppie Λ − Λ̄ .

Answer of exercise 11
L’idea è di capire per quale potenza di }c e c va moltiplicato il termine a sinistra

di ciascuna equazione, per ottenere il termine di destra.
Per cui:

• [1GeV−2][}c]α = [E]−2[E]α [L]α = [0.389mb] = [L]2, da cui segue α = 2 e

1GeV−2(}c)2 = 197.3MeVfm
1GeV =

(
0.1973×10−15 GeVm

1GeV

)2
= 0.389mb;

• [1m][}c]α = [L][E]α [L]α = [5.068×1015 GeV−1] = [E]−1, da cui segue α =−1
e 1m(}c)−1 = 1m

197.3MeVfm = 1m
0.1973×10−15 GeVm

= 5.068×1015 GeV−1;
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• [1s][}c]α [c]β = [T ][E]α [L]α [L]β [T ]−β = [T ][E]α [L]α+β [T ]−β = [1.5×1024 GeV−1] =
[E]−1, da cui segue α =−1,β = 1 e 1s(}c)−1c = 1s

197.3MeVfm 299792458m/s =
299792458m

0.1973×10−15 GeVm
= 1.5×1024 GeV−1.

Answer of exercise 12
L’impulso di Fermi regola il moto dei nucleoni (protoni e neutroni) all’interno

dei nuclei. Se lo trascuriamo l’energia cinetica di soglia per la reazione è pari a:

K1 =
(2mp +2mπ)

2− (2mp)
2

2mp
= 4mπ +

2m2
π

mp
= 0.602GeV

L’energia totale è la somma di energia cinetica e della massa della particella
prodotta:

E1 = K1 +mp = 1.540GeV

Considerando invece il moto del protone legato nel nucleo di rame, moto diretto
casualmente rispetto alla direzione del protone incidente, si ha l’energia di soglia
minima (massima) quando l’impulso di Fermi del protone del nucleo è antiparallelo
(parallelo) alla direzione del protone incidente.

Conviene calcolare la massa invariante nel sistema del laboratorio:

√
s=
√
(E1 +E2)2−|~p1 +~p2|2 =

√
(E1 +E2)2− (p1 + pF)2 =

√
2m2

p +2E1E2±2p1 pF

l’energia del protone nel nucleo è E2 =
√

m2
p +m2

F = 968MeV. L’energia di soglia
nel centro di massa è quando tutte le particelle dello stato finale sono ferme. Quindi
è: √

s = 2mp +2mπ

Usando l’uguaglianza della massa invariante nello stato iniziale e finale:

E1E2± p1 pF = 2(mp +mπ)
2−m2

p

E1E2−2(mp +mπ)
2 +m2

p =±pF

√
E2

1 −m2
p

La parte 2(mp +mπ)
2 +m2

p è una costante, e vale A = 1.444GeV2. Sostituendola:

E1E2−A =±pF

√
E2

1 −m2
p

p2
F E2

1 − p2
F m2

p = E2
1 E2

2 +A2−2AE1E2

E2
1 (E

2
2 − p2

F)−2AE2E1 + p2
F m2

p +A2 = 0

e usando E2
2 − p2

F = m2
p si trova:
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E2
1 m2

p−2AE1E2 + p2
F m2

p +A2 = 0

E2
1 −

2AE2

m2
p

E1 +
A2

m2
p
+ p2

F = 0

Questa è un’equazione di secondo grado che ha soluzioni:

E1 =
AE2

m2
p
±

√√√√
(

AE2

m2
p

)2

− A2

m2
p
− p2

F

Usando E2 = 968MeV si ricavano i due valori di energia di soglia massimo e min-
imo:

Emax
1 ≈ 1.3GeV

Emin
1 ≈ 1.9GeV

Da cui si ricavano anche le energie cinetiche minime e massime:

Kmax
1 = Emax

1 −mp ≈ 1GeV
Kmin

1 = Emin
1 −mp ≈ 0.3GeV

Answer of exercise 13
Per la reazione su bersaglio fisso. Come di frequente, usiamo due sistemi di rifer-

imento diversi. Nello stato iniziale, considerando i quadrimpulsi nel laboratorio la
massa invariante è: √

s =
√

2m2
e +2E1me

Nello stato finale, alla soglia (muoni fermi) si ha:
√

s = 2mµ

Uguagliando le due espressioni per la massa invariante si ottiene E1 = 44GeV alla
soglia.

Per la reazione in collisioni e+e− con fasci di pari energia, il sistema del centro
di massa coincide con quello del laboratorio. Nello stato iniziale:

√
s = 2Ee

Nello stato finale, alla soglia (ancora una volta, muoni fermi) si ha:
√

s = 2mµ



Solutions 361

Uguagliando le due espressioni per la massa invariante si ottiene Ee = mµ =
0.106GeV alla soglia. Notare la grandissima differenza di energia necessaria per
il fascio di elettroni nel primo e nel secondo caso.

Answer of exercise 14
Il sistema del laboratorio coincide col sistema del centro di massa. L’impulso di

soglia si ricava quindi imponendo:

√
s =

√
p2 +m2

e +
√

p2 +m2
p = mΛ

Elevando al quadrato si ha:

p2 +m2
e + p2 +m2

p +2
√
(p2 +m2

e)(p2 +m2
p) = m2

Λ

Conviene portare al secondo membro la radice:

2p2 +m2
e +m2

p−m2
Λ = 2

√
(p2 +m2

e)(p2 +m2
p)

e poi elevando al quadrato:

4p4+m4
e +m4

p+m4
Λ +4p2m2

e +4p2m2
p−4p2m2

Λ−2m2
em2

p−2m2
em2

Λ−2m2
pm2

Λ = 4p4+4p2m2
p+4p2m2

e +4m2
em2

p

si ottiene:

p2 =
m4

e +m4
p +m4

Λ
−2me2m2

p−2m2
emΛ 2−2m2

pm2
Λ

4m2
Λ

e quindi il valore di p = 163MeV/c, da cui l’energia Ee = pc = 163MeV.
Nel caso del successivo decadimento in due corpi Λ → pπ−, si ottiene l’energia

del protone, nel sistema di riferimento del centro di massa, usando la formula:

E∗p =
m2

Λ
+m2

p−m2
π

2mΛ

= 944MeV

L’impulso del protone è quindi dato da:

p∗p =
√

E∗p
2−m2

p = 100MeV/c

Siccome nel centro di massa, per definizione, la somma vettoriale degli impulsi è
nulla, l’impulso del pione carico bilancia quello del protone, emesso in direzione
opposta, e quindi p∗π = p∗p = 100MeV/c.

Answer of exercise 15
Per scattering elastico intendiamo un processo in cui le particelle dello stato in-

iziale sono le stesse di quelle dello stato finale.
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Denotiamo con k e P i quadrimpulsi della particella incidente e del bersaglio
prima dell’urto, e indichiamo con l’apice le stesse quantità dopo l’urto: il problema
ci dice che

k = (E,~k),

k′ = (E ′,~k′),

P = (mc,~0).

Partiamo dalla conservazione del quadrimpulso durante l’urto, isoliamo la quantità
che non misuriamo direttamente – cioè il quadrimpulso del bersaglio dopo l’urto, P′

– ed eleviamo al quadrato:

k+P = k′+P′,

P′ = k+P− k′,

m2c2 = 0+m2c2 +0+2Em−2(EE ′−~k ·~k′)−2mE ′,

e se indichiamo con θ ′ l’angolo – nel riferimento del laboratorio – fra la direzione
iniziale e finale della particella incidente, e usiamo il fatto che |~k|c = E e |~k′|c = E ′,

0 = 2mc2(E−E ′)−2(EE ′−EE ′ cosθ
′),

mc2(E ′−E) =−EE ′(1− cosθ
′),

E ′(mc2 +E(1− cosθ
′)) = mc2E,

E ′ =
E

1+ E
mc2 (1− cosθ ′)

.

Il bersaglio rinculerà di una energia E−E ′, massima per θ = π . Il valore massimo
di quest’energia di rinculo,

E− E
1+2 E

mc2

= E
2E/mc2

1+2E/mc2 ,

prende il nome – nel caso dello scattering Compton, in cui la particella incidente è
un fotone e il bersaglio è un elettrone atomico – di picco Compton.

Cosa cambia fra un fotone di energia E ed uno di energia E ′? Dalla meccanica
quantistica,

E = hν =
hc
λ
,

cioè cambia la lunghezza d’onda del fotone:
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E ′ =
hc
λ ′

=
hc
λ

1+
hc
λ

mc2 (1− cosθ ′)
,

1
λ ′

=
1
λ

1+
hc
λ

mc2 (1− cosθ ′)
,

λ
′ = λ

(
1+

hc
λmc2 (1− cosθ

′)
)
,

λ
′ = λ +

h
mc

(1− cosθ
′)≡ λ +λc(1− cosθ

′).

dove abbiamo definito la lunghezza d’onda Compton dell’elettrone, λc, che rapp-
resenta la scala di lunghezza sotto la quale gli effetti della meccanica quantistica
relativistica divengono importanti.

Answer of exercise 16

1. L’energia totale disponibile nel centro di massa può essere calcolata imponendo
la conservazione del 4-impulso e l’invarianza del modulo quadro di questo sotto
trasformazioni di Lorentz, si ottiene

E∗=
√

E2
1 +E2

2 +2E1E2− p2
1− p2

2 +2p1 p2 =
√

2m2 +2E1E2 +2p1 p2'
√

4E1E2

nell’ultimo passaggio, date le energie in gioco, abbiamo trascurato la massa
dell’elettrone. Numericamente l’energia totale nel CM sarà E∗ = 15.5GeV.

2. I moduli degli impulsi delle particelle nel COM sono, per definizione, uguali e,
dunque, usando l’equazione di mass-shell delle particelle nell’ipotesi di massa
trascurabile segue

p∗ =
E∗

2
≈ 7.74GeV.

3. La velocità del CM nel LAB è, in unità di c, data da

βCM =
|~p1 + ~p2|
E1 +E2

=

√
E2

1 −m2−
√

E2
2 −m2

E1 +E2
≈ E1−E2

E1 +E2
' 0.4

di conseguenza:
γCM = (1−β

2
CM)−1/2 ≈ 1.1

4. Nel caso in cui E1 = E2 è evidente dalla relazione per βCM che i due sistemi di
riferimento CM e LAB coincidono.

Answer of exercise 17

1. Per un protone di impulso pp:
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βγ =
pp

cmp
=

ppc
mpc2 = 426

Un pione con lo stesso βγ ha impulso:

pπ = mπ cβγ = 59.5GeV/c

2. La frazione di pioni che decadono nel tunnel è

1− N(x)
N0

= 1− e
− x

βγcτπ
0 = 11.3%

3. Dato che

β
2 = 1− 1

γ2 ⇒ (βγ)2 = γ
2−1

γ =
√
(βγ)2 +1' βγ = 426

La lunghezza del tunnel, misurata da un osservatore solidale al pione è:

x′ =
x
γ
=

400m
426

= 94cm

Answer of exercise 18
L’alluminio ha una densità di 2.7 g/cm3, numero atomico 13 e massa atomica

27 u.
Poiché le particelle α sono nuclei di elio, hanno carica 2e e la corrente di 0.32 nA

corrisponde a un miliardo di particelle incidenti al secondo,

dNi

dt
=

0.32nC/s
2×1.6×10−19 C

= 1×109 s−1.

Il rivelatore vede un angolo solido di

∆Ω ≡ superficie
raggio

2
=

1cm2

(1m)2 = 1×10−4 sr

Si tratta di uno scattering alla Rutherford, per cui la sezione d’urto per unità di
angolo solido rilevata ad un certo angolo θ vale

dσ

dΩ
=

(
zα zAle2

4πε04E
1

sin2(θ/2)

)2

,

pari a
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dσ

dΩ
≈
(

2×13×4× e×1.6×10−19 C
4π×8.9×10−12 F/m×4×100×106 eV

1
sin2(π/180°×30°/2)

)2

≈ 2×10−30 m2/sr = 20mb/sr,
(3.31)

e il numero di particelle visto dal rivelatore vale, se indichiamo con nAl = ρAl
NA
AAl

la
densità numero di atomi di alluminio, e con d lo spessore del rivelatore,

dNrivelate

dt
= ∆Ω

dσ

dΩ
nAld

dNi

dt

≈ 1×10−4 sr×2×10−30 m2/sr×1×104 cm2/m2×2.7g/cm3 6×1023 mol−1

27g/mol
= 120Hz.

Answer of exercise 19
Il numero di nuclei di rame prodotti al secondo è dato da:

dNCu

dt
= σ ·NCo ·Φα = σ ·nCoVCoΦα = σ ·nCoSdΦα

Il flusso di particelle α per unità di superficie e per secondo, indicando con e la
carica dell’elettrone, è pari a:

Φα =
1
S
· I

2e
= 1.39×1013 cm−2s−1

mentre la densità di bersagli (atomi di Cobalto) è:

nCo =
NA

ACo
·ρCo = 9.08×1022 cm−3.

Dalla densità volumetrica dei bersagli si ottiene il numero di nuclei prodotti nell’unità
di tempo:

dNCu

dt
= 4.68×108 s−1

Answer of exercise 20
Gli elettroni hanno

β =
p
E
≈ 0.99989

βγ =
p
m
≈ 48.9.
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• In 1 mm di tessuto umano, perderanno per ionizzazione – assumendo che anche
per gli elettroni valga la formula di Bethe – un’energia

∆E =
dE
dx

∆x≈ 200keV,

mentre perderanno per irraggiamento un’energia molto minore,

∆E = E0

(
1− exp(−∆x

X0
)

)
≈ 70keV,

consistentemente col valore dell’energia critica Ec.
• Perché la sua energia scenda ad EPb

c , l’elettrone deve perdere

∆E = E−EPb
c = 17.6MeV,

che per solo irraggiamento vengono persi dopo una distanza ∆x tale che

E−∆E
E

= exp(− ∆x
XPb

0
),

da cui segue ∆x≈ 6.8mm.

Answer of exercise 21
Per i muoni usiamo la formula di Bethe-Bloch approssimata (senza effetto den-

sità e correzione di shell):

−dE
dx

=Cρ

(
z
β

)2 Z
A

[
log

2mec2(βγ)2

I
−β

2

]
,

dove:

• la costante C = 4πr2
e mec2NA = 0.307MeV/gcm2;

• la densità della roccia è data dal problema: ρ = 3.0g/cm3;
• il rapporto Z/A = 1

2 è l’approssimazione tipica che facciamo (numero di protoni
≈ numero di neutroni in un nucleo);

• il potenziale medio di ionizzazione 〈I〉= 200eV è dato.

Quindi si possono calcolare i fattori relativistici da mettere nella formula di Bethe-
Bloch:

β
2
µ = 0.9999→ γµ = 9464→ γ

2
µ ≈ 90 ·106

e quindi:
dE
dx

= 11.90MeV/cm

Siccome stiamo guardando uno strato piccolo di roccia ∆x in un regime circa di
minimum ionizing particle, nell’attraversare uno strato di profondità d = 1cm otte-
niamo:
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∆E =
dE
dx
·∆x = 11.9MeV.

Fermare i muoni significa che essi perdono tutta la loro energia cinetica K =
Eµ −mµ per ionizzazione. Se la perdita di energia è circa costante (assunzione del
problema), allora:

1
ρ

∆E
∆x

= 2MeV/gcm2

e quindi (∆E = K):

∆x =
K

ρ

[
g

cm3

] · 1

2MeV cm2

g

e quindi:

∆x =
106−105.66

3 ·2 = 1.67km.

Answer of exercise 22

1. In unintà in cui il campo magnetico è misurato in [T] e l’impulso delle parti-
celle in GeV, il raggio di curvatura (misurato in [m]) di una particella carica che
viaggia in un piano ortogonale all’asse del campo magnetico è:

R =
p[GeV ]

0.3B[T ]
= 5.85m

2. I pioni di impulso 1 GeV hanno βπ = 0.990 e βπ γπ = 7.16, mentre i muoni βµ =
0.994 e βµ γµ = 9.47. La loro perdita di energia nel primo scintillatore calcolata
con la formula di Bethe-Bloch vale:

−dE
dx

(π) = 5.52MeV/cm

−dE
dx

(µ) = 5.76MeV/cm

Quindi attraversando lo spessore di d = 5cm di NaI(Tl) essi perdono un’energia
pari a ∆Eπ = 27.6MeV per i pioni e ∆Eµ = 28.8MeV per i muoni. Il loro im-
pulso dopo il primo scintillatore sarà:

pπ =
√
(Ei−∆E)2−m2

π =

√(√
p2

i +m2
π −∆E

)2

−m2
π = 0.972GeV

pµ =
√
(Ei−∆E)2−m2

µ =

√(√
p2

i +m2
µ −∆E

)2

−m2
µ = 0.971GeV

Dall’impulso possiamo ottenere la velocità delle particelle, βπ = 0.990 e βµ =
0.994. Il tempo di volo tra gli scintillatori sarà quindi pari a:
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∆Tπ =
D

βπ c
= 16.8ns

∆Tµ =
D

βµ c
= 16.8ns

notare che con questa distanza tra gli scintillatori e cinematica delle particelle è
impossibile determinare l’ipotesi di massa della particella carica dal solo tempo
di volo.

3. Lo scattering coulombiano multiplo sarà mediamente di un angolo pari a:

〈θMS〉= 21MeV
z

β p

√
x

X0
= 29.5mrad

sia per i pioni che per i muoni, portando a una deviazione media all’altezza del
secondo scintillatore pari a:

〈δx〉= D tan(θMS)≈ DθMS = 14.7cm.

4. Con l’assorbitore il fascio di pioni si riduce di un fattore:

Φ

Φ0
= e−x/λint = 0.5

dal quale, facendo il logaritmo di entrambi i lati dell’equazione, x = 13.9cm.

Answer of exercise 23

1. In uno spettrometro magnetico vale:

p[GeV ] = 0.3B[T ]R[m]

pertanto le particelle con impulso p = 2GeV/c si muovono su una circonferenza
con raggio di curvatura:

R =
p

0.3 ·B = 3.92m.

L’angolo di deflessione vale quindi:

θ = arcsin(L/R),

che per piccoli angoli si può approssimare (sinx≈ xperx→ 0) con θ ≈ L/R. La
distanza dalla linea di volo iniziale a cui escono le particelle è quindi:

x = R(1− cosθ)≈ Rθ 2

2
=

L2

2R
= 3.19cm.

2. L’impulso delle particelle selezionate dal collimatore sarà compreso tra:

• p1 = p · (1−0.005) = 1.99GeV/c e
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• p2 = p · (1+0.005) = 2.01GeV/c.

L’angolo formato da p1 e p2 all’uscita dal magnete vale:

∆θ = θ1−θ2 = 0.3 ·B ·L · (p2− p1)/(p1 p2) = 1.27mrad.

Se la distanza della fenditura dall’uscita dal magnete è D, la sua larghezza min-
ima deve essere

d = D ·∆θ = 10m ·1.27×10−3 rad = 1.27cm.

3. Affinché venga emessa radiazione Cerenkov la velocità di una particella deve
essere tale che β > 1/n, quindi n> 1/β . I valori di β per le particelle considerate
e i corrispondenti indici di rifrazione minimi per avere emissione di radiazione
sono:

• e+: β = 1, quindi n > 1
• µ+: β = 0.9986, quindi n > 1.0014
• π+: β = 0.9976, quindi n > 1.0025
• K+:, β = 0.971, quindi n > 1.030
• protone: β = 0.905, quindi n > 1.105

Per identificare i K+ sono sufficienti due contatori Cherenkov con indici di
rifrazione tali che nel primo siano sopra soglia e+, µ+ e π+, e nel secondo e+,
µ+, π+ e K+. Occorre quindi:

• un primo contatore con indice di rifrazione: 1.0025 < n < 1.03
• un secondo contatore con indice di rifrazione: 1.03 < n < 1.105

È preferibile scegliere valori dell’indice di rifrazione intermedi tra quelli indicati
e non al limite. Valori ottimali sono ad esempio:

n1 =

(
βK+ +β+

π

2

)−
1 = 1.016

n2 =

(
βK+ +βp

2

)−
1 = 1.066

L’anticoincidenza dei due segnali consente l’identificazione dei K+.

Answer of exercise 24

1. La perdita di energia per i muoni nell’acqua è principalmente dovuta alla ion-
izzazione, mentre il contributo della perdita di energia per emissione di luce
Cerenkov è circa mille volte inferiore. I muoni hanno massa mµ = 106MeV/c2,
e quindi il loro fattore di Lorentz è:

βγ =
p

mµ c
=

1GeV/c
0.106GeV/c

= 9.4
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A questo valore la perdita di energia è ancora ben approssimata dal valore al
minimo della ionizzazione (è solo l’inizio della salita relativistica, che è loga-
ritmica). Quindi si può assumere una perdita di energia circa costante, e pari a
dE
dx |min ≈ 2MeV/g · cm−2. L’energia cinetica massima dei muoni che si vogliono
considerare è:

Kmax =
√

p2
max +m2

µ −mµ ≈ 900MeV

e quindi il percorso massimo è dato da:

dmax =
Kmax

ρ · dE
dx |min

≈ 4.5m

2. Il muone emette luce Cherenvov finché il suo impulso è superiore alla soglia:

β > βmin =
1
n
≈ 0.75

e quindi:

p
E

> βmin⇒
p

p2 +m2
µ

> βmin⇒ p2 > βmin(p2 +m2
µ)

⇒ p >
βminmµ√
1−βmin

≈ 120MeV/c≡ pmin

e quindi l’energia cinetica minima è:

Kmin =
√

p2
min +m2

µ −m2
µ ≈ 54MeV

Mentre il muone viaggia nell’acqua, perde energia per ionizzazione, come fatto
nel punto precedente, fino a raggiungere Kmin. Sempre approssimando la perdita
di energia come una costante (che è ancora un’approssimazione abbastanza
buona per pmin≈ 100MeV), si ha che il percorso durante il quale il muone emette
luce Cherenkov è:

L =
K0−Kmin

ρ · dE
dx |min

=
900MeV−54MeV

2MeV/cm
≈ 4.2m

Quindi la frazione del percorso massimo dei muoni in cui questo avviene è:

f =
L

dmax
=

4.2m
4.5m

= 93%

3. Un mone di impulso 1 GeV/c emette luce Cherenkov su un cono di apertura:

cosθC =
1

βn
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dove β = p/E = p/
√

p2 +m2
µ = 0.9944 e quindi

cosθC =
1

0.9944 ·1.33
≈ 0.756

durante il suo percorso verso la base, il vertice di emissione della luce si avvic-
ina, e quindi i successivi coni di luce sono contenuti nel primo. Inoltre, perdendo
energia, il β diminuice, e quindi cosθC aumenta, e quindi anche θC diminuisce,
cntribuendo a rendere i coni successivi contenuti nel primo. Quindi la zona illu-
minata è interna al cerchi dell’emissione avvenuta alla distanza h = 50cm dalla
base:

R = h tanθC = h

√
1− cos2 θC

cosθC
≈ 0.865 ·h≈ 43cm

Answer of exercise 25

1. Il raggio di curvatura, per una particella che si muove in un campo magnetico
ortogonale al suo moto, misurato in unità MKS, è:

R[m] =
p[GeV/c]c

0.3B[T ]
= 75.76m

2. Nell’approssimazione di piccolo angolo, l’angolo sotteso dall’arco di circon-
ferenza descritto dalla particella è:

θ = arcsin
(

L
R

)
≈ L

R
= 0.026rad(= 1.5◦)

e quindi la distanza dalla linea di volo iniziale con cui i pioni escono dal magnete
è:

x = R(1− cosθ)≈ 3.0cm

3. Il meccanismo principale di perdita di energia per i pioni è quello della ioniz-
zazione, ed è dato dalla formula di Bethe-Bloch:

dE
dx

=C ·ρ
(

Z
A

)(
z2

β 2

)
ln

(
2mec2(βγ)2

〈I〉

)
−β

2




in cui la costante C≈ 0.3MeV/cm, e trascuriamo l’effetto di densità. Il valore di
perdita di energia medio è quindi:

dE
dx

= 2.98MeV/cm

e, considerando questa perdita di energia circa costante lungo il tratto percorso,
la perdita di energia totale è:
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∆E =
dE
dx
·∆x = 2.98MeV/cm ·2cm = 5.96MeV

Per degli elettroni, invece, la perdita di energia principale è per irragiamento, e
l’andamento dell’energia, in funzione della profondità del mezzo attraversato, è:

E(x) = E0ex/X0

A una prodondità x = 2cm si ha quindi E = 47.56GeV, e quindi la perdita è:

∆E = E0−E(2cm) = 2.43GeV

4. Lo scattering Coulombiamo produce una variazione nell’angolo data dalla for-
mula:

〈θ̄MS〉= 21MeV
z

pcβ

√
x

X0

usando i valori numerici z = 1, β ≈ 1, p = 50000MeV/c si ottiene

〈θ̄MS〉= 9.4×10−5 rad = 0.005◦

Answer of exercise 26
L’energia di soglia del pione è la minima necessaria per produrre le particelle

finali a riposo nel sistema di riferimento del centro di massa (Emin). Uguagliando il
modulo quadro del quadrimpulso, che è un invariante di Lorentz, e quindi uguale
nello stato iniziale e finale:

|pin|2 = |(Emin +mp,~pmin)|2

|pfin|2 = |(mK +mΛ ,~0)|2

elevando al quadrato ed uguagliando:

E2
min +m2

p +2Eminmp− p2
min = (mK +mΛ )

2

m2
π +m2

p +2Eminmp = (mK +mΛ )
2

⇒ Emin =
(mK +mΛ )

2−m2
π −m2

p

2mp
≈ 0.91GeV

L’angolo massimo di emissione nel laboratorio esiste solo nel caso in cui la ve-
locità della particella nel centro di massa, β ∗, è minore della velocità del centro di
massa nel laboratorio, β cm:

β
∗ < β

cm =
pcm

Ecm
=

√
E2

π −m2
π

Eπ +mp
≈ 0.665

Per verificare se la condizione è possibile bisogna calcolare l’impulso e l’energia
della Λ 0 nel centro di massa. L’energia totale del centro di massa è:
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E∗tot =
√

m2
p +m2

π +2Eπ mp ≈ 2.16GeV

Usando la conservazione dell’energia nel centro di massa, e chiamando p∗ ≡ |~p∗
Λ
|=

|~p∗K |, si può calcolare l’impulso della Λ 0 nel centro di massa:

E∗tot = E∗Λ +E∗K =
√

p∗2 +m2
Λ
+
√

p∗2 +m2
K

elevando due volte al quadrato e risolvendo l’equazione in p∗ si ottiene

p∗ =

√
[E∗2− (mΛ +mK)2][E∗2− (mΛ −mK)2]

2E∗
≈ 0.69GeV/c

da cui si ricava:
β
∗ =

p∗

E∗
=

p∗

p∗2 +m2
Λ

≈ 0.52.

Quindi la condizione β ∗ < βcm è soddisfatta, per cui esiste un angolo massimo di
emissione della particella Λ 0 nel laboratorio. Questo angolo è:

θmax = arctan






γcm

√(
βcm

β ∗

)2

−1



−1



≈ 42◦

Answer of exercise 27
L’alluminio ha una densità di 2.7 g/cm3, numero atomico 13 e massa atomica

27 u.
Poiché le particelle α sono nuclei di elio, hanno carica 2e e la corrente di 0.32 nA

corrisponde a un miliardo di particelle incidenti al secondo,

dNi

dt
=

0.32nC/s
2×1.6×10−19 C

= 1×109 s−1.

Il rivelatore vede un angolo solido di

∆Ω ≡ superficie
raggio

2
=

1cm2

(1m)2 = 1×10−4 sr

Si tratta di uno scattering alla Rutherford, per cui la sezione d’urto per unità di
angolo solido rilevata ad un certo angolo θ vale

dσ

dΩ
=

(
zα zAle2

4πε04E
1

sin2(θ/2)

)2

,

pari a
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dσ

dΩ
≈
(

2×13×4× e×1.6×10−19 C
4π×8.9×10−12 F/m×4×100×106 eV

1
sin2(π/180°×30°/2)

)2

≈ 2×10−30 m2/sr = 20mb/sr,
(5.8)

e il numero di particelle visto dal rivelatore vale, se indichiamo con nAl = ρAl
NA
AAl

la
densità numero di atomi di alluminio, e con d lo spessore del rivelatore,

dNrivelate

dt
= ∆Ω

dσ

dΩ
nAld

dNi

dt

≈ 1×10−4 sr×2×10−30 m2/sr×1×104 cm2/m2×2.7g/cm3 6×1023 mol−1

27g/mol
= 120Hz.

Answer of exercise 28
Innanzitutto occorre trasformare la sezione d’urto dalle unità naturali alle unità

MKS. A tal fine teniamo conto che, misurando
√

s in GeV, in unità naturali si ha:

G2
F · s = 1.44×10−10 GeV−2

( √
s

1GeV

)2

.

Sapendo che }c = 197MeVfm = 1.97×10−14 GeVcm, si ha che 1GeV−1 in unità
naturali corrisponde a 1.97×10−14 cm nel sistema MKS, dunque

G2
F · s = 5.6×10−38 cm2

( √
s

1GeV

)2

.

L’energia totale nel centro di massa si ottiene sfruttando l’invarianza sotto trasfor-
mazioni di Lorentz del modulo quadro del quadrimpulso. Si ha:

s = M2
p +M2

ν +2MpEν

e quindi, trascurando i termini M2
ν ≈ 0eV ed M2

p ed usando Mp = 0.94GeV/c2, si
ottiene:

s≈ 2MpEν ≈ 1.88
(

Eν

1GeV

)
GeV2,

dunque la sezione d’urto sarà:

σνN =
2 ·5.6×10−38 cm2

( √
s

1GeV

)2

9 ·3.14
≈ 7.9×10−39 Eν

1GeV
cm2
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L’interazione in esame è tra neutrino e nucleone per cui il numero di nucleoni (centri
diffusori o bersagli dello scattering) per unità di volume sarà:

n = ρ/Mp = NAρ ≈ 1.3×1024 cm−3.

La lunghezza di interazione è quindi:

λ =
1

nσ
≈ 1.0×1014

(
Eν

1GeV

)−1

cm.

Una stima dell’energia dei neutrini per cui la Terra diventa opaca ai ν si ottiene im-
ponendo λ <D, essendo D=1.2×109 cm il diametro della Terra. Da tale condizione
segue che la Terra diventa opaca ai neutrini per:

Eν > 8.7×104 GeV

Answer of exercise 29
L’energia dei fotoni che incidono sulla lastrina di Argento è:

Eγ =
hc
λ

Usando la relazione }c = 197MeVfm = 1.97×10−14 GeVcm, si può esprimerla in
eV:

Eγ = 6.2eV.

Segue pertanto che é possibile realizzare l’effetto fotoelettrico essendo Eγ > W .
Infine, l’energia cinetica degli elettroni emessi è:

EK = Eγ −W = 1.47eV.

Answer of exercise 30
Per radionuclidi della stessa serie che decadono emettendo particelle α , la legge

di Geiger–Nuttal lega in modo lineare lnλ e 1/
√

Eα . Per il 84Po si ha:

lnλ ≈ a− Z−2
Eα

b

Per i due isotopi del 84Po, che hanno lo stesso Z = 84, si ha:

lnλ (210Po) ≈ a− Z−2
Eα(

210Po)
b

lnλ (214Po) ≈ a− Z−2
Eα(

214Po)
b
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poiché le costanti a e b sono debolmente dipendenti per gli isotopi, sottraendo dalla
seconda la prima equazione si ottiene:

lnλ (214Po)− lnλ (210Po) = b(Z−2)

[
1

Eα(
210Po)

− 1
Eα(

210Po)

]

ovvero:

ln
λ (214Po)
λ (210Po)

= b(Z−2)


 1√

Eα(
210Po)

− 1√
Eα(

210Po)




Sappiamo che la costante b è pari a:

b≡ e2√2mα

2}ε0
=

2πe2√2mα

4π}ε0
= 2π

ke2
√

2mα c2

}c
= 6.28

1.44MeV · fm ·
√

2 ·3727MeV/c2

197MeV · fm ≈ 4MeV1/2

Per avere una stima del rapporto in ordini di grandezza tra i due tempi di dimezza-
mento consideriamo che:

ln
λ (214Po)
λ (210Po)

= ln
t1/2(

210Po)

t1/2(
214Po)

e quindi

log10
t1/2(

210Po)

t1/2(
214Po)

=
1

ln(10)
ln

t1/2(
210Po)

t1/2(
214Po)

≈ 0.434×4MeV1/2× (84−2)×
[

1√
5.3MeV

− 1√
7.7MeV

]
≈ 10.5

Le vite medie dei due nuclidi differiscono di ben 10 ordini di grandezza. Conoscendo
quindi il tempo di dimezzamento del 214Po si trova il valore numerico della vita me-
dia del 210Po:

t1/2(
210Po)≈ 1010.5 · t1/2(

214Po)≈ 1010 ·101/2 ·1.6×106 s = 58.6giorni.

Il valore sperimentale per il tempo di dimezzamento del 210Po è circa 140 giorni,
che è dello stesso ordine di grandezza del valore stimato con la legge di Geiger-
Nuttal.

Answer of exercise 31
Nel caso di 3 decadimenti in sequenza si ha:
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dN1

dt
= −ω1N1

dN2

dt
= ω1N1−ω2N2

dN3

dt
= ω2N2−ω3N3 .

Le soluzioni particolari del sistema per le condizioni iniziali N1(0) = N0, Nk(0) = 0
e dNk/dt(0) = 0 per k=2,3 sono:

N1(t) = N0e−ω1t

N2(t) = N0
ω1

ω2−ω1
(e−ω1t − e−ω2t)

N3(t) = N0ω1ω2

[
e−ω1t

(ω2−ω1)(ω3−ω1)
+

e−ω2t

(ω3−ω2)(ω1−ω2)
+

e−ω3t

(ω1−ω3)(ω2−ω3)

]
.

Nel caso in esame abbiamo ω3 = 0 e quindi:

N3(t) = N0

[
1+

e−ω1t

ω1/ω2−1
+

e−ω2t

ω2/ω1−1

]
.

In particolare dopo 1/4 di secondo abbiamo:

N3

N1
=

[
1+ e−ω1t

ω1/ω2−1 +
e−ω2t

ω2/ω1−1

]

e−ω1t ≈ 10.9 .

Answer of exercise 32
Per le interazioni deboli la rate di decadimento è data da:

Γ = 2πG2
F |M|2

dN
dE0

dove dN
dE0

è il numero di stati finali per unità di intervallo di energia, M è l’elemento
di matrice della transizione (cioè l’ampiezza per il decadimento considerato, dallo
stato iniziale a quello finale, e GF è la costante di Fermi dell’interazione debole.

Lo spazio delle fasi è:
dN
dE0

=Cp2 d p
dE0

dove C è una costante, p il momento del leptone carico (`= e,µ) nel sistema di rifer-
imento del pione (nella notazione usuale, sarebbe p∗, ma scriviamo p per semplifi-
care la notazione in seguito). L’energia totale del sistema è, usando la conservazione
dell’energia nel sistema di riferimento del centro di massa:

E0 = mπ =
√

p2
e +m2

` +
√

p2
ν +m2

ν
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usando la conservazione dell’impulso, e chiamando p≡ pν = pe, e assumendo zero
la massa del neutrino mν = 0,

E0 = mπ = p+
√

p2 +m2
e

e quindi si ricava:

p =
E2

0 −m2
`

2E0

nel decadimento a due corpi E0 = mπ , e quindi:

p =
m2

π −m2
`

2mπ

dalla relazione in funzione di E0 si può ricavare uno dei fattori dello spazio delle
fasi derivando p(E0):

d p
dE0

=
E0

2
− m2

`

2E0
=

E2
0 −m2

`

2E2
0

e di nuovo, considerando che E0 = mπ :

d p
dE0

=
m2

π +m2
`

2m2
π

Ci rimane di calcolare l’elemento di matrice, che abbiamo detto essere, in questo
caso, M2 ≈ 1−β . Calcoliamo la velocità dell’elettrone:

β =
p√

p2 +m2
`

=
p

mπ − p

dove abbiamo usato ancora la conservazione dell’energia precedente. Per semplifi-
care i passaggi algebrici, calcoliamo 1/β :

1
β

=
mπ

p
−1 =

2m2
π

m2
π −m2

`

−1 =
m2

π +m2
`

m2
π −m2

`

da cui si ricava quello che ci serve:

1−β = 1− m2
π −m2

`

m2
π +m2

`

=
2m2

`

m2
π +m2

`

.

Quindi possiamo finalmente calcolare il tasso di decadimento come proporzionale
a:

Γ ∝ (1−β )p2 d p
dE0

=

(
2m2

`

m2
π +m2

`

)(
m2

π −m2
`

2mπ

)2(
m2

π +m2
`

2m2
π

)

e quindi:
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Γ ∝
1
4

(
m`

mπ

)2
(

m2
π −m2

`

mπ

)2

.

Quindi il rapporto tra i tassi di decadimento è:

r =
Γ (π−→ µ−ν̄)

Γ (π−→ e−ν̄)
=

m2
µ(m

2
π −m2

µ)
2

m2
e(m2

π −m2
e)

2 = 8.13×103

Quindi, nonostante lo spazio delle fasi più grande nel decadimento del pione in
elettrone, rispetto a quello del muone, il primo è largamente soppresso dal fattore
(mµ/me)

2 ≈ (200)2 = 40000 dovuto alla natura particolare dell’interazione debole
(V–A).

Answer of exercise 33
Poiché i Branching Ratio sono proporzionali alla frequenza di transizione, dalla

regola d’oro di Fermi segue che:

BR(D0→ K−+ e++νe)

BR(D0→ π−+ e++νe)
=
|M (D0→ K−+ e++νe)|2
|M (D0→ π−+ e++νe)|2

× ρ(D0→ K−+ e++νe)

ρ(D0→ π−+ e++νe)

Per quanto riguarda il primo rapporto basta usare, come ricordato dal testo, che la
costante d’accoppiamento effettiva è gcosθC per D0→ K− 8 mentre è gsinθC per
D0→ π−9, con sinθC ' 0.22.

I termini di spazio delle fasi (ρ) possono invece essere stimati considerando
l’analogia, dal punto di vista cinematico, tra i decadimenti proposti e il decadimento
β . Per il decadimento β vale la Regola di Sargent:

W ∝ E5
0 ,

dove W è la rate di decadimento, mentre E0 è l’energia a disposizione (= mn−mp−
me, nel caso del decadimento β fondamentale n→ p+e−+ ν̄e). Poiché tale regola è
stata ricavata nell’ambito della Teoria di Fermi del decadimento beta, in cui la parte
dinamica è costante (GF ), segue che: ρ ∝ E5

0 .
Quindi:

BR(D0→ K−+ e++νe)

BR(D0→ π−+ e++νe)
=

cos2θC

sin2θC
×
(

mD−mK−me

mD−mπ −me

)5

≈ 20×0.32≈ 6.4

che, nonostante la rozzezza della stima, differisce dal valore sperimentale per solo
il 35%.

Answer of exercise 34
Il decadimento in oggetto è:

8 Questo è dovuto al fatto che la transizione elementare è quella di c→ s+W+

9 In modo simile a prima, questo avviene perché la transizione elementare è c→ d +W+
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14
6C→ 14

7N+ e−+ ν̄e

Sappiamo che:

A =
dN
dt

=
N(14C)
τ(14C)

.

Il numero di nuclei radioattivi contenuti nel fossile all’origine (quando era un or-
ganismo vivente) è:

N0(
14C) = f ×N0(C) = f ×m× NA

〈A(C)〉

≈ 1.3 ·10−12×5× 6 ·1023

12.001
≈ 3.2 ·1011 ,

dove f è la frazione di 14
6C, m la massa del fossile in grammi, NA il numero di Avo-

gadro e 〈A(C)〉 la massa atomica del Carbonio naturale (si poteva usare 12 altrettanto
bene).

La vita media del 14
6C è:

τ(14C) =
T1/2(

14C)
ln(2)

≈ 8270 anni.

Quindi:

A0 =
N0(

14C)
τ(14C)

≈ 3.2 ·1011

8270×3.15 ·10×107 s
≈ 1.23s−1

L’attività attuale è:

A (t) = A0 · e−t/τ(14C) =
3600

2×3600s
≈ 0.5s−1 =≈ 0.5Hz

e quindi l’età del fossile sarà:

T =−τ(14C)× ln
A (t)
A0

≈−8270 anni× ln
0.5
1.23

≈ 7400 anni .

Answer of exercise 35
Indicando con Q− il Q-valore del decadimento β−:

64
29Cu→ 64

30Zn+ e−+ ν̄e

e con Q+ quello del decadimento β+:

64
29Cu→ 64

28Ni+ e++νe

si ha (omettendo i c2 a moltiplicare le masse):
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Q− = 29Mp +35Mn−B(64,29)−30Mp−34Mn +B(64,30)−me

= Mn−Mp−me +B(64,30)−B(64,29)
≈ 0.779MeV+B(64,30)−B(64,29)

Analogamente:

Q+ = Mp−Mn−me +B(64,28)−B(64,29)
≈ −1.801MeV+B(64,28)−B(64,29)

Dalla formula semiempirica di massa si ottengono le variazioni di energia di legame:

B(64,30)−B(64,29) = −0.697× 302−292

641/3 −23.3× (64−60)2− (64−58)2

64
+

12+12√
64

≈ 0.0005MeV

e analogamente:

B(64,28)−B(64,29) = −0.697× 282−292

641/3 −23.3× (64−56)2− (64−58)2

64
+

12+12√
64

≈ 2.74MeV

Quindi si ha:
Q− ≈ 0.78MeV Q+ ≈ 0.94MeV .

Entrambi i decadimenti sono possibili. Le energie cinetiche massime di elettrone e
positrone sono rispettivamente uguali a Q− e Q+.

Answer of exercise 36
Per un decadimento β+, (A,Z) → (A,Z − 1) + e+ + νe , il Q-valore del

decadimento, espresso in masse nucleari è:

Qβ = [M(A,Z)−M(A,Z−1)−m]c2 ,

dove:

M(A,Z) = ZMp +(A−Z)Mn−B(A,Z)/c2

M(A,Z−1) = (Z−1)Mp +(A−Z +1)Mn−B(A,Z−1)/c2 .

Quindi:
Qβ = [Mp−Mn−m]c2−∆B , (6.23)

essendo
∆B = B(A,Z)−B(A,Z−1) .

Si può calcolare ∆B utilizzando la formula semiempirica di massa ed osservando
che gli unici termini che non si elidono tra le due energie di legame sono quello
Coulombiano e quello di asimmetria, poiché:
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1. i termini di volume e di superficie dipendono solo da A, che rimane invariato,
2. A è dispari e quindi il termine di accoppiamento è nullo in entrambi i nuclei.

Si ha allora:

∆B =−aC

{
Z2

A1/3 −
(Z−1)2

A1/3

}
−aA

{
(A−2Z)2

A
− [A−2(Z−1)]2

A

}

=−aC
2Z−1
A1/3 −4aA

A−2Z +1
A

(6.24)

Nella reazione considerata abbiamo A = 35 e Z = 18 e pertanto il termine che molti-
plica aA risulta identicamente nullo. Invertendo la (6.24) si ha quindi:

aC =−A1/3∆B
2Z−1

.

Dalla (6.23) si ottiene:

∆B = [Mp−Mn−m]c2−Qβ

= −1.293−0.511−4.95'−6.75 MeV

e quindi:

aC =−351/3×−6.75
35

' 0.63 MeV .

Il valore cosı́ ottenuto differisce da quello sperimentale di 0.697 MeV per meno del
10%.

Answer of exercise 37

1. L’espressione della rate di decadimento beta nel limite della regola di Sargent
(cioè integrando nell’assunzione E� mc2 e sostituendo E0 con Tmax) è:

λ =
G2

F
2π3}7c6

T 5
max

30
.

Quindi per la costante di Fermi (divisa per (}c)3, come viene solitamente
espressa) si ha:

[
GF

(}c)3

]2

=
λ 2π3 (}c) 30

c T 5
max

=
1/886 s−1×62×197MeV · fm×30
3 ·10×1023 fms−1× (0.782MeV)5

≈ 4.7×10−21 MeV−4,

da cui si ottiene:

GF

(}c)3 ' 6.9×10−11 MeV−2 = 6.9×10−5 GeV−2 .
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Il valore risulta diverso da quello che si trova in letteratura (1.17×10−5 GeV−2),
per l’integrazione inesatta dello spettro e per motivi non trattati nel corso (carat-
tere V–A dell’interazione debole e struttura a quark).

2. Nel caso del decadimento 35
16S→ 35

17Cl+ e−+ ν̄e, si ottiene, utilizzando la regola
di Sargent:

λ [35S]
λ [n]

=

(
Q[35S]
Q[n]

)5

=

(
0.168
0.782

)5

' 0.00046

e quindi:

τ[35S] =
886s

0.00046
≈ 1.9×106 s≈ 22 giorni

Answer of exercise 38
La costante di decadimento del 226Ra è :

λ =
ln2
t1/2

=
0.693

1.62×103×3.1×107 s
≈ 1.4×10−11 s−1

L’attività di 1 g di 226Ra è :

A = |dN
dt
|= λN0 = λ

NA

A
×1

= 1.4×10−11 s−1× 6.02×1023

226
≈ 3.7×1010 s−1

Questa è la definizione di 1 Curie (Ci).
Il nostro campione di 60Co presenta un’attività di 10Ci, cioè 3.7×1011 s−1. In-

dicando con m la sua massa in grammi, risulta:

m = A
A

NA

t1/2

ln2
(6.25)

da cui:

m = 3.7×1011 s−1× 60g
6.02×1023 ×

5.26×3.11×107 s
0.693

≈ 8.7mg.

In modo più semplice si poteva raggiungere il risultato attraverso l’espressione
delle masse relative di campioni di uguale attività:

m1

m2
=

A1

A2
×

t(1)1/2

t(2)1/2

Questa si ricava direttamente dalla 6.25 uguagliando le attività. Nel nostro caso:
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mCo = mRa×
ACo

ARa
×

t(Co)
1/2

t(Cu)
1/2

= 10× 60
226
× 5.26

1620
≈ 8.7mg

Answer of exercise 39
Un elettronVolt (eV) è l’energia cinetica acquistata da una particella di carica

elementare e = 1.602×10−19 C che passa attraverso la differenza di potenziale di
un Volt, per cui:

1eV = 1.602×10−19 J.

Il fattore di conversione tra massa (che in relatività è equivalente a un’energia) è
dato da:

E(1kg = 1kgc2 = 9×1016 kg(m/s)2 = 9×1016 J

e poiché 1J = 1/1.6×10−19 eV si ha:

1kgc2 =
9e16

1.6e−19
eV = 5.6×1035 eV

da cui:
1kg = 5.6×1035 eV/c2

Quindi la massa del protone, espressa in kg, vale:

mp = 9.383×108 eV/c2 =
9.383×108

5.6×1035 kg = 1.67×10−27 kg

Il testo dice di considerare mn ≈ mp = 1.67×10−24 kg. Quindi usando il raggio
del nucleo:

R = R0 ·A1/3

con R0 = 1.2fm, che è valido per grandi valori di A, si ottiene:

ρ =
M
V

=
A ·mp

4/3πR3
0A

=
3mp

4πR3
0

=
3×1.67×10−27 g

12.56× (1.2×10−13 cm)3
≈ 2.3×1014 g/cm3

Answer of exercise 40
La carica del nucleo è Q = Ze, mentre il raggio del nucleo si può stimare con:

R = R0 ·A1/3

dove R0 = 1.2fm, che è valido per grandi valori di A. Il termine coulombiano della
formula di Weiszacker è quello proporzionale a 1/R, quindi:
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3Z2e2

20πε0R0A1/3 = aC ·
Z2

A1/3

da cui si ricava il coefficiente aC del termine coulombiano, fattorizzandolo in modo
opportuno da evidenziare delle costanti di cui sappiamo il valore:

aC =
3
5
× e2

4πε0
× 1

R0
= 0.6× ke2× 1

1.2fm

usando il valore della costante di Coulomb:

ke2 =
197MeV · fm

137
= 1.44MeV · fm

si ottiene:
aC ≈ 0.7MeV

che è una buona approssimazione per tale costante.

Answer of exercise 41
Come nell’esercizio precedente, approssimando la carica elettrostatica come uni-

formemente distribuita in delle sfere di raggio R = R0A1/3, con R0 = 1.2fm, la loro
energia elettrostatica è, per una carica Q:

EC =
3
5
× Q2

4πε0R

Poiché il 13
7N ha un protone in più rispetto al 13

6C, esso avrà un’energia coulom-
biana maggiore. Però bisogna considerare che il neutrone ha minor massa rispetto
al protone:

Mn−Mp−me = 0.782MeV/c2

Quindi la differenza di massa tra i due nuclei è data da:

[M(13
7N)−M(13

6C)] =
3

5R×4πε0
(Q2

N−Q2
C)− [Mn−Mp−me]

=
3

5R

(
e2

4πε0

)
(72−62)−0.782MeV

= 0.6×1.44MeV · fm× 49−36
1.2fm×131/3 −0.782MeV

≈ 2.62MeV

Problems of Chapter ??

6.1

1. A proton with an energy of 450 MeV has a momentum of:
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p =
√
(T +mp)2−m2

p) = 1023 MeV

Given that p(GeV ) = 0.3B(T )ρ (m), in order to achieve a radius of curvature of
1.9 m, the magnetic field needed is:

B =
p

0.3ρ
= 1.8 T

2. The energy and momentum of the pions are:

Eπ− = 100+139 = 239 MeV

pπ− =
√

E2
π− −m2

π− = 194.4 MeV

Therefore the centre of mass energy will be:

√
s =

√
(Eπ− +mp)2− p2

π = 1161 MeV

3. Starting from:

√
s = 1232 MeV =

√
(Eπ− +mp)2− p2

π−

and then

Tπ− =
m2

∆
−m2

p−m2
π−

2mp
−mπ− = 190 MeV

4. In the centre of mass of the resonance, the energy of the pion can be evaluated
as:

E∗
π0 +E∗n = m∆

p∗
π0 + p∗n = 0

then:

E∗
π0 =

m2
∆
+m2

π0 −m2
n

2m∆

= 265 MeV

and therefore

p∗
π0 =

√
E∗

π0 −mpi0 = 228 MeV/c

Taking as axis of reference the initial direction of the beam of pions, and the
polar angle defined as the angle between the direction of the neutral pion and this
axis:

(E∗π , p∗π cosθ
∗, p∗π sinθ

∗,0)
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Being that the initial momentum of the resonance ∆ is the momentum of the π−,
the velocity of the centre of mass system is:

βcdmγcdm = | ~pπ− |/m∆ = 0.242

and therefore:

γcdm =
√
| ~pπ− |2/m2

∆
+1 = 1.029

The quadri-momentum in the laboratory reference frame can be obtained from
the inverse Lorentz transformation (of the boost of the centre of mass), that is:

Eπ0 = γcdmE∗
π0 +βcdmγcdm p∗

π0

Therefore the maximum energy is obtained for cosθ ∗ = 1 and the minimum
energy for cosθ ∗ =−1, being:

T max
π0 = 192.6MeV

T min
π0 = 82.3MeV

The solution is revealed here.

?? Problem Heading
(a) The solution of first part is revealed here.
(b) The solution of second part is revealed here.

1. Relativistic Doppler effect and the Ives and Stilwell experiment

A light source emits photons with a frequency of νs in the x direction. The source
is moving towards the observer as it is shown in Figure 14.1.
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NOME E COGNOME: CANALE:

1. E↵etto Doppler relativistico e esperimento di Ives e Stilwel

Una sorgente luminosa emette luce con una frequenza ⌫s nella direzione x. La sorgente si sposta nella
direzione dell’osservatore che la riceve come illustrato nella Figura 1.
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Figura 1: Illustrazione di un fotone emesso con impulso h⌫r (nel riferimento dell’osservatore o ricevitore
R), nel caso di una sorgente luminosa monocromatica S in movimento rettilineo e uniforme in direzione
dell’osservatore.

a. Partendo dalla trasformazione del quadrimpulso, calcolare la frequenza osservata ⌫r da un osserva-
tore mentre la sorgente è in movimento con una velocità v nella direzione x.

b. Acceleriamo adesso dei protoni con un dispositivo che permette di produrre un voltaggio di 40 kV.
Quali sono la loro velocità ed energia cinetica?

v

h�1
r

�
x

�h�2
r

�

Figura 2: Illustrazione dell’esperimento di Ives e Stilwell dove il fotone emesso nella direzione della sorgente
(S) ha un’impulso h⌫1

r (nel riferimento dell’osservatrice o ricevitrice R), h⌫2
r nella direzione opposta. Que-

st’ultimo fotone è riflesso da uno specchio in M per esserve misurato da una stessa osservatrice posta in
R.

c. Nell’aria i protoni catturano un elettrone per formare atomi di Idrogeno eccitato e emettono fotoni
di lunghezza d’onda � = 656.3 nm (prima linea di Balmer ↵ notata H↵). Ives e Stilwell ebbero

Fig. 14.1 Illustration of an emitted photon with momentum hνr (in the reference frame of the
observer or receiver R), in case of a monochromatic source S which is moving with an uniform
straight motion in the direction of the observer.

1. Starting from the transformation of the quadri-momentum, evaluate the observed
frequency νr by an observer while the light source is moving with velocity v in
the direction x.

2. Accelerating protons with a machine which is reaching a voltage of 40 kV, which
is their velocity and their kinetic energy?
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1. E↵etto Doppler relativistico e esperimento di Ives e Stilwel

Una sorgente luminosa emette luce con una frequenza ⌫s nella direzione x. La sorgente si sposta nella
direzione dell’osservatore che la riceve come illustrato nella Figura 1.
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Figura 1: Illustrazione di un fotone emesso con impulso h⌫r (nel riferimento dell’osservatore o ricevitore
R), nel caso di una sorgente luminosa monocromatica S in movimento rettilineo e uniforme in direzione
dell’osservatore.

a. Partendo dalla trasformazione del quadrimpulso, calcolare la frequenza osservata ⌫r da un osserva-
tore mentre la sorgente è in movimento con una velocità v nella direzione x.

b. Acceleriamo adesso dei protoni con un dispositivo che permette di produrre un voltaggio di 40 kV.
Quali sono la loro velocità ed energia cinetica?
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Figura 2: Illustrazione dell’esperimento di Ives e Stilwell dove il fotone emesso nella direzione della sorgente
(S) ha un’impulso h⌫1

r (nel riferimento dell’osservatrice o ricevitrice R), h⌫2
r nella direzione opposta. Que-

st’ultimo fotone è riflesso da uno specchio in M per esserve misurato da una stessa osservatrice posta in
R.

c. Nell’aria i protoni catturano un elettrone per formare atomi di Idrogeno eccitato e emettono fotoni
di lunghezza d’onda � = 656.3 nm (prima linea di Balmer ↵ notata H↵). Ives e Stilwell ebbero

Fig. 14.2 Illustration of the experiment of Ives and Stilwell, where the photon is emitted by the
source (S ) has a momentum hν1

r when moving towards the observer (in the reference frame of
the observer R) and hν2

r when it is moving in the opposite direction. The latter is reflected by a
mirror in M and then measured by an observer in in R.

3. In air protons capture electrons to form excited hydrogen atoms and emits pho-
tons with a wave length λ = 656.3 nm (first line of Balmer α , noted Hα ). Ives and
Stilwell had the idea to perform this experiment by introducing a mirror which
could reflect the light emitted in the opposite direction with respect to the posi-
tion of the observer, and allowed the measurement of the wave lengths between
the photons emitted in the x direction and in the opposite one, as it is shown in
Figure 14.2. Which is the frequency difference between the Hα radiation emitted
in the flight direction of the Hydrogen atom and the one emitted in the opposite
direction?

This experiment has been fundamental to demonstrate the existence of the Doppler
effect for light in vacuum.

l’idea di fare questo esperimento ponendo uno specchio che permetteva di riflettere la luce emessa
all’opposto dell’osservatore e dunque di osservare la di↵erenza di lunghezza d’onda dei fotoni emessi
nella direzione dell’osservatore e quelli nella direzione opposta, come illustrato nella figura 2. Quale
è la di↵erenza di frequenza tra la radiazione H↵ lungo la direzione di volo del idrogeno e quella
nella direzione opposta?

Questo esperimento è stato fondamentale per dimostrare l’esistenza dell’e↵etto Doppler per la luce
nel vuoto.
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Figura 3: Illustrazione di un fotone emesso con impulso h⌫r (nel riferimento dell’osservatore o ricevitore
R), nel caso di una sorgente luminosa monocromatica S in movimento rettilineo e uniforme in rotta non
collidente con l’osservatore.

d. L’e↵etto calcolato è l’e↵etto Doppler relativistico longitudinale. Prendiamo una sorgente e un
osservatore con un moto relativo lineare e uniforme su traiettorie che non collidono come illustrato
in Figura 3. Calcolare analiticamente la frequenza ⌫r osservata in funzione della frequenza emessa
⌫s, dell’angolo ✓r e della velocità della sorgente (�).

e. Quale sarà, nel sistema di riferimento dell’osservatore, la frequenza osservata del fotone ricevuto al
punto spaziale in cui l’osservatore vede la sorgente al punto di minima distanza (cioè un’osservazione
esattamente perpendicolare al moto relativo della sorgente)?

f. Quale sarà la frequenza del fotone osservato quando la sorgente e l’osservatore sono al punto di
minima distanza? Quale sarà l’angolo ✓r di osservazione in questo caso?

g. Nel sistema di riferimento dell’osservatore, quale deve essere l’angolo di osservazione (che indica la
posizione della sorgente al momento dell’emissione) a�nché l’osservatore osservi una frequenza pari
a quella di emissione?

Soluzione:

a. Il fotone osservato ha un’impulso pr = h⌫r e un’energia h⌫r per una transformazione di Lorentz
il sistema di riferimento della sorgente si sposta con una velocità � = vc nella direzione
dell’osservatore (cioè dell’impulso del fotone) dunque:

h⌫s = �h⌫r � ��h⌫r

Page 2

Fig. 14.3 Illustration of a photon emitted with momentum hνr (in the reference frame of the
observer or receiver R), in case of a monochromatic light source S which is moving with a
uniform straight motion in a non colliding course with the observer.

4. The evaluated effect is the longitudinal relativistic Doppler effect. Consider a
light source which is moving with a uniform straight motion in a non colliding
course with respect to an observed, as it is shown in Figure 14.3. Evaluate the an-
alytical form of the frequency νr observed as a function of the emitted frequency
νs, of the angle θr and of the velocity of the source (β ).
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5. Which is, in the reference frame of the observer, the frequency of the observed
photon received in the spatial point in which the observer sees the source at the
point of minimum distance (an observation exactly perpendicular to the relative
motion of the source)?

6. Which is the frequency of the photon observed when the source and the observer
are at the point of minimum distance? Which will be the observation angle θr in
this case?

7. In the reference frame of the observer, which is the observation angle (which
indicates the position of the source at the moment of the emission) such that the
observer measures the same frequency of the light at the time of the emission?

Solution 14.1. 1. The observed photon has a momentum pr = hνr and an energy
hνr. For a Lorentz transformation the reference frame of the source is moving
with a velocity β = vc in the direction of the observer (which is the same of the
photon momentum), therefore:

hνs = γhνr−βγhνr

then

νs

νr
= γ(1−β ) =

1−β√
1−β 2

=

√
1−β

1+β

so

νr =

√
1+β

1−β
νs

2. Protons emitted from a 40 kV source have 1
2 mv2 = eV , which is

v =
√

(2×1.610−19×40000/1.67264910−27) = 2.8106

THerefore β ∼ 0.01 and the kinetic energy:

T = E−mc2 = (γ−1)mc2 = 40 keV

3. Photons emitted in the direction of the observer have a measured frequency of:

νr =

√
1+β

1−β
νs

and the photons emitted in the opposite direction instead:

νr =

√
1−β

1+β
νs

therefore the difference ∆λ will be:
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∆λ = (

√
1−β

1+β
−
√

1+β

1−β
)×λ ∼ 12 nm

which is a measurable effect.
4. The quadri-momentum of the photon in the reference frame of the observer is

(hνr,−hνr cosθr,−hνr sinθr,0)

and the Lorentz transformation to obtain the quadri-momentum in the reference
frame of the source which is moving away from the observer will be:

hνs = γhνr−βγ(−hνr cosθr) = hνr× γ(1+β cosθr)

Therefore

νr =
νs

γ(1+β cosθr)

We can immediatly see that for cosθ = 1 we get the relation of (1).
5. The observed frequency will be obtained exactly for cosθr = 0, therefore

νr =
νs

γ

One can note that for a wave received perpendicularly to the direction of motion
of the source it exists a contraction effect of the frequency (dilatation of time).
For the Doppler effect of sound this effect does not exist.

6. In the reference frame of the osurce, the quadri-momentum of the emitted photon
is




hνr× γ(1+β cosθr)
hνr× γ(β + cosθr)

hνr× (−sinθr)
0




Being that the minimum distance is the same in the two reference frames, when
the source emits towards the observer, the quadri-momentum of the emitted pho-
ton will be:




hνs
0

hνr
0




We can then express the ratio ξ = νs
νr

as:

ξ = γ(1+β cosθr e ξ = sinθr
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therefore

(ξ − γ)

βγ
= cosθr ⇒

(
(ξ − γ)

βγ

)2

= 1−ξ
2

then

ξ
2(1−β

2
γ

2)−2γξ + γ
2−β

2
γ

2 ⇒ (γξ )2−2(γξ )+1 = 0

therefore

γξ = γ
νs

νr
= 1

The other solution for γξ =−1 is non-physical. Therefore

νr = γνs

The observation angle in this case will be:

cosθr = (
1
γ2 −1)/β ⇒ cosθr =−β

7. in this case, putting νs = νr we obtain:

1 = γ +βγ cosθr ⇒ cosθr =
1− γ

βγ

An angle within 0 and −β .

Question 14.1. The π0 meson was discovered by studying the photo-production on
protons at rest Il mesone π0 è stato scoperto studiando la fotoproduzione su γ p→
π0 p, process called of Primakoff.

1. Evaluate the threshold energy of the photon in the laboratory to produce the
reaction.

2. Which is the energy of the photon in the centre of mass reference frame of the
reaction at threshold energy?

3. The π0 decays mainly in two photons, which is the maximum energy of a sec-
ondary photon in the laboratory reference frame?

4. Which is the minimum energy of a photon in the laboratory reference frame in
order that a secondary photon of the decay could lead to the production of an
additional π0?

Data mπ0 = 135 MeV/c2 e mp = 938 MeV/c2

Additional material: J. Steinberger, W. K. H. Panofsky, and J. Steller, “Evidence
for the Production of Neutral Mesons by Photons.” Phys. Rev., 78, 802 (1950).

Solution 14.2. 1. Assuming that the threshold corresponds to the energy for which
the energy in the centre of mass reference frame is given only by mπ0 +mp we
get:
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Esoglia
γ =

m2
π0 +2mpmπ0

2mp
= 145 MeV

2. The velocity of the centre of mass system is β = 0.1336 and γ = 1.009 therefore
the energy of the photon in the centre of mass reference frame will be:

E ′γ = γEγ −βγEγ = 126.5 MeV

3. The energy of one of the photons with an angle θ with respect to the initial
velocity of the photon in the reference frame of the centre of mass will be.

Eγ =
mπ0

2
(γ +βγ cosθ)

therefore the maximum energy will be obtained for cosθ = 1 and therefore:

Emax
γ = 77.2 MeV

4. In order to reach an energy of the secondary photon of Ẽ =145 MeV in the
laboratory reference frame, the needed velocity β can be calculated as:

Ẽ =
mπ0

2
(γ +βγ) ⇒ (γ +βγ) =

2Ẽ
mπ0
≡ a

therefore

γ +βγ = a ⇒ (1+β )2 = a2(1−β
2) ⇒ (1+a2)β 2 +2β +(1−a2) = 0

The only physical solution is:

β =
a2−1
a2 +1

⇒ β = 0.64

The velocity in the centre of mass reference frame is then given by

β =
Eγ

Eγ +mp
⇒ Eγ =

β

1−β
mp = 1.7 GeV

Question 14.2. A scattering experiement of α particles on a gold foil is prepared.
The source of α radiation is Americium 241Am. Most of the α particles are emitted
with a kinetic energy of Eα = 5.496 MeV. The source radiates uniformly in all di-
rections with a radio activity of 1.5 mCi (milli-Curie, where 1 Ci= 2.221012 dpm –
decays per minute).

The source (s) placed in a lead container which colimates a beam of α parti-
cles towards the target, the distance between the circular hole and the source is
`1 = 15 cm and the collimating hole has a diameter of d1 = 0.5 cm. The target is a
thin gold foil (79Au) with a thickness of 2 µm a diameter of d2 = 1 cm and placed
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at `2 = 5 cm from the hole.

The detector can rotate around the target and is made of silicon. It has a circu-
lar shaped active surface area with a diameter of d3 = 0.5 cm and it is placed at
`3 = 15 cm from the target.

The thickness of the gold foil A has to be determined. It can be lowered in
the beam to decrease the beam energy. Its surface area is not specified, but it is
large enough to cover entirely the outgoing beam. The experiment is illustrated in
Fig. 14.4.

The scattering cross section for the Rutherford scattering has been calculated as
a function of the scattering angle θ and the kinetic energy E:

dσ

dΩ
=

(
zZe2

4πε0

1
(4E)2

)2
1

sin4
(

θ

2

) = r2
e

(
mec2

4E

)2
1

sin4
(

θ

2

)

Where Z is the number of targets, ze is the charge of the α particle (4He2+), θ is
the scattering angle in the lab, and re classical radius of the electron.

re =
e2

4πε0mec2 = 2.82 .10−13 cm

d3

�3

�1 �2
d1 d2

�1 �2

�3

s �
�

�

Figura 4: Illustrazione del dispositivo usato per l’esperimento di Rutherford.

f. Per verificare la dipendenza in energia dello scattering di Rutherford si usa un’ulteriore foglio di
oro piazzato dentro al contenitore di Piombo al punto A. Determinare lo spessore necessario per
ottenere particelle ↵ di energia cinetica minore di 1 MeV (cioè circa E↵ = 4.5 MeV).

g. Con questo spessore calcolare l’e↵etto del scattering multiplo sul fascio.

h. Assumendo che il foglio d’oro sia piazzato subito dopo la sorgente, la presenza di questo foglio può
alterare il flusso di particelle ↵ incidenti?

Dati per Au Massa atomica MAu = 196.97 u, u = 1.66054 ⇥ 10�24 g, ⇢Au = 19.32 g/cm3 e X0
Au =

6.46 g.cm�2

Ricordiamo che NA = 6.02 ⇥ 1023 mol�1.

Perdita di energia per ionizzazione equazione di Bethe Bloch

dE

⇢dx
= C

Z

A

z2

�2
ln

2me�
2�2c2

I

dove

I ⇠ Z ⇥ 10 eV e C = 4⇡r2
emec

2NA = 0.31 MeV/(g.cm�2)

Formula di scattering multiplo

q
✓2

s = z
Es

pv

r
x

X0
e Es = mec

2

r
4⇡

↵
⇠ 21 MeV
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Fig. 14.4 Illustration of the Rutherford experiment.
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1. Assuming that the source is point-like, compute the flux of the beam of α parti-
cles on the target B.

2. Determine the solid angle corresponding to acceptance of the detector.
3. What is the luminosity of the experiment?
4. The detector is positioned at an angle of 50o, how many particle counts per hour

are expected to be recorded? How about when the detector is positioned at an
angle of 120o?

5. Determine the βγ of α particles of the beam.
6. To verify the energy dependence of the Rutherford scatering cross section, a gold

foil within the lead container placed in A is used to slow the particles of the
beam. Determine the thickness of the gold foil needed to obtain a reduction in
enregy of 1 MeV (down to a kinetic energy of Eα = 4.5 MeV).

7. With this thickness compute the effect of multiple scattering on the beam.
8. Assuming that the gold foil is placed very close to the source, can its presence

alter the flux of the beam of α particles on the target?

Data for Au Atomic mass MAu = 196.97 u, u = 1.66054×10−24 g, ρAu =
19.32g/cm3 e X0

Au = 6.46g/cm−2

The Avogadro constant is NA = 6.02×1023 mol−1.
Energy loss by ionization and the Bethe-Bloch equation:

dE
ρdx

=C
Z
A

z2

β 2 ln
2meγ2β 2c2

I

where

I ∼ Z×10 eV e C = 4πr2
e mec2NA = 0.31 MeV/(g.cm−2)

Formula for multiple scattering:

√
θ 2

s = z
Es

pv

√
x

X0
e Es = mec2

√
4π

α
∼ 21 MeV

Solution 14.3. 1. To determine the outgoing flux, we should first calculate the solid
angle corresponding to the hole:

∆Ω = π(d1/2)2/`2
1 = 0.87310−3 sr

The surface area traversed by the beam on the target will therefore be:

S f = ∆Ω × (`1 + `2)
2 = 0.35 cm2

The number of particles per second in 4π sr corresponds to 5.55107 decays per
second,then
decadimenti per secondo, dunque in ∆ω corrispondera a una frazione ∆ω/4π ,
dunque circa 3800 particelle α per secondo. Dunque il flusso φ sarà:

φ = 11041 part./(s.cm2)
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2. L’angolo solido del rivelarore corrisponde a:

∆Ωdet = π(d3/2)2/`2
3 = 0.873 .10−3 sr

3. La luminosità dell’esperimento si esprime in funzione del numero di bersagli per
il flusso. Il numero di bersagli NB corrisponde alla superficie del fascio S f per
lo spessore s2 per la densità di bersagli:

NB = S f × s2×
ρ

MAu×u
= 4.11018

Dunque la luminosità L sarà:

L = NB×φ = 4.61022 cm−2s−1

4. il numero di conteggi sarà dunque

N =
dσ

dΩ
(θ)×∆Ωdet ×∆ t×L

Per

r2
e

(
mec2

4E

)2

= 1.110−24 cm2

con sin(50o)4 = 0.032 si ottiene per ora (∆ t = 3600):

N50o ∼ 5

con sin(120o)4 = 0.562 si ottiene per ora (∆ t = 3600):

N120o ∼ 0.3

5. Le particelle α iniziali hanno una velocità di β = 0.05425 e βγ = 0.05433. e
sono non relativiste, possiamo prendere la formula semplificata di Bethe-Bloch
e otteniamo:
L’energia persa per ionizzazione in uno spessore x usando la formula semplificato
(non relativista)

∆E = ρ×C× 79
197
× 22

0.054252 ln
2×511103×0.054332

790
× x = 1 MeV

dunque otteniamo che:

x = 2.3 µm

6. La radice della varianza in angolo di scattering multiplo per uno spessore di x
sarà, data la formula:
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√
θ 2

s = z× 21
p×β

√
x

6.46/19.32
= 0.1 rad

7. Dato l’angolo di apertura del fascio di 0.5/15.= 0.033 rad, la presenza del foglio

d’oro con
√

θ 2
s = 0.1 avrà dunque un’effetto non trascurabile sul fascio uscente

riducendo il flusso.
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