Note su esperienza con i fluidi

Fluido Ideale:

Assenza
di
qualunque
forza
Dissipativa

Le forze sono solo Perpendicolari alle pareti

Fluido Reale:

Per es.
Fluido
Newtoniano
Compare
la viscosita'
"η"

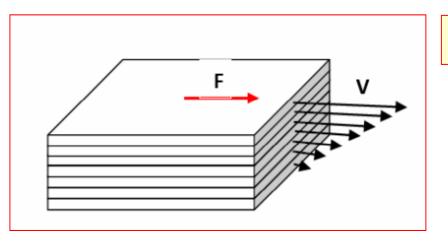
Darcy-Weisbach (regime turbolento)

Poiseuille (regime laminare)

$$\Phi = \frac{dV}{dt} = \pi r^2 v = \frac{\pi r^4}{8\eta} \frac{\Delta P}{L}$$

(Forze viscose) > (Forze inerziali) -> regime laminare

(Forze viscose) < (Forze inerziali) → regime turbolento



"Sforzo di taglio"

$$\frac{dF_t}{dS} = \eta \cdot \frac{dv}{dz}$$

$$[\eta] = [F/S][z/v] = [MLT^{-2}L^{-2}][L L^{-1}T] = [M L^{-1} T^{-1}]$$

... talvolta ... $[\eta] = [pressione][tempo]$

$$U(\eta)_{CGS} = U(M)_{CGS} (U(L)_{CGS})^{-1} (U(T)_{CGS})^{-1} = g \text{ cm}^{-1} \text{ s}^{-1} = 1 \text{ poise} = 1 \text{ P}$$

Т	η _{acqua distillata}	
0 ₀ C	1.8 cP	
20	1.0	
100	0.3	

$$R_{e} = \frac{F_{inerziali}}{F_{viscose}} = f(d, \rho, v, \eta) \quad [R_{e}] = [LMT]^{0}$$

$$[R_{e}] = [d^{\alpha} \rho^{\beta} v^{\gamma} \eta^{\delta}] = [L]^{\alpha} [ML^{-3}]^{\beta} [LT^{-1}]^{\gamma} [ML^{-1}T^{-1}]^{\delta} =$$

$$= [L]^{(\alpha - 3\beta + \gamma - \delta)} [M]^{(\beta + \delta)} [T]^{(-\gamma - \delta)}$$

$$(\alpha - 3\beta + \gamma - \delta) = 0$$

$$(\beta + \delta) = 0 \quad \Rightarrow \beta = -\delta \quad \Rightarrow \frac{\beta}{\delta} = -1$$

$$(\gamma + \delta) = 0 \quad \Rightarrow \gamma = -\delta \quad \Rightarrow \frac{\gamma}{\delta} = -1$$

$$\Rightarrow \alpha - 3(-\delta) + (-\delta) - \delta = 0 \quad \Rightarrow \alpha + \delta = 0 \quad \Rightarrow \alpha = -\delta \quad \Rightarrow \frac{\alpha}{\delta} = -1$$

$$\delta = -1 \quad \beta = +1 \quad \gamma = +1 \quad \alpha = +1$$

$$\Rightarrow R_{e} = \frac{d \rho v}{n}$$

Fluido reale: Moto laminare e moto vorticoso

R _e (= vρd / η)	< 2000	> 3000
ΔP / L	∞ (v η) / r^2	∞ ($v^2 \rho \eta$) / r
V	\propto (r ² Δ P) / (η L)	\propto (r ^{1/2} Δ P ^{1/2}) / (η L ^{1/2} ρ ^{1/2})



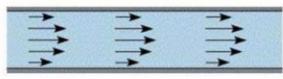
Re = numero di Reynolds

 ΔP = Perdita di carico lineare lungo il condotto

v = velocita'media del fluido

 η = viscosita'

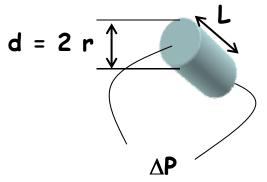
 ρ = densita'



Flusso laminare



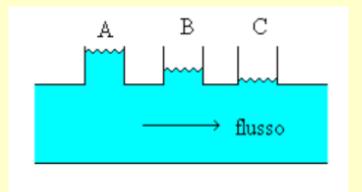
Flusso turbolento



Nel caso dei fluidi reali:

in regime turbolento rispetto al regime laminare, si ha:

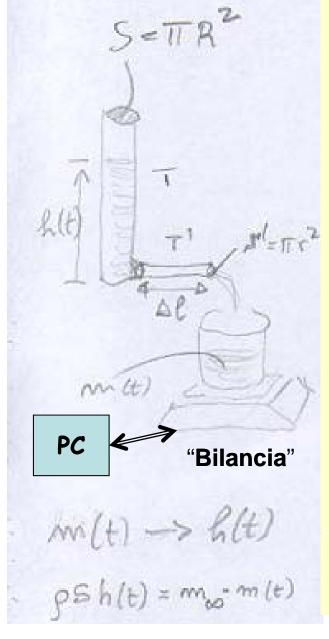
- Riduzione di portata
- Maggiore "perdita di carico"



Nel caso di fluidi ideali:

- non sono presenti questi fenomeni, e
- vale il teorema di Bernoulli poichè siamo in assenza di "fenomeni dissipativi"

Obiettivo dell'esperienza: studio della legge del flusso d'acqua attraverso dei tubicini



Tubo verticale T:

... moto di discesa dell'acqua a bassa velocita' e tubo di grande sezione S

Bernoulli

Tubicino orizzontale T':

a seconda di sezione S' e lunghezza L ... moto laminare

$$m(t) = m(\infty)(1 - \exp(-t/\tau))$$

... moto turbolento

$$\sqrt{\frac{m(\infty) - m(t)}{\rho S}} = \sqrt{\frac{m(\infty)}{\rho S}} - \frac{k}{2}t$$

Deduzione del numero di Reynolds (Re) dal flusso d'acqua $\Phi = dV / dt$ verso il recipiente pesato con la bilancia

$$\Phi = \frac{dV}{dt} = \pi r^{2} v$$

$$R_{e} = \frac{d\rho v}{\eta} = \frac{2r\rho}{\eta} \frac{dV}{dt} = \frac{2}{\pi \eta r} \frac{dm}{dt}$$

$$\frac{dm}{dt} = \rho \frac{dV}{dt}$$

$$m(t) = m(\infty)(1 - \exp(-t/\tau)) \implies$$

$$h(t) = \frac{m(\infty) - m(t)}{\rho S} = \frac{m(\infty)}{\rho S} \exp(-t/\tau)$$

$$\tau = \frac{8\eta LS}{\rho g r^2 S'}$$

"laminare"

$$\tau = \frac{8\eta LS}{\rho g r^2 S'}$$

$\sqrt{\frac{m(\infty) - m(t)}{\rho S}} = \sqrt{\frac{m(\infty)}{\rho S} - \frac{k}{2}t} \implies$

$$h(t) = \frac{m(\infty) - m(t)}{\rho S} = \left(\sqrt{\frac{m(\infty)}{\rho S}} - \frac{k}{2}t\right)^2 =$$

$$= \frac{m(\infty)}{\rho S} - \sqrt{\frac{m(\infty)}{\rho S}}kt + (\frac{k^2}{4})t^2$$

$$\frac{1}{k^2} = \frac{1}{2g} \left(\frac{S}{S'}\right)^2 \left[1 + 0.16 \frac{L}{r} R_e^{-1/4}\right]$$

"turbolento"

Misure da fare:

- diametro (D = 2 R) interno del tubo verticale T \Rightarrow S = π D² / 4
- altezza iniziale della colonna d'acqua nel tubo verticale T $\rightarrow h_0 = h(t=0) \rightarrow \text{"pressione iniziale"}$
- portata d'acqua attraverso il tubicino T'
 → m(t) → dm / dt

colore	diametro d [cm]	lunghezza [cm]
bianco	0.100	20
bianco	0.100	10
bianco	0.100	8.5
marrone	0.140	8.0
bian e marr	0.180	7.5
rosso	0.215	9.9
grigio	0.300	9.5

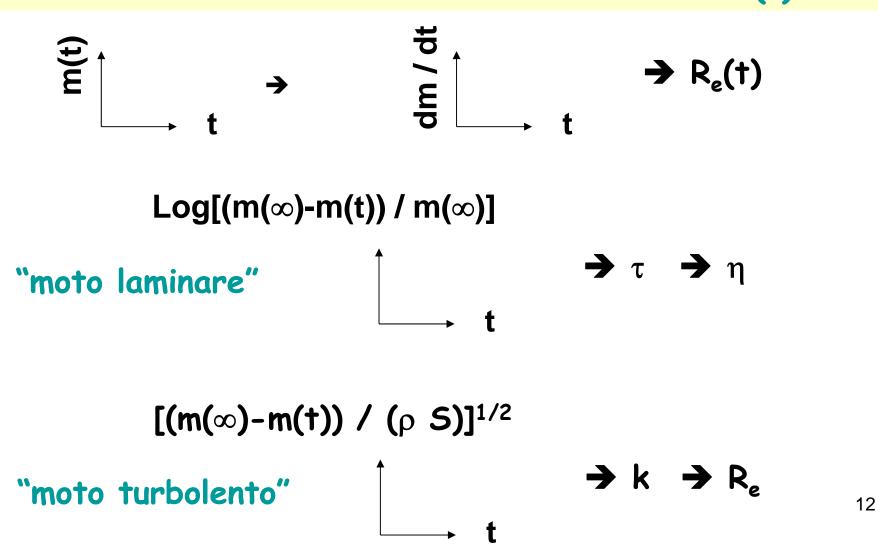
Incertezze sui tubicini a disposizione in laboratorio:

- lunghezza
$$\pm 0.1$$
 cm $(\pm 1 \text{ mm})$

- diametro
$$\pm 0.005$$
 cm $(\pm 50 \mu m)$

Strategia di analisi delle misure della massa d'acqua che fuoriesce da un tubetto T' e "cade" nel recipiente posto sulla bilancia collegata al PC via cavo seriale e gestito con il solito SW della ditta PASCO: "DATA STUDIO".

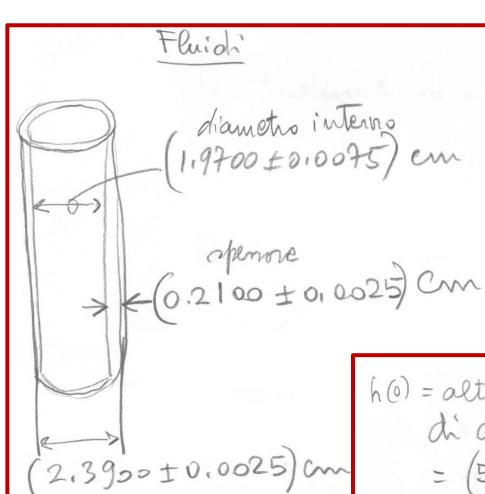
m(t)



Utilizzo di una Bilancia OHAUS Scout Pro + PASCO

- 1) Mandare in esecuzione Data Studio;
- 2) Selezionare "Crea Esperimento";
- 3) Poiche' non e' collegata alcuna interfaccia standard del tipo PASCO 500, chiede di inserire un sensore PASPORT ... IGNORARE la richiesta!

Numerologia per l'esperienza con I fluidi



diametro esterno

tipico audamento de Se imizeo la minore, finisco la minore Le inizio tenbolento, finisco Camimore

Re = dfr = 2 dm Try dt				
BIANCO	DIAMETRO [cm] 0.0800±0.0025	20.30 ±0.05 } 20.80 LAMINARE		
11	0.1000	8,40 SEMPRÉ		
MARRONE BIANCO-MARRONE	0.1350	7-90 INIZIALE TURBO-		
Rosso GR1610	0.2100	9.90		

m(t) = m(a)/1-e moto lami nore L= lunghezza tubicus
S'= sezione interna
del tubicimo T = 89LS S = sezione interna del tubo Verticole

(segue)

seguito)
$$\eta = \frac{gg \eta^2 s'}{8 L S(\frac{1}{\gamma})} + \frac{1}{2} \left[\frac{\partial \eta}{\partial n^2} \sigma^2(n) + \frac{\partial^2 \eta}{\partial s'^2} \sigma^2(s') + \frac{\eta^2 \eta}{\eta^2} \sigma^2(L) + \frac{\partial^2 \eta}{\partial s'^2} \sigma^2(s') + \frac{\partial^2 \eta}{\partial s'^2} \sigma^2(L) + \frac{\partial^2 \eta}{\partial s'^2} \sigma^2(s') + \frac{\partial^2 \eta}{\partial s'^2} \sigma^2(L) + \frac{\partial^2 \eta}{\partial s'^2$$

moto turbolento

$$\frac{m(\delta s) - m(t)}{ps} = \sqrt{\frac{m(\delta s)}{ps} - \frac{kt}{2}}$$

$$\frac{m(k)-m(t)}{ps} = \left(\sqrt{\frac{m(\infty)}{ps}} - \frac{k}{2}t\right)^2 =$$

$$= \left(\frac{m(\omega)}{ps}\right) - \sqrt{\frac{m(\omega)}{ps}} kt + \frac{\kappa^2}{4}t^2$$

$$m(\omega) - m(t) = m(\omega) - \sqrt{m(\omega) \rho s} kt + \rho s \frac{k^2 t^2}{4}$$

$$m(t) = \sqrt{m \infty \rho s} kt + \frac{\rho \beta k^2}{4} t^2$$