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ABSTRACT. The resonant tunneling of electrons through a double barrier is analyzed 
from a dynamical point of view. When a self consistent potential, representing the 
effect of the electrostatic feedback induced by the charge trapped in the well, is taken 
into account, the non linearity of the transmission process can lead to oscillations of 
the transmitted fluxes. This behavior is shown to depend sensitively on the energy 
spread of the incident electron distribution and on the intensity of the electrostatic 
feedback. 

INTRODUCTION 

In recent years there has been renewed interest in the phenomenon of resonant 
tunneling (RT) through double barriers. This interest has been greatly stimulated 
by the ability to synthesize double barriers with precisely tailored potentials using 
epitaxial crystal growth techniques such as molecular beam epitaxy (MBE). 

Following the first demonstration of RT through semiconductor double bar
riers1, in recent years many groups have studied the physics and device application of 
RT in semiconductor nanostructures2 • MBE allows one to control the layer thickness 
and tune its composition down to the atomic scale (1-2 monolayers). This unique ca
pability makes it possible to investigate fundamental questions on RT through simple 
model potentials by varying the barrier and well parameters (e.g. height, thickness 
or barrier phase area). Such questions include the tunneling times and the time con
stant required to establish the steady state resonant transmission3 - 4 , the influence 
of scattering5 and the effect of charge accumulation in the well on the time dynam
ics of the process. The latter is still poorly understood; investigations so far have 
been limited to measurements of the charge density dynamically stored in the well 
under stationary or quasi-steady state conditions, and of its escape time following 
photoexcitation of electron hole pairs in the well6 • It has also been pointed out and 
demonstrated that the dynamical storage of electrons in the well leads to bistability 
in the current voltage characteristics7 • 

In a recent paper8 we have investigated for the first time the RT time dynamics 
of wave packets in the presence of the self-consistent potential created by the charge 
accumulation in the well. The intrinsic nonlinearity of the transmission process is 
shown to lead to intriguing nonlinear oscillations of the stored charge and on the 
transmitted and reflected fluxes. T he latter are shown t o dep end sensitively on the 
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electrostatic feedback induced by the self-consistent potential and on the spread of 
the incident electron distribution with respect to the resonance width. 

THE MODEL 

From a mesoscopic point of view the modelling of the RT of electrons through a 
heterostructure as the evolution of a wave packet impinging on a fixed one-dimensional 
double barrier is only a crude approximation. More realistically, during the evolution 
of the tunneling process, accumulation of charge carriers takes place within the res
onant well. A dynamical analysis of RT must thus consider the evolution of a many 
particle system. In the spirit of a Hartree-like approximation9 , we may assume the 
mean field equation: 

i1i:t1/J(x,t)= [-:::~2 +V(x)+ J W(t,t';x,x') l1/J(x',t'Wdt'dx']1/J(x,t) (1) 

In this simplified model the fermion nature of the carriers, as well as higher-dimensio
nality effects, e.g. elastic scattering with momentum transfer in the plane perpen
dicular to the symmetry axe of the potential, are ignored. In absence of an applied 
electric field, the external potential, V(x) , is assumed, as customary, to be a step 
function: 

V(x) = V0[0(z- a)O(b- x) + O(x- c)B(d- x)] 

with a< b < c < d and where B(x) is the Heaviside function. 

(2) 

The nucleus W( t, t'; x, x') is modelled assuming that memory effects can be 
neglected, i.e. W ex: 8( t - t'). This implies that the repulsive potential due to the 
charge trapped in the well acts instantaneously on the wave packet. The approxima
tion is good since the characteristi-c interaction time (d- a)fs, where sis the speed 
of light in the medium, is much less than the relevant tunneling time. Moreover it 
is reasonable to represent the global repulsive feedback effect, induced by the charge 
localized in the well, by a shift of the bottom of the well to higher energy, i.e.: 

J W(t, t';x,x')I1/J(x',t'Wdt'dx' = VQ(t)O(x- b)O(c- x) (3) 

with 

(4) 

Q(t) is the charge localized in the well at time t and Q0 is a normalization charge 
which depends on the shape of the initial wave packet, assumed localized around 
x 0 <a: 

Q(t) = lc dx'j1/J(x' , t)j 2 j
:to+(c-b)/2 

Qo= dx'I1/J(x',OW 
:to-(c-b)/2 

(5) 

Note that Q0 introduces an artificial dependence of the potential ( 4) on the initial 
conditions. We use this parameterization as it makes easier the comparison between 
different numerical simulations. The parameter a in Eq. (3) can be varied to re
produce phenomenologically the response of the medium in the well to the charge 
trapped in it. 

The initial wave packet has been chosen to be a gaussian shaped superposition 
of plane waves with mean momentum 1ik0 : 

1 [ 1 (X - Xo) 
2 

. ] 1/J(x,O) = ~exp - 2 -u- +tk0 x (6) 
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u gives the entity of localization in :r-space of the packet. Its Fourier transform, 

;J(k,O) = fJ;exp [-~(k ;_:
0

) 

2 

-ix0(k- ko)] (7) 

gives the energy spread ro (full width at half maximum of the square modulus of (6)) 
of the packet: ro = 2v'ln2 h2 ko/mu. :ro is chosen so that, at the initial time, the 
wave packet is very distant from the double barrier and no appreciable charge sits in 
the well, i.e. Q(O) = 0. 

NUMERICAL SOLUTION 

The solution of the differential equation (1-5) with the initial condition (6) 
has been achieved by a numerical integration on a two-dimensional lattice. As in the 
case of the standard Schrodinger equation, it is convenient to use a finite-difference 
temporal-evolution operator in the Cayley form10•11 , which has the advantage of pre
serving the norm of ?j;(x, t). This is a conserved quantity if the nucleus in (1) is real. 
The finite-difference version of Eq. (1) reduces to a linear tridiagonal system which 
can be solved to obtain ?j;(x, t + D.t) from ?j;(x, t) considered as known. Starting from 
Eq. (6) the wave function is calculated step by step at any point of the chosen lattice. 

The computation time imposes some restrictions on the choice of the potential 
parameters in (2). This time, in fact, grows almost quadratically with the spatial 
width u of the wave packet. The analysis of a wave packet with energy spread much 
smaller than the resonance width, becomes, then, impracticable if the resonance width 
is too small. Here we report the results of Ref. 8 where a compromise between 
standard technological values and reasonable computation times has been achieved 
assuming for the barrier and well widths the values b - a = d - c = 10.6 A and 
c - b = 7.9 A and for the barrier height 0.3 e V and where for m the free electron 
mass has been used . With these parameters the potential V(x) exhibits a single 
resonance in the transmission coefficient at energy ER ~ 0.15 eV, the shape of which 
is well approximated by a lorentzian of full width at half maximum r R ~ 5 me V. The 
electron mass was set to its free value to avoid the complications of a space variable 
effective mass. 

An example of the above dynamical analysis is shown in Fig. 1 in the case of 
linear RT, i.e. for a= 0. The starting wave function, Eq. (6), has been chosen so as 
to satisfy the resonance condition, e.g. h2 k~ / 2m = ER. The wave function at later 
times has been then calculated and its square modulus is plotted, at different times. 
All the relevant quantities, such as the normalized charge in the well, Q(t)JQ0 , or 
the transmitted flux at a given point, can be extracted from this analysis because the 
wave function 1/J(x, t) is known. 

From now on, we concentrate on the analysis of the charge dynamically trapped 
in the well. Some results, for different choices of the parameter a, are shown in Fig. 2 
in the case of wave-packets with energy-spread much larger, of the order of and much 
smaller compared with the resonance width. 

The case a = 0 represents the scattering of a wave packet on the potential of 
Eq. (2) (linear Schrodinger equation). When the packet is energetically much wider 
than the resonance (ro = 43.2 meV) the building up and the decay of the charge 
are asymmetric, the decay following10 the law exp(-t/r) with T = h/rR· This 
is the decay law of a quantum state whose spectral decomposition in plane waves 
has a lorentzian shape. On the other hand, for a wave packet narrower than the 
resonance (r 0 = 0.8 m e V) the charge presents a symmetric behavior governed by the 
law exp[- ((t - t 0 )/r)2

] where T = u/v0 = 2v'ln2 h/ro, to~ [(b + c)/2- xo]/vo and 
v0 = hk0 /m (free evolution of a gaussian-shaped quantum state for negligible time
spreading). This latter result is not surprising, since now the wave packet traverses the 
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double barrier almost undistorted because every Fourier component sees a nearly unity 
transmission coefficient. In the case of a wave-packet with energy-spread comparable 
to the resonance width the evolution of the trapped charge interpolates between these 
two extreme behaviors. 

When the non linear term is effective, i.e. a -of 0, the evolution of the trapped 
charge changes drastically and oscillations can appear. This phenomenon has been 
suggested for the first time by Ricco and Azbel3 • Their reasoning was very simple. At 
the initial time no charge is present in the well, the wave packet is moving towards the 
double barrier and the resonance condition is fulfilled. When some charge penetrates 
into the well, the modification of the potential destroys the resonance condition. As 
a consequence the quantity of trapped charge has a maximum followed by a decrease. 
The resonance condition tends to be restored and a new cycle begins. However, 
as it will appear in the following, the nonlinearity makes the interpretation of the 
phenomenon more complicated. For example, the conclusion by Ricco and Azbel 
that the above effect should be maximal for monochromatic waves is not correct. 

l=O.O l=0.6 t=1.3 

t=2.0 t=2.6 t=3.3 

t=3.9 t=5.2 

FIGURE 1. Example of time evolution of a wave packet impinging on a res
onant double barrier. The position probability density, 11/J(:z:, tW, is shown in each 
box at the indicated time (in 103 atomic units). The conversion of the atomic units 
of time to seconds is 1 a.u. ~ 4.83 10-17 .s. The wave packet is moving from left 
to right against the double barrier positioned as indicated in the box at t = 0. The 
packet fulfills the r esonance condition n2k~/2m = ER but has an energy spread, 
ro = 43.2 meV, much greater than the resonance width, rR = 5 meV, and, as a 
consequence, is almost completely reflected. 
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FIGURE 2. Time development of the normalized charge trapped in the well 
for wave packets with energy spread much wider (!'0 = 43.2 meV ), of the same order 
of (I'o = 5.8 meV) and much smaller (I'0 = 0.8 meV) than the resonance width 
(I' R :::::: 5 me V ). The results are shown for various values of the feedback intensity 
parameter, a. 
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ANALYSIS OF THE RESULTS 

A detailed analysis of our global numerical simulations for different values of 
a and u suggests the following observations. Oscillations are present, for appropriate 
values of the strength of the non linear term, a:, only when the energy spread of the 
wave packet is wider or comparable to the resonance width. No oscillations are seen 
for a nearly monochromatic wave-packet (ro = 0.8 meV). When a increases, the 
oscillations, if present, tend to increase in number but decrease in amplitude. 

To understand these results, let us, first, interpret the dependence of the in
tensity of trapped charge as a function of the parameters a and r 0 • We reduce the 
question to a stationary problem concentrating on a time-average of the charge dy
namically present inside the well. Since during the time evolution Vq(t) and Q(t) 
are related to each other by Eq. (4), a similar relation has to hold between the time 
averaged quantities denoted by Vq and Q. Let us suppose, now, that we have a 
time independent situation with the bottom of the well at the level Vq. As can be 
shown by explicit calculations, the charge Q present in the well is a fraction 1 of the 
asymptotically transmitted charge QT[12l : 

(8) 

where ltvq ( k W is the transmission coefficient of the depicted potential. Eq. (8) 
can be inserted in the time-averaged version of Eq. (4) to obtain a self consistent 
relationship for Vq (or Q): 

Vq = /QT(Vq) 
aVo Qo 

(9) 

The two sides of this equation are plotted in Fig. 3 for different- values of a and 
ro; their intersection points represent our estimate for the time-averaged normalized 
charge trapped in the well during the interaction of the packet with the double barrier. 
The factor 1 is fixed by imposing that for a = 0 the corresponding numerical results 
of Fig. 2 are reproduced. As expected it is of the order of unity. When a =/:- 0 Fig. 3 
predicts correctly the time-averaged charges obtained from Fig. 2. 
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FIGURE 3. Self-consistent estimate of the mean normalized charge trapped 
in the well for different values of the parameters Q and ro. 
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FIGURE 4. Estimate of the well filling up rate from the results of Fig. 2 for 
a = 0; t0 is the instant at which the charge trapped in the well is at its maximum 
value, Q(t0 ) . For the case fo = 0.8 meV, the plot is well represented by tlle law 
/t- t01/T with 7' = 2vln'21i/f0 • In the other cases only the leading edge of tlle 
wave-packet (t < to) is approximatively fitted by this law. 
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Let us now interpret the oscillating behavior. We assume that this phenomenon 
is due to the competition of two processes: a) the filling up of the well by the incoming 
wave packet and b) the natural decay of the trapped charge. For the process a) the 
characteristic time scale can be deduced by studying the rising of the trapped charge 
in Fig. 2 at a = 0. The question is simple for a wave packet with energy spread much 
narrower than the resonance width. In this case Q(t) strictly follows, as explained, 
the law Q(t) ~ Q(t0 )exp[-((t- t0 )/r)2] with T = 2v1n"2 h/fo. For packets with 
greater energy spread. this law remains approximatively valid when t < t0 , as shown 
in Fig. 4. As a consequence, r 0 /Ti is a reasonable rate of the process a) in all the cases. 
For the process b) a reasonable rate is fvq /Ti, where fvq is the energy spread of the 

function l~(k,O)j2 ltvq(k)l2. In fact, as shown by Eq. (8), it represents the spectral 
decomposition of the charge trapped in the well. The shape of fvq as a function of 
VQ is shown in Fig. 5 for various choices of r 0 • fvq rises from, approximatively, 

rorR; Jr5 + fh at Vq = 0 to a maximum greater than ro and, eventually, decreases 
to ro. 
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FIGURE 5. Shape of fvq as a function of VQ for different values of tl1e wave 
packet energy spread (squares: f 0 = 43.2 meV, lozenges: f 0 = 5.8 meV, circles: 
fo = 0.8 meV ). fvq asymptotically tends to the corresponding f 0 (solid lines). fvq 
and fo are proportional to the escape rate of the charge from the well and to the 
filling up rate of the well, respectively. 

The oscillating mechanism can be understood from the behavior of fvQ as 
a function of the charge dynamically trapped in the well. At the initial time no 
charge sits in the well and VQ = 0. The filling up rate is greater than the decay rate 
(fo > fvq) and the charge in the well builds up. As the potential in the well, Vq, 
increases the decay rate of the charge speeds up. At a critical value of VQ, the decay 
rate becomes greater than the filling up rate (fvq > f 0 ). The charge trapped in the 
well reaches a maximum and then decreases thus reducing Vq. Another cycle can 
start again (ro > rvq ). 
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From Fig. 5 it is evident that when ro « rR, rvQ is very close to ro and 
almost independent of VQ. No oscillations are possible in this case for any value of a. 
On the other hand, when ro ~ rR, fvq crosses the value fo at an appropriate VQ. 
Then oscillations are realized for a sufficiently high value of a. This critical value of 
a, is deduced by inserting the critical value of VQ in Fig. 3. It increases with the 
ratio f 0/fR in agreement with the numerical results. 

CONCLUSIONS 

We have proposed a model of resonant tunneling based on a non linear Schro
dinger equation. This model shows dynamical oscillat ions in all relevant quantities, 
such as transmitted and reflected fluxes, for appropriate values of the feedback inten
sity a and for ro 2 rR. The latter is a well satisfied condition in resonant tunneling 
experiments2

• The fulfillment of the other condition is more subtle. Let us imag
ine that in the mean field limit the wave packet '1/J(x, t) describes the longitudinal 
motion of a bunch of electrons with transversal areal density eN/ A, e being the elec
tron charge. The model feedback potential of Eq. ( 4) can be then equated with 
the electrostatic potential energy difference between two charged sheets with charge 
areal density eQ(t)N/A separated by a distance l of the order of (b + c)/2- a. As 
a consequence we obtain, in the Gauss system, the estimate a= 41Te2 lQ 0 N/(tV0 A) 
where f is the dielectric constant of the medium. In the case when f 0 = 43.2 meV 
the oscillating behavior occurs in the above simulations for a 2 1. For a typical value 
of the dielectric constant t ~ 13 this implies Nf A 2 1014cm-2 • 

A tunneling experiment with time resolution in the femtosecond range could 
test the predictions of our model and perhaps exploit them from a device point of 
view. The present availability of femtosecond lasers and the possibility of changing 
the barrier parameters to increase the period of the oscillations should make the task 
of observing these effects realizable. 
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