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Application of the path-integral approach to continuous measurements leads to effective Lagrangians or Hamiltonians in which 
the effect of the measurement is taken into account through an imaginary term. We apply these considerations to nonlinear 
oscillators with use of numerical computations to evaluate quantum limitations for monitoring position in such a class of systems. 

Several numerical experiments have shown that 
quantum-classical correspondence in chaotic dy
namics seems to be anomalous [ 1]. In particular, it 
has been suggested that nonlinear systems showing 
chaotic behaviour in a classical regime may exhibit 
suppression of their stochasticity when quantization 
is taken into account [ 2]. However this suppression 
should appear on a time scale so short that the clas
sical chaotic behaviour could not be observed in real 
systems. To recover the Liouville dynamics use of 
the quantum measurement process has been sug
gested [ 3] . In ref. [ 4] an example of a chaotic sys
tem in a quantum regime under instantaneous mea
surements has been investigated. 

The quantum measurement processes for contin
uous monitoring of some observables of a dynamical 
system may be taken into account through the path
integral formalism [5-7) and offers the possibility 
to investigate in a general way suppression of quan
tum behaviour. It is therefore interesting to apply this 
method to nonlinear systems, specifically those pos-

sessing chaotic properties in the classical regime, 
having as a main goal the study of quantum suppres
sion of chaotic behaviour in such a class of systems. 
In this Letter we deal with the development of a 
technique based upon numerical integration of an 
effective Schrodinger equation and applicable to 
continuous quantum measurements in nonlinear 
systems. As an example a nonlinear oscillator will be 
investigated. 

The path-integral approach to continuous mea
surements is essentially based upon restriction of 
Feynman path integrals [ 5) . The integration is re
stricted to the set of paths compatible with the in
formation, namely the given output of the continu
ous measurement. If the system moves between the 
points of the space-time (x' , 0) and (x", r) the re
sult of integration K 1a 1 (x", r; x', 0) depends on the 
measurement output [a) = {a (t) iO~t~ r} . This can 
be interpreted in two different ways. Firstly, it rep
resents the probability amplitude for the measure
ment output a( t) in the time interval r given the po-
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sit ions of the system x ' and x" before and after the 
measurement. Secondly, it can be seen as a propa
gator for the system subject to the continuous mea
surement given the output of the measurement. The 
restriction of the path integral on some set of paths 
compatible with the measurement output can be ef
fectively done with the help of a weight functional 
w1a 1 [x ] depending on the measurement output a(t) 

and decaying outside the set of paths compatible with 
a( t ), 

K 1a 1 (x", -r; x', 0) 

= J d [x ] expG J L(x, x, t) dt)w raJ [x] . (I) 
0 

For example, if the coordinate x is monitored with 
error Lla and the result of the measurement is a(l), 
the weight functional w1a 1 [x ] selects those paths x(t) 
in the corridor centered around a(t) and having a 
width Lla (see fig. I). A simple choice is a Gaussian 
weight functional 

r 

w1ar[X]=exp(- ,Lz f [x(t)-a(l)jldt) . (2) 
0 

The restricted path integral is then 
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Fig. I . A continuous measurement of position leads to a corridor 
centered at the measurement result a ( 1) where the most probable 
paths lie. 

r 

K1a 1( x ", -r;x' ,0)= J d[x ]expGI L(x,x, t)dt 
0 

t 

- r1az I (x-a)z dt). 
0 

(3) 

It is important to observe that the resulting path 
integral may be considered as describing a free (i.e. 
not measured) system but with effective Lagrangian 
having an imaginary term due to the measurement 
[ 8], 

. . ifz ] z 
L . rr(X, X, t) =L(x, X , t) + ~ [x - a( t) . 

rua 
(4) 

This contribution produces a decrease of the density 
of the system in the configuration space far from 
x(t)=a(t). The decrease is linked with the restric
tion of the alternatives due to the measurement per
formed ~ •. Finally the effective Lagrangian is time
dependent even if the original Lagrangian is not. 

In order to estimate a probability distribution for 
the measurement output of a physical system we 
consider the convolution 

IJaJ = ( t/Jzl KraJ I r/J1 ) 

= I I f/JHx" )KraJ (x" , -r; x ', 0)1/)1 (x' ) dx' dx" . 

(5) 

According to the first interpretation of K1a1 the 
quantity I raJ is a probability amplitude for the mea
surement to give the output a( t) under the condition 
that the system has been in the state 1/)1 before the 
measurement and in the state t/Jz after a time -r. The 
probability distribution for the measurement output 
is then 

PraJ= f d[a] ll raJ I2 . 
(6) 

Note that P1a 1 depends upon the instrumental un
certainty !la. 

The amplitude Ira! can be also written as a scalar 
product, 

(7) 

., For a detailed discussion of this effect and the related irrev
ersibility introduced during the measurement see ref. [ 9]. 
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where 

'!11a 1(x",r)= f K 1a 1(x",r;x' ,0)¢>1(x')dx' . (8) 

According to the second interpretation of K 1a 1 the 
wave function lfiaJ (x, t) represents the evolution at 
time t of the state ¢> 1 ( x ) under the action of a con
tinuous measurement with output a(t). This also 
means that lfLaJ(x, t) can be found as the solution 
of the time-dependent Schrodinger equation 

(9) 

with an effective Hamiltonian Herr corresponding to 
the Lagrangian Lerr in ( 4) and with the choice 
lf[a J (x , 0) = 11'>1 (x) . 

The time dependence of the effective Hamiltonian 
Herr makes analytical calculations difficult. In this 
case one may more simply evaluate P1a 1 through the 
Feynman propagator K 1a J· However, due to the qua
dratic nature of the measurement contribution to Lerr, 
analytical calculations are essentially restricted to the 
case in which L(x, x, t) is a linear oscillator. In gen
eral a numerical approach must be followed and in 
this case the Schrodinger formalism is more suitable. 
The partial differential equation ( 9) is reduced to a 
simple finite difference recursive equation by choos
ing a proper lattice to simulate the continuous space
time [I 0 ]. No particular problems arise from the 
time dependence and the non-Hermitian nature of 
the differential opera tor H err [ II]. 

In order to understand the behaviour of a nonlin
ear system let us first consider a linear oscillator 

( l 0 ) 

In this case analytical results have been obtained al
lowing a test of the numerical technique. The effec
tive Lagrangian corresponds to a forced linear 
oscillator 

2in in , 
- -- a( t )x+-a( t )-

r~a 2 r~a 2 
(II) 

with renormalized complex frequency 

' , 2ili w--w -- ---, - mr~a 2 · 
( 12) 

For any choice of the measurement output a( t) the 
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propagating kernel K 1a 1 can be easily calculated [ 12]. 
Let us consider what happens when the quantum 
system is in the ground state of the unmeasured os
cillator before and after the period r of the contin
uous measurement, 

( mw)
114 

( mw 2) ¢> 1(x)= ¢>2 (x)= ~ exp -lhx . ( 13) 

Due to the shape of ¢ 1 and ¢>2 it is natural to choose 
the null boundary conditions a ( 0) =a ( r) = 0 for the 
measurement output a(r). Any such function a(t) 
can be written as a Fourier sine series. We consider 
only measurement outputs of the form 

a(t)=fsinQ,t, Q, =nrr./ r, ( 14) 

where n is an integer number. For a fixed Q, the 
probability distribution Plal is reduced to a function 
of the amplitude «:. P( f ) is a Gaussian function of 
width ~acrr, 

( 15) 

where 

~a;r1 =2Re{-~-, (t- 22in, z) 
2~a- mr~a (Q~-w , ) 

4nQ~ 

mwr2~a4 (Q~ -w ~l 

X [I - i : (cot ( W, r) + si~ C ~; ~)) r 1} • (1 6 ) 

The meaning of ~acrr is linked to the role of the 
measurement device during the evolution of the sys
tem under measurement. When the instrument error 
~a is large in comparison to the characteristic quan
tum scale of the system under measurement, 
J h! mw in this case, the corridor shown in fig. l 
contains the classical trajectory (with null boundary 
conditions ) . Thus the classical limit is 

~ac = lim ~aerr =I:!. a . ( 17) 
~a •cc 

On the other hand when f:J.a becomes small quantum 
noise arises. Also corridors far from the classical tra
jectory are probable. The quantum limit is written as 
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.1aq = lim AaciT 
aa~o 

( 18) 

i.e. the effective error .1aerr diverges as .1a - 112
. In an 

intermediate situation AaeiT interpolates between 
these two limits always maintaining values larger than 
the instrumental error. In fig. 2 the behaviour of .1aciT 
versus .1a is shown for three different values of the 
ratio Qnf w. As shown in ( I 7) and ( 18) , while the 
classical limit is the same for all the situations, dif
ferent behaviours appear in the quantum regime. The 
minimum effective uncertainty is maximum at the 
resonance condition Qn = w. In this case always 
.1acfT~ J fl/ mw. When Qn i" w the minimum effec
tive uncertainty estimated by the intersection be
tween quantum and classical limits decreases as 
(Q;, -w2 )-~. 

The comparison between analytical and numerical 
results for AaeiT are shown in fig. 3 for two different 
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Fig. 2. Effective uncertainty versus instrumental uncertainty for 
three different values of the ratio Qnfw in the case of a linear 
oscillator. The dashed line is the classical limit t..ac, the dot-dashed 
lines are the quantum limits t..a •. The value of the other param
eters is also indicated. 
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Fig. 3. Numerical (dots) and analytical (solid line) effective un
certainty versus instrumental uncertainty for a linear oscillator. 
Asymptotic classical (dashed) and quantum (dot-dashed ) be
haviours are also shown. 

choices of the measurement parameters. Also shown 
are classical and quantum behaviours, correspond
ing to the limits expressed in ( 17 ) and ( 18). The 
difference between numerical and analytical results 
is less than 0.1% and it can be further reduced by 
choosing higher resolution space-time lattices. 

The numerical accuracy estimated above allows us 
to perform meaningful computations for a nonlinear 
oscillator represented by the Lagrangian 

( 19) 

For comparison with the previous linear case we have 
chosen the initial and final states of the form ( 13) 
and a measurement output of the form ( 14 ). In this 
case we expect both non-Gaussian behaviours for the 
wave function at t =rand the propagator. This also 
means that the distribution P( E) is not a Gaussian 
function. An equivalent width for P( E) may be in
troduced through the definition 

ro 

Aaen·= fi I f P(E) dE. 
1t P(O) - = 

(20) 

The computed .1a.,0 versus .1a are shown in fig. 4 for 
two d ifferent values of the nonlinearity coefficient p. 
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Fig. 4. Numerical (dots) effective uncertainty versus instrumen
tal uncertainty for the nonlinea r oscillator at two different values 
of p. The solid line is the behaviour of the corresponding linear 
oscillator obtained for P= 0. The dashed line represents the clas
sical limit. 

The comparison with the linear situation having the 
same parameters is also shown. It appears that the 
effect of the nonlinear term is in the direction to en
large the region in which the classical approximation 
is meaningful. The quartic term concentrates the fi
nal wave function near the result of the measure
ment and this implies that the effect of quantum 
noise, toward a spreading of the most probable paths, 
is reduced . 

In all the previous considerations we have chosen 
to deal with !:J.a which is time independent. A more 
general class of continuous measurements is ob
tained by considering time dependence for !:J.a. In 
part icular to recover chaotic dynamics through 
quantum measurements particular conditions on the 
kind of measurements must be satisfied, namely the 
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measurement process has to be a quantum nonde-
molition process for the observable under monitor-
ing [ 4) . Quantum nondemolition strategies for lin-
ear oscillators have been already analyzed in the 
framework of the path integral with continuous mea-
surements [ 8 ]. The application of the technique de-
scribed here for quantum nondemolition measure-
ment processes on nonlinear systems will be the 
subject of future investigations. 

One of us (M.B.M. ) is indebted to Professor G. 
Immirzi and Professor F. Marchesani for the kind 
hospitality at the University of Perugia where a part 
of this work has been completed. 
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