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In the present paper we consider a 1-D, single spring-slider analog model of fault and we solve the equa-
tion of motion within the coseismic time window. We incorporate in the dynamic problem different rhe-
ologic behavior, starting from the Coulomb friction (which postulates a constant value of the dynamic
resistance), then the viscous rheology (where the friction resistance linearly depends on the sliding
speed), and finally a version of the more refined rate-and state-dependent friction law. We present ana-
lytical solutions of the equation of motion for the different cases and we are able to find the common fea-
tures of the solutions, in terms of the most important physical observables characterizing the solutions of
a 1-D dynamic fault problem; the peak slip velocity, the time at which it is attained (or, in other words,
the so-called rise time), the total cumulative slip developed at the end of the process (assumed to occur
when the sliding speed vanishes or become comparable to its initial value). We also extract some useful
dependences of these quantities on the parameters of the models. Finally, we compare the spectral
behavior of the resulting sliding velocity and its fall-off at high frequencies.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

In the present paper we consider the coseismic phase of an
earthquake event, i.e., the time window during which the stress
is released on the fault and the elastic waves are excited by the
stress redistribution caused by the dynamic rupture propagation.
We adopt the well-known mass-spring dashpot model (reader
can refer to the key papers by Gu et al. (1984) and Rice and Tse
(1986) for the general understanding of the model, although the
related literature is immense) in which the non elastic effects are
accounted in the formulation of a specific fault governing model
(rheologic constitutive relations). There is no reason to overem-
phasize the limitations of this intentionally simple analog fault
model: (i) all the properties of the fault are assumed to be homo-
geneous (in other words, we disregard possible frictional hetero-
geneities and the adopted parameters represent an average of
the overall fault properties) and (ii) due to the 1-D nature of the
problem (we have only a temporal dependence in the physical
observables), there is no the concept of the rupture front, energy
flux in the cohesive zone and rupture speed. Despite of these
intrinsic limitations, the spring-slider model has been indeed the
subject of an incredible large number of studies dealing with the
earthquake slow nucleation, earthquake recurrence, stress trigger-
ing, etc. (reader can refer to Bizzarri (2012c) and references cited
therein for a thorough and general review).

In the present study we assume different friction models; Cou-
lomb friction, viscous friction and a version of the more elaborated
and perhaps more realistic rate-and state-dependent (RS therein
after) friction law (e.g., Ruina, 1983). Due to the inherent simplicity
of the equation of motion for the geometry considered, contrarily
to extended fault models, we are able to find analytical solutions
(although not in closed for the RS case). Indeed, it is well known
that the only configuration in which it is possible to find analytical
solutions is represented by the 2-D, purely in-plane, homogeneous,
non-spontaneous (i.e., without prior-assigned rupture speed) case
(Kostrov, 1974), but they cannot be expressed in a closed-form,
in that a very large number of integrals have to be solved numer-
ically, so that the real advantages with respect to a fully numerical
solution disappear.

In this study, by comparing the analytical solutions of the 1-D
dynamic problem we will understand what RS really add with
respect to more simple friction models. We explore the relations
between the most prominent observables of a rupture (such as
the duration of slip, the peak in slip velocity, their relationship with
the stress drop, the spectral decay and the frequency content of the
slip velocity). The relations between different observables are
important; indeed, one goal of modern-days seismology is to
design computationally efficient and robust numerical algorithms
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Table 1
Most relevant quantities used in the present paper.

su Static friction

sf dynamic friction
Dsb su � sf breakdown stress drop
k elastic constant of the spring (per unit fault surface)
m mass of the spring (per unit fault surface)

x0 �
ffiffiffi
k
m

q
angular frequency

v0 initial sliding speed
xL ¼ su

k position of the loaded spring (with respect to its
initial position x ¼ 0)

s total developed slip (namely s ¼ xðtf Þ)
vpeak peak of the sliding speed (namely,

vpeak ¼ xdotðtpeakÞ)
tpeak instant at which vpeak is attained
tf instant at which v ’ 0 is attained
c proportionality constant in the case of viscous

friction
b ¼ c

2m
angular frequency in the case of viscous friction

x2 � x2
0 � b2 ¼ k� c

2m
angular frequency in the case of viscous small
damping

X2 � b2 �x2
0

angular frequency in the case of viscous strong
damping

l friction coefficient
a; b; L governing parameters of rate-and state-dependent

friction
/ state variable
l0 reference value of l
v� reference value of sliding speed for RS laws (equal to

the initial speed)

Table 2
Values of the parameters employed for the models investigated for Coulomb
(Section 2) and viscous (Section 3) friction.

su (MPa) sf (MPa) k (MPa m�1) x0 (rad s�1)

17.2 15.3 10 1.26

Table 3
Values of the additional parameters required for the rate and state model (Section 4).
Note that we adopt a different value of sf with respect to Coulomb and viscous cases
(see Sections 2 and 3, respectively).

sf (MPa) l a b L (m) v0 (ms�1)

31.1 0.5 0.007 0.016 1 � 10�5 3:17 � 10�10
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able to generate a catalog of synthetic events (i.e., to simulate the
synthetic motions recorded on the free surface). Investigations
about the possible correlations between various dynamic variables
can definitively represent an improvement in the design of
physics-based models crucial for realistic ground motions simula-
tion and seismic hazard analysis, as well as in that of the kinematic
modeling of faults, on which current practice in seismic engineer-
ing relies (Bizzarri, 2012b). Slip characteristics, such as the symme-
try properties of the velocity function in time, can also be of help in
the formulation of general simplified models for slipping
(Baldassarri et al., 2003), and in their analysis (Annunziata et al.,
2016).

In Table 1 we report all the most relevant quantities used in the
present study. In the following sections we will solve the equation
of motion for our analog fault model and for different rheologic
configurations.

Except when differently specified, for all practical examples we
adopt the values in the Tables 2 and 3 (Section 4).

2. Coulomb friction

We consider first a mass of surface density m attached to a har-
monic spring of elastic constant, per surface unit, k, subject to Cou-
lomb friction. The mass is initially in x ¼ 0 and it is creeping at
speed _x ¼ v0. Let us suppose to stretch the spring at a very slow
rate (but still much larger than v0) in the positive x direction. In
the presence of first detachment force su (Coulomb static friction),
the mass begins to move when the coordinate of the spring xL is
such that

F ¼ kxL � su P 0 ð1Þ
that is for

xL ¼ su
k
: ð2Þ

Then the equation of motion reads

€xþx2
0ðx� xLÞ þ sf

m
¼ 0 ð3Þ

where x0 �
ffiffiffiffiffiffiffiffiffiffi
k=m

p
, and sf is the dynamic friction which is constant

through time in the present case. From Eq. (3) it is clear that we dis-
regard the loading rate term kv loadt, where v load is the loading (or
plate) velocity. This approximation is totally justified, in that within
the coseismic phase (accounted in the present study and lasting up
to few minutes) the contribution of the loading term is practically
null.

Since kxL ¼ su (see Eq. (2)), if we introduce the breakdown
stress drop Dsb ¼ su � sf (Bizzarri, 2011) we can write the general
solution as

xðtÞ ¼ ae�ix0t þ be�ix0t þ Dsb
mx2

0

:

By imposing the initial conditions mentioned above
(xð0Þ ¼ 0 _xð0Þ ¼ v0) one gets

xðtÞ ¼ Dsb
k

1� cosðx0tÞ½ � þ v0

x0
sinðx0tÞ ð4Þ

(this solution holds even for xþð0Þ), and consequently

_xðtÞ ¼ x0
Dsb
k

sinðx0tÞ þ v0 cosðx0tÞ > 0: ð5Þ

Since we do not allow motion reversal, we consider the slip ended
when the velocity drops to zero.

From Eqs. (4) and (5) it is straightforward to derive some simple
features characterizing the slip, such as its extension s, duration tf
(also known as rise time), the maximum velocity reached during
the slip, vpeak, and the time tpeak at which it is attained. By neglect-
ing v0 for the sake of simplicity (typical values are around
v0 ¼ 3:17 � 10�10 m/s, and therefore negligible with respect typical
coseismic values which span from 0.1 to tens of m/s) we obtain:
s ¼ 2Dsb
k

tf ¼ p
x0

vpeak ¼ x0Dsb
k

tpeak ¼ p
2x0

:

From the above expressions we can conclude that:

(a) The slip extension, and thus the magnitude of the instability
event, does not depend on the mass, and does not change
when both spring constant k and Dsb increase by a same
factor.

(b) The slip velocity function is perfectly symmetric in time
with respect to tpeak.

(c) The slip duration only depends on x0 and is independent of
the friction.

(d) The same holds for tpeak.
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As a typical case we consider the values of parameters given in
Table 2 (and neglect the term in v0 in Eq. (4)). From these values of
k and x0 one has m ¼ 6:34 � 106 kg/m2. The resulting trajectory is
shown in Fig. 1. We emphasize that the perfect symmetry of the
slip velocity function with respect to tpeak is somehow an idealiza-
tion; indeed classical results of fracture mechanics and numerical
models of earthquake ruptures tend to indicate more complicated
and non symmetric behavior (see for instance Bizzarri, 2012a).
Fig. 1. Trajectory and velocity of slip motion for Coulomb friction (see the text for
parameter values). Only in this figure we explicitly indicate the most relevant
quantities; the peak in slip velocity (vpeak), its time occurrence (tpeak), and the total
slip duration (i.e. the supprto of the slip velocity function, tf ).
3. Viscous friction

In this case we consider a dynamic friction which is now not
constant, but explicitly depends on the sliding speed, through a
proportionality constant c:

sf ¼ �c _x:
This corresponds to a viscous behavior, where friction increases

with sliding velocity. Thus, in order the have a finite slip, an initial
static friction must be present, as for the Coulomb case, such that a
stress drop is produced when the slip starts. In order to keep the
model as simple as possible we assume that the dynamic friction
sf ¼ 0, therfore Dsb ¼ su. Adopting the same notation and initial
conditions as in the previous section one comes to the following
equation of motion

m€x ¼ �kðx� xLÞ � c _x; ð6Þ
where, as before, kxL ¼ su (Eq. (2)) is the static friction at detach-
ment (rupture condition Eq. (1). This equation can be recast into

€xþ 2b _xþx2
0ðx� xLÞ ¼ 0 ð7Þ

with b � c=ð2mÞ. The nature of solutions is determined by the value
of the quantity x0 � b, as described in the three following
subsections.

3.1. Small damping (x0 > b)

The general solution of Eq. (7) for x0 > b is

xðtÞ ¼ e�btðae�ixt þ beixtÞ þ xL;

where x2 � x2
0 � b2 ¼ k=m� ðc=ð2mÞÞ2, showing an exponential

damping. Imposing the initial conditions (xð0Þ ¼ 0 and _xð0Þ ¼ v0)
yields:

xðtÞ ¼ e�bt xS sinðxtÞÞ � xL cosðxtÞ½ � þ xL; ð8Þ
where xS � ðv0 � bxLÞ=x. The dynamics is consequently damped
oscillatory, and

_xðtÞ ¼ e�bt ðxLx� bxSÞ sinðxtÞÞ þ ðxSxþ bxLÞ cosðxtÞ½ �: ð9Þ
By neglecting again v0 this takes the simpler form:

xðtÞ ¼ xL 1� e�bt b
x

sinðxtÞ þ cosðxtÞ
� �� �

; ð10Þ

and

_xðtÞ ¼ xL
x2

0

x
e�bt sinðxtÞÞ: ð11Þ

Even for this case the derivation of s;vpeak; tpeak and tf is straight-
forward. From Eqs. (10) and (11) we obtain:

s ¼ Dsb
k

1þ e�
bp
x

� �
tf ¼ p

x

vpeak ¼ Dsb
k

x0e
�b
x arctanðxb Þtpeak ¼ 1

x
arctan

x
b

� �
:

It this case the relevant parameter is b=x ¼ c=ð2
ffiffiffiffiffiffiffi
mk

p
Þ (or

equivalently x=x0), and we can conclude that:

(a) The slip extension s depends on a combination of all the
parameters;

(b) The slip velocity is highly asymmetric in time;
(c) The slip duration tf only depends on x, and not on friction;
(d) The same does not hold for tpeak since it depends also on b.

As an example of the resulting motion we consider the same
parameters as in the previous section, Table 2, and a set of values
of b in the range x0 þ 0:2j s�1, with j ¼ �1; . . .� 5. The resulting
slip and velocities are shown by the upper five curves in Figs. 2
and 3, respectively. From these figures we can clearly see that
the overall behavior of the system depends on the value of b; at
small b it is faster, the slip reaches its final value (Fig. 2) and, cor-
respondingly, the slip velocity goes to zero (Fig. 3).

3.2. Strong damping (x0 < b)

For imaginary x (x0 < b, since, as stated above x2 � x2
0 � b2)

the dynamics is strongly damped:

xðtÞ ¼ e�bt xS sinhðXtÞÞ � xL coshðXtÞ½ � þ xL; ð12Þ
and the velocity is described by:

_xðtÞ ¼ e�bt xS sinhðXtÞÞ � xL coshðXtÞ½ � þ xL; ð13Þ
where X2 � b2 �x2

0. By neglecting again v0:

xðtÞ ¼ xL 1� e�bt b
X

sinhðXtÞ þ coshðXtÞ
� �� �

; ð14Þ

and

_xðtÞ ¼ xL
x2

0

X
e�bt sinhðXtÞ: ð15Þ

Being the motion dominated by an exponential terms, slip
extension is reached in infinite time. We conventionally take 1=b
as a characteristic time of the slip, and we found:

s ¼ Dsb
k tf ¼ 1=b ð1Þ

vpeak ¼ Dsb
k x0 tpeak ¼ 1

X atanhðXbÞ:

(



Fig. 2. Trajectories of the of slip motion in the presence of viscous damping with
the parameters of Table 2 and different b. For the small damping case (negative j)
slips stop when velocity drops to zero. Curves are arrested once the slip velocity
comes back to zero (first five cases, pertaining to the small damping regime). Slip
asymptotically reaches its final value in the other cases (critical and strong
damping).

Fig. 3. Velocity for slip motion in the presence of viscous damping corresponding to
Fig. 2.
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Trajectories and velocities for b ¼ x0 þ j � 0:2, with j ¼ 1;2 . . .5
are shown from the lowest five curves in Figs. 2 and 3.
3.3. Critical damping (x0 ¼ b)

For x ¼ 0 (b ¼ x0) the motion is critically damped, given by

xðtÞ ¼ xLð1� e�btðbt þ 1ÞÞ; ð16Þ

and thus

_xðtÞ ¼ xLb
2e�btt: ð17Þ

This critical case predicts that:

s ¼ Dsb
k

tf ¼ 1=x0 ð1Þ

vpeak ¼ Dsb
k

x0e�1 tpeak ¼ 1
x0

¼ 1
b
:

where again we have taken tf ¼ 1=b. Slip and velocity for the same
parameters previously adopted are shown by the middle curve in
Figs. 2 and 3. This line discriminates between cases where slip
reaches relatively fast its final value and cases where it asymptoti-
cally increases through time.

3.4. Viscous plus dynamic Coulomb friction

After considering the separate cases of hydrodynamic and
dynamic Coulomb friction it is not difficult to see that the solutions
for the case in which both frictions are present are formally iden-
tical to those encountered in the previous cases, but now
Dsb ¼ su � sf with sf > 0. Thus also the values of s and vpeak change
accordingly.

4. Rate-and state-dependent friction laws

We now study the motion described by the equation

€xþx2
0ðx� xLÞ ¼ �f ð18Þ

where the friction term f ¼ gl is now given by a rate-and-state law
(l is the friction coefficient and g is the gravity acceleration). As
before x0 �

ffiffiffiffiffiffiffiffiffiffi
k=m

p
, and xL ¼ su=k is the initial value of the strain.

We shall consider the following, canonical, formulation for rate-
and-state:

l ¼ l0 þ a ln v
v0

� �
þ b ln v0

L /
	 


_/ ¼ 1� v
L /;

8<
: ð19Þ

where l0 is the reference value of the friction coefficient and v ¼ _x.
Namely, Eq. (19) are the Dieterich–Ruina (DR henceforth) model,
which fits laboratory experiments conducted originally on bare sur-
faces and at relatively low sliding speed (Dieterich, 1978; Ruina,
1980). Subsequently, Marone (1998) and Mair and Marone (1999)
investigated the limits of ts validity for laboratory granular fault
gouge. Note that in (19) we assume that the reference value of
the sliding speed v0 – often denoted with the symbol v� – equals
the initial sliding speed _x. In this model a; b are the constitutive
parameters accounting for the slip-hardening and slip-weakening
stages of the rupture, respectively, while the third governing
parameter L is the scale length over which the state variable /
evolves. The latter in the DR framework physically represents the
average contact time of the micro-asperities populating the two
sliding surfaces. Readers can refer to Section 7 of Bizzarri (2011)
for a thorough review of the subject.

As for the previous cases, we shall assume that before slipping
the system is performing a stationary sliding with v ¼ v0, and that
the state variable has the value / ¼ L=v0 (that is, / is on its steady
state for t 6 0). Thus when the slip starts, at t ¼ 0, we have the fol-
lowing initial conditions

l ¼ l0

_/ ¼ 0:

In the case of Coulomb friction, previously analyzed, we
assumed a slip started as soon as kxL was larger than the friction
initial value su. Eq. (19) would yield in the present case the mobil-
ity stress edge l0gm. However we see from Eq. (19) that one has
l0gm ¼ sf , and that the initial derivative of the friction force at
t ¼ 0 is:

_l ¼ a
_v
v0

; ð20Þ

that is always positive, irrespectively of the value of b. So we expect
that the slip terminates immediately if Dsb ¼ su � sf is about zero.
The situation is very different from the Coulomb and viscous cases.
Thus we suppose that the system undergoes a sudden strain at t ¼ 0
in the positive x direction, up to a certain xL ¼ su=k, and investigate
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the slip properties as function of the resulting breakdown stress
drop Dsb ¼ kxL � lgm.

4.1. Invariant form

Before proceeding numerical computations it is important to
point out that Eqs. (18) and (19) can be casted in a form invariant
with respect to changes of the parameters v0 and L. In other words,
it can be shown that these parameters only set the space and time
scales, that is all the trajectories obtained with different values of L
and v0 have the same shape and can be collapsed to a single one by
suitable rescaling. Thus the results obtained for a couple of values
ðL; v0Þ will hold for any couple.

The invariant form can be obtained by adopting L as unit of
length and L=v0 as unit of time, then the adimensional variables
z � x=L for the space and h � v0t=L for the time (see Appendix A),
obtaining (where the primes indicate the derivation with respect
to h)

z00 þX2
0ðz� zLÞ ¼ �r ð21Þ

with

r ¼ r0 þ a ln z0 þ b lnw ð22Þ
and

w0 ¼ 1� z0w; ð23Þ
where w � v0/=L, and zL � xL=L.

In this form (Eqs. (22) and (23)) the rate-and-state law is inde-
pendent on the values of L and v0, and has just three independent
parameters: r0;a and b (for the connection of the various quantities
to the original ones see Appendix A).

An invariant form is important since it allows to investigate the
intrinsic properties of trajectories. In fact, once determined the
solution of an invariant equation, this holds for any values of
the parameters, that just affect space and time scales. To get the
desired solution it is sufficient to multiply spatial and temporal
values for the units corresponding to the desired parameters. On
the other hand, as long as parameters appear explicitly in equa-
tions, it is difficult to know whether they just change some scale
factors or affect the intrinsic nature of the motion. In the first case
all trajectories can be collapsed to a single one after suitable rescal-
ing, in the second they cannot.

Eqs. (21)–(23) can be formally integrated giving

z00 þ a lnð1þ z0Þ þ b lnð1þ e�z e z þ w0Þ þX2
0ðz� zLÞ ¼ r0; ð24Þ

where . . . stays for
R t
0 . . .dt

0, and w0 is the initial value of w. This
integro-differential equation contains a kernel showing explicitly
that friction has a memory. Specifically it is seen that friction
depends on the detailed trajectory zðtÞ along which the integral is
performed.

4.2. Numerical integration

To compute the slip trajectory under the rate-and-state friction
force one has soon or later to resort to numerical integration. The
numerical integration is necessary especially because of the loga-
rithmic terms in the expression of friction. Integration of Eq. (18)
has thus been performed via the Verlet algorithm (Frenkel and
Smit, 2002). At the same time, in order to improve the reliability
of our results we have implemented two different techniques for
computing the state variable / by integrating Eq. (19). The first
technique (e.g. Bizzarri, 2012b) is a 4th order Runge–Kutta approx-
imation (see e.g. Press et al., 1992), largely employed in this type of
investigation. The second technique is completely novel and makes
use of an explicit integral expression for /, derivable from (19) (see
Appendix B.1):

/ðtÞ ¼ e�xðtÞ=L
Z t

0
exðt

0Þ=Ldt0 þ /ð0Þ
� �

: ð25Þ

From this expression a numerical algorithm can be derived
(Appendix B.2) that considerably speeds up calculations with
respect to the Runge–Kutta technique. In addition, we have verified
in simple exactly integrable cases (consisting in imposing v ¼
const and v ¼ L0=ðt0 þ tÞ, with L0 and t0 arbitrary) that it can also
yield more accurate results. Anyway we have performed all com-
putations maintaining both methods in order to compare the
results.

As shown above, the equation of motion for the present case
could be investigated in its invariant form, but for the sake of clar-
ity we shall maintain the original form (18). We shall adopt the
values of k and T of Table 2, thence the same values for x and m
adopted previously. The values adopted for the others parameters
are shown in Table 3. As specified before, the system is supposed to
undergo slow and stationary creep, such that at t ¼ 0 one has
_xð0Þ ¼ v0 and /ð0Þ ¼ L=v0, moreover _/ð0Þ ¼ 0 and lð0Þ ¼ l0. With
these values the stress mobility edge results
l0gm ¼ sf ¼ 31:098 MPa, about two times greater than the Cou-
lomb static friction previously adopted (see Table 2).

Another crucial point is the initial value of /. If it is too close to
zero, the slip gives initially rise to an increase of friction. In order to
have instability the initial value must be high (physically, since /
represents the average contact time of micro-asperity contacts in
the DR model, this indicates that the fault has been locked for a
long time and thus that it is prone to rupture). A commonly
adopted choice is /ðt ¼ 0Þ ¼ L=v0, which is the stationary value
exponentially attained in a motion at constant speed v0. For the
adopted parameters we have /ð0Þ ¼ 31:5 � 103 s.

4.3. Slip properties

In this section we investigate how the dependence of the main
slip properties (again, extension, s, duration, tf , peak velocity, vpeak,
its instant, tpeak) depend on the value of the initial stress su.

Fig. 4 shows the slip trajectories for different values of su. It is
seen that for large Dsb ¼ su � sf , slips start almost immediately
and all have about the same duration, but when Dsb becomes
small, the motion displays a creeping (or preslip) phase that gets
longer the smaller is Dsb (Fig. 5). After this phase the macroscopic
sliding starts. In this range of Dsb the peak velocity decreases. We
recall that according to Eq. (20) we expect a strong inhibition of
motion when su approaches sf . Fig. 6 displays the velocity curves
for the different slips on double logarithmic scale. It shows that
vpeak actually decreases with decreasing Dsb. This results is also
in agreement with findings from extended fault model (e.g.
Bizzarri, 2012a) and with the laboratory evidences from expansion
of pure mode II crack (Ohnaka et al., 1987).

4.4. Slip extension and peak velocity

The dependence of the slip extension s and peak velocity vpeak

on the initial stress su are reported in Fig. 7. It is seen that both
vpeak and s scale linearly with su:

s ’ assu
vpeak ’ avsu;

where as and av are constant. It is interesting to point out that the
same linear dependence was found for the Coulomb friction law
(Section 2). In that case the proportionality coefficients were



Fig. 4. Slip trajectory in the presence of rate-and-state friction (Eq. (19)), for
different values of the initial stress reported in the legend. For values approaching
the mobility edge lgm, slips display a creeping phase before to slide macroscop-
ically much less than normal slips. As for Fig. 2, also in this case curves are arrested
when slip velocity is zero.

Fig. 5. The same as Fig. 4, but now in logarithmic scale. It is clear that the creeping
phase is characterized by a linear increase of slip with time. For values approaching
the mobility edge lgm, slips display a creeping phase before to slide macroscop-
ically (nearly vertical lines).

Fig. 6. Velocity trajectory, corresponding to slip curves reported in Figs. 4 and 5, in
the presence of rate-and-state friction (Eq. (19)) for different values of the initial
stress (see text). As long as ss approaches lgm the rupture time increases; the
velocity always comes back to zero after its peak The pulse seems a vertical line
only because of the logarithmic scale and the absolute values of rupture times.

Fig. 7. Slip extension (s) and peak velocity (vpeak) for different values of the initial
stress sS , in the presence of rate-and-state friction, Eq. (19) (see Section 4.4 for
details). Dashed lines indicates linear fits for the data for s and vpeak; equations are
reported in the legend. In this series of numerical experiments we adopted
x ¼ 1:26 rad s�1 and k ¼ 107 MPa m�1.
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as ¼ 2=k ¼ 0:2 mMPa�1 for s and av ¼ ðmx0Þ�1 ¼ 0:125 m (MPa
s)�1 for vpeak. By fitting data of Fig. 5 we obtained for rate-and-state:
as ¼ 0:203 mMPa�1

av ¼ 0:128 mMPa�1 s�1:

Notably, these values are within numerical errors, the same val-
ues pertaining to the Coulomb case. This suggests that for RS fric-
tion we have the same dependence on k and x0 observed in the
Coulomb case. To test this hypothesis we have computed the slips
properties for different x0 and k. Indeed, from the obtained results
we observed that the dependence of vpeak and s on the system
parameters are the same for Coulomb and rate-and-state friction.
However the linear fits indicate that both s and vpeak ! 0 for
su ! 1:86 MPa, a value much lower than sf . So we guess that a
sudden faster-than-linear drop to zero of both quantities must be
expected for values of Dsb smaller than the one investigated, but
still positive.

In the pure viscous case (see Section 3) s and vpeak do not
depend on Dsb, since in that case su ¼ 0, but in any case as / 1=k
for small damping. For large or critical damping the slip is expo-
nentially infinite, but with a prefactor which depends on su again
as 1=k. Concerning vpeak; av ¼ x0=k for small and strong damping,
while there is an extra 1=e factor in the critical case. When both
Coulomb and viscous friction are present the related dependence
on Dsb is recovered.

Thus we conclude that at least in the considered range of Dsb,
the dependence of vpeak and s on the system parameters are the
same for Coulomb, viscous, and rate-and state friction laws. Because
of the invariance of the rate-and-state law, demonstrated in Sec-
tion 4.1, this holds for any value of L and v0.
4.5. Slip duration and peak velocity instant

In the Coulomb case the slip duration was independent of Dsb.
In the present case it is the same for large values of Dsb. It remains
now to investigate if the duration changes following x�1

0 as in the
Coulomb and small damping viscous cases, or other laws. For Dsb
approaching 0, the slip duration increases due to the appearance
of the creeping phase. However, if one looks at the duration of



Fig. 8. Rate and state friction law: the instant of the peak velocity for the creeping
slips tends to increase exponentially when su ! sf . The green line is a fit
/ exp�ðsb=s0 Þ with characteristic stress s0 ¼ 0:88 Mpa (note the logarithmic scale
on the ordinate axis).

1 The discrete Fourier transform of regular slips, computed numerically and
reproduced in the picture, is not able to show this feature because of the too large
sampling frequency dm ¼ 1=tf . Since tf � p=x0, then dm ’ 2m0 > m0.
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the macroscopic slip only (the almost vertical part of trajectories in
Fig. 5) one sees that it is the same as for the normal slips.

As concerned tpeak, the time at which vpeak is reached, it is inde-
pendent of su for the regular slips, that is as far as Dsb is large
enough. It can be useful to remind that it is the same for the Cou-
lomb and viscous friction, but following different laws. On the con-
trary, creeping slips display an exponential increase for decreasing
Dsb as tpeak � expðsu=s0Þ (Fig. 8), where s0 ¼ 0:88 MPa is a fitting
characteristic stress. Remarkably, this value is not far from x�1.
At the same time, if one considers only the macroscopic part of
the slip, that follows the creeping, and sets the origin of time at
its beginning, one finds again tf ’ p=x0 and tpeak ’ p=2x0.

5. Velocity spectrum

An interesting issue consists in the spectral content SðmÞ of the
sliding speed, defined as SðmÞ ¼ jv̂ðmÞj where v̂ is the Fourier trans-
form of v:

v̂ðmÞ ¼
Z tf

0
e�2ipmt _xðtÞdt: ð26Þ

Note that the boundaries of integration have been reduced to
the support of the function v.

5.1. Coulomb

For the case of Coulomb friction (Eq. (5)) this is extremely sim-
ple since the only characteristic frequency is m0 � x0=ð2pÞ (here
and in the following we drop terms in v0 in the expressions of
velocity, namely the second term in the r.h.s member of equation
(5)):

v̂ðmÞ ¼ Dsb
k

m20 1þ eip
m
m0

� �
m2 � m20

;

or

v̂ðmÞ ¼ Dsb
k

1þ eipf

f2 � 1
;

where f � m=m0. The spectrum increases hyperbolically around the
singularity at m0, with an amplitude directly proportional to the
stress drop. The form of the numerator shows a superimposition
of oscillations at frequency m0.
5.2. Viscous

In the case of viscous friction the process is dominated by the
exponential and we expect to find a long Lorentzian tail
SðmÞ ’ m�2. In fact from Eq. (26), in the case of small damping
(equation (11)), one has:

v̂ðmÞ ¼ xL
x2

0

x

Z tm

0
e�i2pmte�bt sinðxtÞdt

¼ xL
2i
x2

0

x

Z p=x

0
e�fbþið2pm�xÞgt � e�fbþið2pmþxÞgtdt

from which one obtains

v̂ðmÞ ¼ �xL
pme�

bp
x

x
x2

0 e
�i2p2m

x

ðbþ 2ipmÞ2 þx2
:

As expected the spectrum is dominated by a m�2 tail, but in this
case we do no expect harmonics from the numerator.

For the strongly damped case (Eq. (15))

v̂ðmÞ ¼ �xL
x2

0

bþ 2ipmð Þ2 �X2 ; ð27Þ

that is again no harmonics and an inverse square tail but flattening
at high frequencies.

Finally, the viscous critical case (Eq. (17)) has also a simple
spectrum given by:

v̂ðmÞ ¼ �xL
x2

0

ðx0 þ 2pimÞ2
; ð28Þ

or

v̂ðmÞ ¼ �xL
1

ð1þ ifÞ2

where again f � 2pm=x0.

5.3. Rate and state

The spectrum for the DR law has been computed numerically
for the cases investigated in Section 4.3. The resulting curves are
shown in Fig. 9 where one can see that at low frequencies one
has again

SðmÞ � m�2

which is similar to the viscous cases. Moreover, one can see that for
the creeping sleeps the system characteristic frequency m0 ¼ x0=2p
superimposes to the spectrum with its harmonics. Actually this is
expected to occur also for the regular slips.1.

6. Conclusions

In the literature (Bizzarri, 2011 and references therein) it has
been shown that during the coseismic stage of the rupture – i.e,
the time window when shear traction is released and seismic wave
are excited, rate–and state–dependent friction laws (RS) (Ruina,
1983) yield similar results with respect to those predicted by
slip-weakening friction law (Andrews, 1976), provided that the
governing parameters are properly selected. This holds for the trac-
tion behavior on the fault (i.e. the so-called slip-weakening phase
diagram), for the rupture speed (see also Okubo, 1989), for the
spectrum energy density and also for the synthetic seismograms,
i.e., for the time evolution of the ground motions (out of the fault



Fig. 9. Velocity spectrum for slip motion subjected to rate-and-state friction, Eq.
(18), for different values of the initial stress (see Section 5).
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surface; see again Bizzarri (2011)). The comparison between RS
and more simple, let say ‘‘classical” rheologic behavior, such as
Coulomb friction (which prescribes a constant level of dynamic
friction after the rupture onset) or the viscous friction (where the
excited, rate–and state–dependent resistance linearly depends on
sliding speed) +was missing and this work fills this gap.

In the present paper, by considering analytical solutions for a
single spring-slider analog fault model, we have scrutinized the
properties of the solutions of the equation of motions for different
rheologies. The model adopted here, basically a damped harmonic
oscillator, has been the subject of a quite vast body of literature
and it has been employed to describe many aspects of faulting
mechanisms during the whole life of a fault system (namely, the
seismic cycle). Readers can refer to Gu et al. (1984) and to
Bizzarri (2012c) for the general framework and for several exam-
ples of seismological applications. In details, we have considered
the most simple Coulomb friction (Section 2), the case of viscous
friction (Section 3) and a more elaborated version of the rate-and
state-dependent friction, the Dieterich–Ruina model (Section 4).
By comparing the different solutions we obtain, we are able to
highlight some general features, as discussed previously.

There is no reason to overemphasize that the present compar-
ison holds only within the coseismic stage of the rupture, where
the loading rate (of tectonic origin) can be safely neglected in the
equation of motion, and where we do not need any re-
strengthening mechanism (which indeed is a feature of the RS
law only). Indeed, it is important to remark that this is the only
physical assumption we made in the present model. To summarize
the main conclusions of the present work we can state what it
follows.

1. Slip extension s The slip extension results proportional only to
the difference Dsb between the initial stress su and the friction
sf , and inversely proportional to the spring constant k for all the
investigated friction laws, although for RS non obvious additive
constants (e�bp=x) appear. The mass is irrelevant.

2. Maximum slip velocity vpeak The maximum velocity reached dur-
ing the slip is again proportional to Dsb=k but through x0. This
holds for Coulomb and viscous cases and, from our numerical
evidences, for rate-and-state. This result is in agreement with
the laboratory inferences by Ohnaka et al. (1987), which
predicts a direct proportionality between s and Dsb,
vpeak ’ v rDsb=G, i.e., through a proportionality constant which
depends on the speed of the rupture, v r , and the rigidity of
the elastic medium, G. A similar relation emerges from the ana-
lytical solutions of a non spontaneous model (i.e. with prior-
imposed rupture speed) of a rupture on a fault where the fric-
tion is assumed to linearly decrease with increasing distance
from the nucleation point (Palmer and Rice, 1973, cfr. also Eq.
(14) of Bizzarri (2012a)). Our general result (s � Dsb=k) can
not obviously contain any reference to the rupture speed v r

(as the results mentioned above), due to the 1-D nature of our
analog fault model, in which we have only the dependence on
time and we do not have any information regarding the spatial
domain (remember that our simple spring-slider system is
point-like) and thus on the rupture front and velocity.

3. Slip duration tf The slip duration (i.e. the time during which the
slip increases or, equivalently, the support of the slip velocity
function) is proportional to x�1

0 ¼
ffiffiffiffiffiffiffiffiffiffi
m=k

p
for Coulomb and for

viscous rheology, in the small and critical damping cases. For
strong damping tf ¼ 1, since it slows down exponentially, with
a characteristic time 1=b, which also is the tf of the critical case,
where b ¼ x0. We point out that in any case there is no depen-
dence on Dsb. For the investigated cases of rate-and-state tf is
also found independent of Dsb and close to p=x0. This holds
also for the macroscopic slips following a long creeping, if one
considers the end of the preslip as the origin of times.

4. Time of the peak velocity tpeak This quantity seems the more dis-
tinctive among the different friction laws. Indeed, tpeak controls
the different phases of the dynamic motion; in the interval
½0; tpeak� we have the acceleration phase, while in ðtpeak; tf � the
fault experiences its decelerating stage. Our results thus indi-
cate that the acceleration and deceleration durations depend
on the adopted rheologic model of the fault. The p=ð2x0Þ
dependence for Coulomb is replaced by x�1 arctanðx=bÞ for
small damping and the analogous law for strongly damping.
For critical damping one has tpeak ¼ x�1

0 ¼ b�1. The indepen-
dence on Dsb is observed also in the rate and state case, where
also tpeak ’ p=2x0, but only for large values of Dsb. For su
approaching the mobility stress (recall that the mobility stress
edge is l0gm for rate-and-state; see Section 4) we observe
tpeak � expðsu=s0Þ, with s0 a fitting constant apparently close
to x�1

0 (see Fig. 8). Nevertheless, the velocity peak is reached
about p=2x0 after the preslip end.

5. Velocity spectrum SðmÞ The spectrum of velocity for Coulomb is
singular at m0 ¼ �x0=ð2pÞ, with a m�1 decay. For viscous damp-
ing it displays long ’ m�2 tails. The same holds for rate-and-
state. In addition, every time the slip duration tf is finite, har-
monics of the fundamental frequency (that is x0 for Coulomb
and rate-and-state, x for small viscous damping) appear. Just
for comparison, the modified Yoffe function, often employed
as source time function in kinematic inversion (Tinti et al.,
2006, and references cited therein) predicts a similar fall-off
at high frequencies (see Fig. 3 of Bizzarri, 2012a).

All the above mentioned results are resumed in the synoptic
table below, where we have generalized those for the viscous case
to the additional presence of dynamic Coulomb friction sf , dis-
cussed in Section 3.4. We do not have explicit forms for the rate-
and-state tf and tpeak, although some guesses have been done.
(see Table 4).

Appendix A

The invariant form discussed in Section 4.1 can be obtained by
adopting L as unit of length and L=v0 as unit of time, then the adi-
mensional variables z � x=L and h � v0t=L for space and time,
respectively. With the adoption of these variables, by multiplying
Eq. (18) by L=v2

0 one obtains



Table 4
Dependences of the main observables on the parameters of the model in the different rheologic cases we considered in the present work. m is the frequency, SðmÞ is the velocity
spectrum and the other quantities are tabulated in Table 1.

Type of rheology s vpeak tf tpeak high frequency fall-off of SðmÞ
Coulomb (Section 2) 2Dsb

k
2Dsbx0

k
p
x0

p
2x0 ’ ðm2 � m20Þ

�1 (+harmonics)
Viscous – Small damping (Section 3.1) Dsb

k 1þ e�
bp
x

� �
Dsbx

k e�
b
x � arctanðxbÞ

p
x 1

x arctan x
b

� � ’ m�2 (+harmonics)

Viscous – Strong damping (Section 3.2) Dsb
k

Dsbx0
k b�1 ð1Þ arctan X

bð Þ
b

’ m�2

Viscous – Critical (Section 3.3) Dsb
k

Dsbx0
ke x�1

0 ¼ b�1 x�1
0 ¼ b�1 ’ m�2

Rate and state (Section 4) 2Dsb
k +const 2Dsb

mx0
+const ’ p

x0
’ p

2x0
’ m�2 (+harmonics)
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d2z

dh2
þX2

0ðz� zLÞ ¼ �r ðA-1Þ

where

X0 � L
v0

x0

is the adimensional angular frequency and

r � f
L
v2

0

is the adimensional friction stress per unit mass.
The expression of f (recall that f ¼ glðv ;/Þ) is also transformed.

One can rewrite the term v=v0 ¼ _x=v0 in terms of the new length
and time units by multiplying both numerator and denominator
by L=ðL=v0Þ thus obtaining

v=v0 ¼ v
L

L
v0

,
v0

L
L
v0

¼ dz
dh

,
1:

In addition one can define the adimensional state ’ m�2 variable

w ¼ v0

L
/;

and turn in a similar fashion the evolution Eq. (19) into

_/ ¼ dw
dh

¼ 1� v
L
/ ¼ 1� dz

dh
w

thus obtaining, by indicating d=dh with a prime, 0,
l ¼ l0 þ a ln z0 þ b lnw

and

w0 ¼ 1� z0w;

By setting l0gL=v0 ¼ r0; agL=v0 ¼ a and bgL=v0 ¼ b one has finally
the set of equations

z00 þX2
0ðz� zLÞ ¼ �r ðA-2Þ

with

r ¼ r0 þ a ln z0 þ b lnw ðA-3Þ
with

w0 ¼ 1� z0w; ðA-4Þ
which are independent of the values of L and v0.

Appendix B

B.1. Integration of the state variable

Expression (25) derives by the direct integration of the second
of Eq. (19). To see this let us notice that this equation can be rewrit-
ten as
_/þ _x
L
/ ¼ 1; ðB-1Þ

and that the left hand side member of the latter can be written as an
exact differential. In fact from the identity

1
f
dðf/Þ
dt

¼ _/þ
_f
f
/; ðB-2Þ

if we set _f=f ¼ _x=L, so that

f ðtÞ ¼ f ð0ÞexðtÞ=L: ðB-3Þ
then the l.h.s. member of (B-2) equals that of (B-1), which therefore
sounds now

1
f
dðf/Þ
dt

¼ 1

from which

dðf/Þ ¼ fdt;

that can be integrated to yield

f ðtÞ/ðtÞ � f ð0Þ/ð0Þ ¼
Z t

0
f ðt0Þdt0:

From the above equation we can then obtain an expression for
/ðtÞ:

/ðtÞ ¼ 1
f ðtÞ f ð0Þ/ð0Þ þ

Z t

0
f ðt0Þdt0

� �
:

By using f given by (B-3) one finally gets Eq. (25) (note that f ð0Þ is
irrelevant).

B.2. Numerical iteration

By discretizing time into intervals of width dt and by indicating
with the subscript n the quantities at time tn ¼ ndt, it is easy to see
that / can be computed recursively from the above equation. In
fact we have

/n ¼ e�xn=L In þ /0ð Þ ðB-4Þ
where

In ¼ dt
Xn
i¼1

exi=L:

By noticing that in the same way

Inþ1 ¼ dt
Xnþ1

i¼1

exi=L

one can write recursively

Inþ1 ¼ In þ dt expðxnþ1=LÞ: ðB-5Þ
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One can use this equation to derive a similar recursion for /nþ1.
By using the fact that xn ¼ Pn

i¼1dxn one can write from (B-4) and
from (B-5)

/nþ1 ¼ e�xnþ1=L Inþ1 þ /0ð Þ ¼ e�ðxnþdxnþ1Þ=L In þ dtexnþ1=L þ /0

	 

from which

/nþ1 ¼ e�dxnþ1=L e�xn=LðIn þ /0Þ þ dtedxnþ1=L
	 


and thus finally

/nþ1 ¼ e�dxnþ1=L/n þ dt: ðB-6Þ
This recursive algorithm considerably speeds up calculations

with respect to the Runge–Kutta technique. In addition, we have
verified in simple exactly integrable cases (with v ¼ const and
v ¼ L0=ðt0 þ tÞ, where L0 and t0 are arbitrary constants) that it also
yields more accurate results. Anyway we have performed all com-
putations maintaining both methods in order to compare the
results.

It is important to emphasize that our recursive method pre-
scribes a constant time step, dt. This is not problematic, since we
consider here only the coseismic stage of the motion, so that the
auto-adaptive RK method employed to solve seismic cycle, e.g.
Bizzarri (2012c) and references cited therein-would be useless.

We can see that the algorithm is consistent with Eq. (19) by
going back. From Eq. (B-6) one has

/nþ1 � /n ¼ ðe�dxnþ1=L � 1Þ/n þ dt

that by expanding in a Taylor series the function e�dxnþ1=L to the first
order in dt yields

/nþ1 � /n � � dxnþ1

L
/n þ dt:

By dividing it by dt

/nþ1 � /n

dt
� � dxnþ1

dt
1
L
/n þ 1

and by taking the limit d ! 0 one gets

_/ ¼ 1� _x
L
/

c.d.d.
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