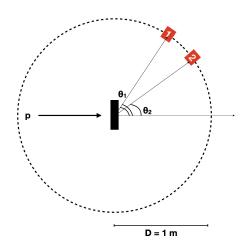
Appello di Luglio

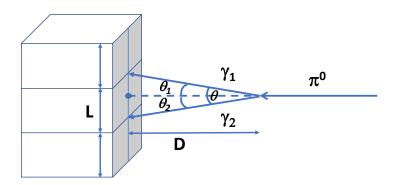
Fisica Nucleare e Subnucleare I

7 Luglio 2022

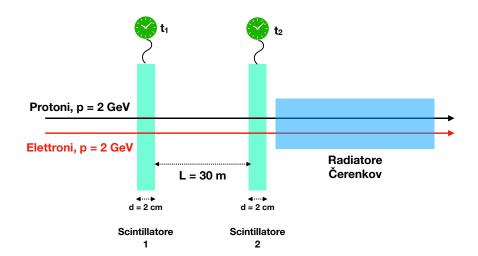

Esercizio 1

Un gruppo di ricercatori ha recentemente affermato di aver scoperto una nuova particella, denominata X, con massa $m_X = 17$ MeV e vita media trascurabile ($\tau_X \approx 0$). Volete provare a produrre il processo

$$p + p \rightarrow X + p + p$$
,


a cui poi segue $X \to e^+ + e^-$, inviando un fascio di protoni su un bersaglio fisso, e rivelando elettrone e positrone di decadimento tramite due rivelatori di sezione $S = 1 \text{ cm}^2$. I due rivelatori rivelano indifferentemente elettroni e positroni, e possono scorrere su una guida a distanza fissata D = 1 m dal bersaglio (vedi figura).

- 1. Assumendo i protoni del bersaglio fermi nel sistema di riferimento del laboratorio, quale energia devono avere i protoni del fascio di modo che la reazione abbia luogo?
- 2. Nella configurazione di soglia, se il positrone dello stato finale viene emesso a un angolo $\theta_+^* = 30^{\circ}$ nel sistema di riferimento solidale con la particella X, a quale angolo posizionerete i due rivelatori nel laboratorio per osservare il decadimento della X? (θ è l'angolo polare definito rispetto alla direzione del fascio di protoni, come in figura.)
- 3. Se la sezione d'urto totale del processo $p+p\to X+p+p$ vale $\sigma=3\times 10^{-2}$ fb e il processo è isotropo nel sistema di riferimento del laboratorio, si calcoli la luminosità $\mathcal L$ (ovvero il prodotto fra flusso di particelle incidenti e numero di centri diffusori) necessaria a misurare 3 eventi in un anno, nell'ipotesi che il rapporto di decadimento $BR(X\to e^++e^-)$ sia 100%. (Suggerimento: si consideri la copertura angolare effettiva dell'esperimento come la somma degli angoli solidi coperti dai due rivelatori.)


Esercizio 2

Un fascio di pioni neutri di energia cinetica 2 GeV viene inviato verso un rivelatore costituito da 3 celle calorimetriche di sezione quadrate di lato L disposte come in figura. La linea di volo dei pioni passa al centro della cella intermedia. Ad una distanza D=1 m dalla faccia del rivelatore il pione decade in due fotoni, i cui angoli di emissione rispetto alla linea di volo del pione sono gli stessi ($\theta_1=\theta_2$). Determinare il minimo valore di L per cui i due fotoni impattano sul rivelatore in due celle differenti.

Esercizio 3

Un fascio contiene sia elettroni che protoni di impulso $p=2\,\mathrm{GeV}$, e attraversa due scintillatori di spessore $d=2\,\mathrm{cm}$ e di lunghezza di radiazione $X_0=20\,\mathrm{cm}$ a una distanza $L=30\,\mathrm{m}$ l'uno dall'altro. Si considerino costanti le perdite di energia per ionizzazione negli scintillatori, e pari a $2\,\mathrm{MeV/cm}$ per i protoni e $2.5\,\mathrm{MeV/cm}$ per gli elettroni.

- 1. calcolare l'energia persa dalle due particelle in ciascuno dei due contatori
- 2. se si misura il tempo di attraversamento dei due scintillatori con un rivelatore che ha una risoluzione di 1 ns, si riesce a discriminare tra i due diversi tipi di particelle? (si trascuri l'energia persa nei rivelatori)
- 3. fornire dei possibili indice di rifrazione di un radiatore, posto dopo il secondo scintillatore, che permetta di distinguere i protoni dagli elettroni attraverso la rivelazione di luce Čerenkov.

Part.	$ m M \ [MeV/c^2]$	I	I_3	$J^{P(C)}$	B	S	τ [s]
π^+	139.6	1	1	0-	0	0	$2.6 \ 10^{-8}$
π^-	139.6	1	-1	0-	0	0	$2.6 \ 10^{-8}$
π^0	135.0	1	0	0-+	0	0	8.4×10^{-17}
K^+	493.7	1/2	1/2	0-	0	1	$1.2 \ 10^{-8}$
K^-	493.7	1/2	-1/2	0-	0	-1	$1.2 \ 10^{-8}$
K^0	497.6	1/2	-1/2	0-	0	1	non definita
$\frac{\overline{K^0}}{\overline{K}^0}$	497.6	1/2	1/2	0-	0	-1	non definita
p	938.272	1/2	1/2	$1/2^{+}$	1	0	stabile
n	939.565	1/2	-1/2	$1/2^{+}$	1	0	8.79×10^{2}
ϕ^0	1019.5	0	0	1	0	0	1.54×10^{-22}
$\frac{\phi^0}{\rho^0}$	770	1	0	1	0	0	4.5×10^{-24}
$ ho^+$	770	1	1	1-	0	0	4.5×10^{-24}
ρ^-	770	1	-1	1-	0	0	4.5×10^{-24}
$\frac{f_2^0}{d(pn)}$	1275.5	0	0	2++	0	0	6.76×10^{-21}
d(pn)	1875.6	0	0	1+	2	0	stabile
$\frac{\alpha(^{4}_{2}He)}{\Lambda^{0}}$	3727.4	0	0	0+	4	0	stabile
	1115.7	0	0	$1/2^{+}$	1	-1	2.63×10^{-10}
Σ^+	1189.4	1	1	$1/2^{+}$	1	-1	8.01×10^{-11}
Σ^0	1192.6	1	0	$1/2^{+}$	1	-1	7.4×10^{-20}
Σ^-	1197.3	1	-1	$1/2^{+}$	1	-1	1.48×10^{-10}
Ξ^0	1314.9	1/2	1/2	$1/2^{+}$	1	-2	2.90×10^{-10}
Ξ	1321.7	1/2	-1/2	1/2+	1	-2	1.64×10^{-10}
Ξ^{0*}	1531.8	1/2	1/2	$3/2^{+}$	1	-2	7.23×10^{-23}
$ \begin{array}{c c} \Sigma^{+} \\ \hline \Sigma^{0} \\ \Sigma^{-} \\ \hline \Xi^{0} \\ \hline \Xi^{-} \\ \hline \Xi/\psi \end{array} $	3096.9	0	0	1	0	0	7.2×10^{-21}

Tabella 1: Massa (M), isospin $(I, e \text{ sua terza componente } I_3)$, spin (J), parità (P), coniugazione di carica (C), stranezza (S), numero barionico (B) e vita media (τ) di diverse particelle adroniche.

Part.	${ m M~[MeV/c^2]}$	τ [s]
e^-	0.511	stabile
$\overline{\mu^-}$	105.6	2.2×10^{-6}
$\overline{\tau}^{-}$	1776	2.9×10^{-13}
$\overline{\nu_{e/\mu/ au}}$	0	stabile

Tabella 2: Massa (M) e vita media (τ) dei leptoni.

Costanti utili:

- $\hbar c = 197 \,\mathrm{MeV} \,\mathrm{fm}$
- \bullet costante di normalizzazione per $\frac{\mathrm{d}E}{\mathrm{d}x}$ di ionizzazione: $C=0.307~\mathrm{MeV~g^{-1}~cm^2}$

Formule utili:

• Trasformazione dell'angolo polare tra laboratorio e centro di massa (asterisco), in funzione dei parametri del boost di Lorentz β e γ :

$$\tan(\theta) = \frac{\sin(\theta^*)}{\gamma \left(\frac{\beta}{\beta^*} + \cos \theta^*\right)}$$