Testo e soluzioni del 1-mo Compito di Esonero del corso di Laboratorio di Meccanica A.A. 2010-2011 Canale A Prof. F. Meddi (28 Aprile 2011)

Esercizio N.1

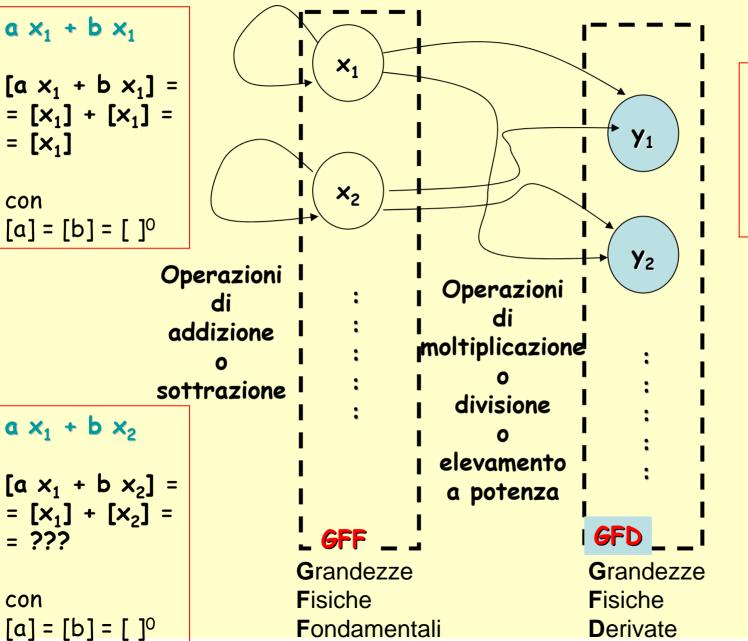
Considerando che \mathbf{m} , \mathbf{t} e \mathbf{v} sono grandezze fisiche (GF) riferite rispettivamente a massa, tempo e velocita', quindi con dimensione fisica diversa tra loro, indicare quali delle seguenti 8 espressioni hanno significato fisico e per queste ultime quali sono le unita' di misura nel SI. Con \mathbf{g} si indica l'accelerazione di gravità e con \mathbf{h} e \mathbf{h}_0 l'altezza.

```
- m t

- m + t

- m - t

- (m + v) / m


- m t / t<sup>2</sup>

- (1 / 2) mv<sup>2</sup>

- mgh

- h<sub>0</sub> exp(-mgh)
```

Commenti generali sul 1-mo esercizio:

$$Y_1 = (x_1)^{\alpha} (x_2)^{\beta}$$
 $[y_1] = [x_1]^{\alpha} [x_2]^{\beta}$
 con
 $[\alpha] = [\beta] = []^0$

Commenti generali sul 1-mo esercizio:

... richiedere quale definizione di una possibile GFD coinvolgente piu' GFF abbia significato fisico vuole indicare solo quale abbia significato dal punto di vista dell'analisi dimensionale, non della loro utilita' o diffusione nell'uso

$$F(x + \Delta x, y + \Delta y) = F(x,y) + F'_{x}(x,y) \Delta x + F'_{y}(x,y) \Delta y + (1/2)(F''_{x}(x,y) \Delta x^{2} + F''_{y}(x,y) \Delta y^{2}) + ...$$

$$exp(x) = 1 + x + (x^2 / 2!) + (x^3 / 3!) + ...$$

$$\sin(x) = x - (x^3 / 3!) + (x^5 / 5!) - (x^7 / 7!) + ...$$

$$cos(x) = 1 - (x^2 / 2!) + (x^4 / 4!) - (x^6 / 6!) + ...$$

→ l'argomento di una funzione trascendente deve essere adimensionale

$$U_{SI}(M) = kg$$
 ... $U_{cgs}(M) = g$

$$U_{SI}(Energia) = J$$
 ... $1 J = 1 N \times 1 m = 1 kg 1 m^2 / 1 s^2$

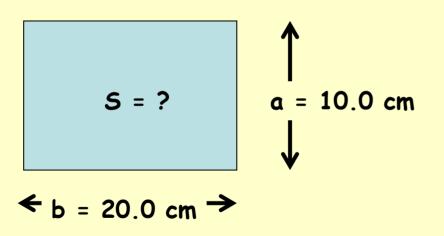
Traccia della soluzione del 1-mo esercizio:

```
- m t
[mt] = [m][t]
U(mt) = U(m) \times U(t) = kg \times s
- m + t
confrontare tra di loro solo GF con stesse dimensioni fisiche.
- m - t
[m-t] = [m] - [t] \leftarrow NO!
-(m + v) / m
[(m+v)/m] = ([m] + [l][t]^{-1}) / [m]
                                    ← NO!
- m t / t2
[(mt)/t^2] = [m][t]^{-1}
U(m + / +^2) = U(m/+) = kg / s
```

Traccia della soluzione del 1-mo esercizio:

```
- (1 / 2) m v<sup>2</sup>
[(1 / 2) m v<sup>2</sup>] = [m][l]<sup>2</sup>[t]<sup>-2</sup> = ([m][l][t]<sup>-2</sup>)[l] = [Lavoro]
U((1 / 2) m v<sup>2</sup>) = U(Forza) × U(lunghezza) = N × m = J

- m g h
[mgh] = [m][l][t]<sup>-2</sup>[l] = ([m][l][t]<sup>-2</sup>)[l] = [Lavoro]
U(mgh) = U(Forza) × U(lunghezza) = N × m = J
```


$$-h_0 \exp(-mgh)$$

$$[h_0 \exp(-mgh)] = [h_0][\exp(-mgh)] \qquad \leftarrow NO!$$

... l'argomento di una funzione deve essere privo di dimensioni fisiche: potrei sviluppare la funzione in serie di potenze che dimensionalmente non potrei addizionare tra di loro per il principio di omogeneita'.

Esercizio N.2

Su di una lamina metallica di forma rettangolare sono stati misurati i lati orizzontale e verticale utilizzando un righello con sensibilita' pari a 1 mm/DIV. Misurando 12 volte i singoli lati in punti diversi, si sono ottenuti i valori riportati in tabella.

Ricavare la superficie S e l'incertezza associata nel caso schematizzato ed esprimere il risultato sia in unita' del SI che in unita' del sistema cgs.

a	b
[cm]	[cm]
10.0	20.0
12.4	24.6
11.4	22.7
11.5	23.4
12.4	22.2
11.5	21.5
10.8	23.0
10.9	21.9
12.3	22.8
11.0	24.6
11.0	25.0
10.7	23.5

Commenti generali sul 2-ndo esercizio:

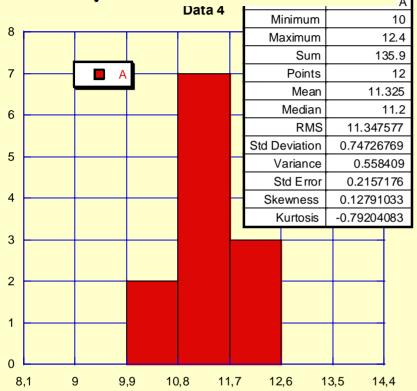
... osservare che sia le misure di a sia quelle di b hanno una variabilita' nel campione maggiore dell'incertezza di lettura del righello

- $\rightarrow \sigma \approx \Delta / \sqrt{3}$ non puo' che essere una sottostima della dev. standard
- \rightarrow { campione di N = 12 misure di a } \rightarrow < a > , σ (a) , σ (< a >) = σ (a) / \sqrt{N}
- → { campione di N = 12 misure di b } → < b > , σ (b) , σ (< b >) = σ (b) / \sqrt{N}
- → propagazione "quadratica" e non "lineare" dell'errore, sia relativo che assoluto per stimare la dev. standard sulla S calcolata

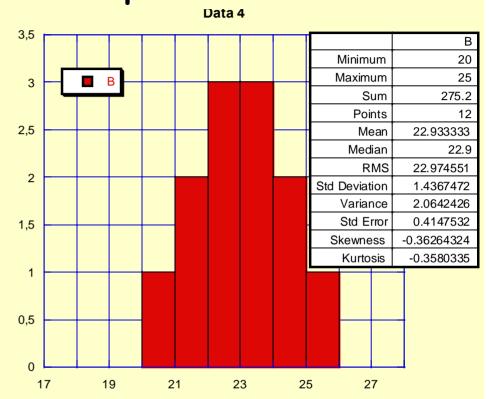
... osservare che 5 viene calcolato con il prodotto dei due valori medi, percio' nella propagazione dell'errore va usata la deviazione standard della media e non la deviazione standard del campione di N misure!

Commenti generali sul 2-ndo esercizio:

... si determina prima l'incertezza con non piu' di 2 cifre significative, quindi la grandezza con un numero di cifre decimali congruente!


...
$$[S] = [\sigma(S)] = [L]^2 \rightarrow U(S) = U(\sigma(S))$$

... il risultato di una misura va sempre presentato in forma standard:


$$(S \pm \sigma(S)) U(S)$$

Commenti generali sul 2-ndo esercizio:

campione misure lato b

$$\langle a \rangle = (11.32 \pm 0.22) \text{ cm}$$

$$\langle b \rangle = (22.93 \pm 0.41) \text{ cm}$$

Traccia della soluzione del 2-ndo esercizio:

N = 12

$$\langle a \rangle = 11.32 \text{ cm}$$
 $\Rightarrow \langle a \rangle = (11.32 \pm 0.22) \text{ cm}$
 $\sigma(a) = 0.75 \text{ cm}$ $(\pm 1.9 \%)$
 $\sigma(\langle a \rangle) = (\sigma(a) / \sqrt{N}) = 0.22 \text{ cm}$

$$^{(b)}$$
 = 22.93 cm $^{(b)}$ = (22.93 ± 0.41) cm $^{(b)}$ = 1.4 cm $^{(c)}$ (± 1.8 %) $^{(c)}$ = ($^{(c)}$) = ($^{(c)}$) | 0.41 cm

$$S = \langle a \rangle \times \langle b \rangle = \frac{259.6 \text{ cm}^2}{(\sigma(S) / S) = \sqrt{((\sigma(a) / a)^2 + (\sigma(b) / b)^2)}} \approx 2.6 \%$$

... ovviamente 2.6% \langle 3.7 % (= 1.9 % + 1.8 %)
 $\sigma(S) = S \times (\sigma(S) / S) = 259.6 \times 2.6 \times 10^{-2} \text{ cm}^2 = 6.7 \text{ cm}^2$

$$\rightarrow$$
 <5> = (259.6 ± 6.7) cm² (± 2.6 %)
(259.6 ± 6.7) x 10⁻⁴ m²

Traccia della soluzione del 2-ndo esercizio:

...alternativamente:

$$\sigma(S) = \sqrt{\left(\frac{\partial S}{\partial a}\right)^2 \sigma^2(a) + \left(\frac{\partial S}{\partial b}\right)^2 \sigma^2(b)} = \sqrt{b^2 \sigma^2(a) + a^2 \sigma^2(b)}$$

$$a = (11.32 \pm 0.22)$$
 cm

$$b = (22.93 \pm 0.41) \text{ cm}$$

$$\sigma(S) = \sqrt{(22.93 \cdot 0.22)^2 + (11.32 \cdot 0.41)^2} \approx 6.8548 \text{ cm}^2$$

$$S = 11.32 \cdot 22.93 \ cm^2 \approx 259.5676 \ cm^2$$

cgs
$$\rightarrow$$
 (259.6 ± 6.9)cm² (± 2.7 %)

$$\rightarrow$$
 (259.6 ± 6.9)10⁻⁴m²