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Nonlinear feedback oscillations in resonant tunneling through double barriers
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We analyze the dynamical evolution of the resonant tunneling of an ensemble of electrons
through a double barrier in the presence of the self-consistent potential created by the charge ac-
cumulation in the well. The intrinsic nonlinearity of the transmission process is shown to lead to
oscillations of the stored charge and of the transmitted and reflected Auxes. The dependence on

the electrostatic feedback induced by the self-consistent potential and on the energy width of the
incident distribution is discussed.

In recent years there has been renewed interest in the
phenomenon of resonant tunneling (RT) through double
barriers. The unique capabilities of molecular-beam epi-
taxy make it possible to investigate fundamental questions
on RT through simple man-made potentials by controlling
the barrier and well parameters (e.g. , height, thickness, or
barrier phase area) down to the atomic scale. '

In this paper we investigate the dynamics of RT of
ballistic electrons in the presence of the potential created
by the charge trapped within the well. This problem is
interesting not only from a technological point of view but
also as a test of quantum-mechanical nonequilibrium situ-
ations in which many particles are involved.

The model we propose tries to describe the following
situation. A group of electrons is created within a contact
layer and launched towards embedded layers forming a
double-barrier potential. The charge dynamically trapped
by the resonance will produce a reaction field which
modifies the time evolution of the system. An exact treat-
ment of such a problem looks very complicated. We as-
sume a decoupling between the longitudinal (in the direc-
tion x of motion perpendicular to the double barrier) and
transverse degrees of freedom. This is a common assump-
tion in treating tunneling phenomena. It makes the prob-
lem one dimensional and allows the following factoriza-

I

tion of the wave function:

'P( x, lx, 2. . . , x~,t)'
@(x i, x 2, . . . , Xlv, t )0 (j I,z I,p 2,z 2, . . . ,.p Jv, z~,' t ),

where x—= (x,y, z) are the coordinates of each electron and
t represents the time. We remark that antisymmetry of +
is established if we take, for example, @symmetric and 0
antisymmetric in their arguments. The experimental set-
up we have in mind ideally puts all the electrons in the
same high-energy longitudinal state while the transverse
degrees of freedom are essentially decoupled. ' Therefore
the choice (I) with @symmetric is the only possibility. In
other words, the transverse degrees of freedom ensure that
the Pauli principle is obeyed.

Finally, we assume the electrons in the group at the ini-
tial time are uncorrelated, which corresponds to a choice
of @ as a product state of single-particle states y(x, 0).
At this point theorem 5.7 of Ref. 3 guarantees in the
mean-field approximation (which is reasonable due to the
large number of electrons involved) that the state @
remains a product state during its evolution and allows us
to write the following self-consistent equation for y(x, t):

i h i'(x, t) =
8t

Q
2 2 fO

, + V(x)+ W(t, t';x, x')iieet(x', t')i'dt'dx' y(x, t) .
2m

The external potential V(x) is assumed, as customary,
to be composed of step functions (no electric field is ap-
plied):

V(x) =V, [e(x a)e(b x)+e—(x c)e—(d x)1,—(3)—
with a & b & c & d and where e(x) is the Heaviside func-
tion. The kernel W(t, t';x, x') is modeled assuming that
memory effects can be neglected, i.e., W~ 8(t —t'). We

I

represent the global repulsive feedback effect, induced by
the charge localized in the well, by a shift of the bottom of
the well to a higher energy, Vg(t), proportional to the
charge, i.e.:

„W(t, t ';x,x') t y(x', t ')
i
'dt 'dx'

(t)aV, e(x —b)e-(c —x) . (4)
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Q(t) is the charge localized in the well at time t and Qo is

a normalization charge which depends on the shape of the
initial state, assumed localized around xp..

I X0+(C—b)/2
Qo= ( ) dx I

w(x', 0) I
'.

(5)

' 2
X Xp

exP —— +ikpx
2 G

(6)

with energy spread [energy full width at half maximum of
the square modulus of the Fourier transform of (6)]

Qo introduces an artificial dependence of Eq. (2) on the
initial condition. We have used this parametrization to
make the comparison of different numerical simulations
easier. The parameter a in Eq. (4) can be varied to repro-
duce phenomenologically the response of the medium to
the charge trapped in the well and the characteristics of
the incident electron group, i.e., its areal density n, . It is

proportional to e n, /CVo, where e is the electronic charge
and C is the double barrier capacitance per unit area.

The one-particle state which is the initial condition in
our mean-field equation [Eq. (2)] has been chosen to be a
Gaussian-shaped superposition of plane waves with mean
momentum Akp..

I o=2Jln2h ko/mcr. xo is chosen so that at the initial
time no appreciable charge sits in the well, i.e., Q(0) =0.

The solution of the diA'erential equation [(2)-(5)] with
the initial condition (6) has been achieved by a numerical
integration on a two-dimensional lattice. Assuming for
the barrier and well widths the values b —a =d —c =20ao
and c —b=15ao (an=0. 529 A, being the Bohr radius)
and for the barrier height 0.3 eV and using for m the
free-electron inass, the potential V(x) exhibits a single
resonance in the transmission coefficient at energy
ER =0.15 eV, the shape of which is well approximated by
a Lorentzian of full width I R=5 meV. The choice of
these parameters was a compromise between the require-
ment of standard technological values and that of reason-
able computation times. The electron mass was set to its
free value to avoid the complications of a space-variable
eA'ective mass.

The mean energy of the incoming state has been chosen
so as to satisfy the resonance condition h ko/2m =Eral.
Finally, the normalized charge in the well, Q(t)/Qo, has
been plotted as a function of time. The results for
diA'erent choices of the parameter a are shown in Figs.
1-4 in the case of states with energy spread larger, of the
order of, and smaller than the resonance width.

Figure 1 represents the scattering of a wave packet on
the fixed double barrier (linear Schrodinger equation).
When the packet is energetically much wider than the res-
onance, the buildup and the decay of the charge are asym-
metric, the decrease following the law exp( —t / r) with
z=h/I R (decay of a Lorentzian-shaped quantum state).
On the other hand, for a wave packet narrower than the
resonance, the charge presents a symmetric behavior, like
the law exp[ —[(t —to)/r] j, where r =cr/vo =241n26/I o,
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FIG. 1. Time development of the normalized charge trapped
in the well in the ease of the linear Schrodinger equation, i.e.,
a =0, for incident states with energy spread much wider
(I o =43.2 meV), of the same order of (I 0=5.8 meV), and much
smaller (I o=0.8 meV) than the resonance width (I R=5 meV).
An atomic unit of time corresponds to 4.83 x 10 "s.
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FIG. 2. As Fig. 1 but in the case of eAective nonlinearity in
the Schrodinger equation with a =0.1.
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Figs. 2-4. We also notice that for very large a the charge
tends to disappear due to the smallness of the transmitted
amplitude.

We then try to understand the oscillating behavior. Let
us assume that this phenomenon is due to the competition
of two processes: (a) the filling up of the well by the in-
coming wave packet and (b) the natural decay of the
trapped charge. For the process (a) the time scale is of
the order of l't/I o (this estimate appears more accurate for
states narrower in energy than the resonance width). For
the process (b) a reasonable time scale is lt/I t, where
I z is the energy spread of the function to be integrated in

Eq. (7) (spectral decomposition of the transmitted
charge). Oscillations are then expected if a substantial
crossover of I t and I p is realized for the Vg values
reached during the time evolution. The analysis of
the function

~ y(k, 0)
~ ~

t t (k)
~

shows that I"q rises

from, approximately, r,r, /(ro+I ~)' at V12=0, to a
maximum greater than I o (position and amplitude of the
maximum are roughly proportional to I o/I ~) and, even-
tually, decreases to I p. As a consequence, when I p(&r, ,
I z is very close to I p and independent of Vg. No oscilla-
tions are possible in this case for any values of a. On the
other hand, when I p ~ I g, I y crosses I p at some Vg,' os-
cillations are then realized for a suKciently high value of
a. This critical value of a increases with the ratio I o/I R.
These predictions agree quantitatively with the results of
the simulations reported above.

The geometry considered here can be implemented by
ballistically launching electrons into a double barrier in-
serted in the thin ( & 1000 A) base of a unipolar transis-
tor. The predicted range of oscillations (~ 1 ps) should
be detectable with electro-optical sampling techniques.
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