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Application of the path-integral approach to continuous measurements leads to effective Lagrangians or Hamiltonians in which 
the effect of the measurement is taken into account through an imaginary term. We apply these considerations to nonlinear 
oscillators with use of numerical computations to evaluate quantum limitations for monitoring position in such a class of systems. 

Several numerical experiments have shown that 
quantum-classical correspondence in chaotic dy- 
namics seems to be anomalous [ 1 ]. In particular, it 
has been suggested that nonlinear systems showing 
chaotic behaviour in a classical regime may exhibit 
suppression of their stochasticity when quantization 
is taken into account [ 2 ]. However this suppression 
should appear on a time scale so short that the clas- 
sical chaotic behaviour could not be observed in real 
systems. To recover the Liouville dynamics use of  
the quantum measurement process has been sug- 
gested [3]. In ref. [4] an example of  a chaotic sys- 
tem in a quantum regime under instantaneous mea- 
surements has been investigated. 

The quantum measurement processes for contin- 
uous monitoring of some observables of  a dynamical 
system may be taken into account through the path- 
integral formalism [ 5-7 ] and offers the possibility 
to investigate in a general way suppression of quan- 
tum behaviour. It is therefore interesting to apply this 
method to nonlinear systems, specifically those pos- 

sessing chaotic properties in the classical regime, 
having as a main goal the study of quantum suppres- 
sion of chaotic behaviour in such a class of systems. 
In this Letter we deal with the development of a 
technique based upon numerical integration of an 
effective SchriSdinger equation and applicable to 
continuous quantum measurements in nonlinear 
systems. As an example a nonlinear oscillator will be 
investigated. 

The path-integral approach to continuous mea- 
surements is essentially based upon restriction of 
Feynman path integrals [ 5 ]. The integration is re- 
stricted to the set of paths compatible with the in- 
formation, namely the given output of  the continu- 
ous measurement. If  the system moves between the 
points of the space-time (x ' ,  0) and (x", z) the re- 
sult of  integration Kta ] (x" ,  "r; )c', 0)  depends on the 
measurement output [ a ] = (a (t) I 0 ~< t ~ z}. This can 
be interpreted in two different ways. Firstly, it rep- 
resents the probability amplitude for the measure- 
ment output a(t) in the time interval z given the po- 
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sitions o f  the system x '  and x" before and after the 
measurement. Secondly, it can be seen as a propa- 
gator for the system subject to the continuous mea- 
surement given the output o f  the measurement.  The 
restriction of  the path integral on some set o f  paths 
compatible with the measurement  output  can be ef- 
fectively done with the help o f  a weight functional 
wt~ l [x] depending on the measurement output a(t) 
and decaying outside the set of  paths compatible with 
a(t), 

Kla I (x", ~; x ' ,  0) 
T 

= f d [ x ] e x p ( ~ f L ( x ,  2, t) dt)wM[x]. 
0 

(1) 

For example, if  the coordinate x is monitored with 
error Aa and the result o f  the measurement is a(t), 
the weight functional wt~ 1 [x] selects those paths x(t) 
in the corridor centered around a(t) and having a 
width Aa (see fig. 1 ). A simple choice is a Gaussian 
weight functional 

1 
Wtal[X]=exp(-z---A~a2 f [x(t)-a(t)]2dt ) . (2)  

0 

The restricted path integral is then 

(x' ,0) 

/ 
/ 

a(t)+aa //~, 
/ / ~  ~ . . . \  / / / / '  

/ / /  a(t)-~a 

/ 
/ 

x",r) 

Fig. 1. A continuous measurement of position leads to a corridor 
centered at the measurement result a (t) where the most probable 
paths lie. 

z 

K[al(X", z ;x ' ,  0 ) =  d [ x ]  exp L(x, J¢, t) dt 
0 

1 i ( x - a ) 2 d t  ) (3) TAa 2 
0 

It is important  to observe that the resulting path 
integral may be considered as describing a free (i.e. 
not measured) system but with effective Lagrangian 
having an imaginary term due to the measurement 
[8], 

ih Lefr(x, Sc, t)=L(x, Jc, t)+ ~ [x-a(t)] z . (4)  

This contribution produces a decrease o f  the density 
o f  the system in the configuration space far from 
x(t) = a ( t ) .  The decrease is linked with the restric- 
tion o f  the alternatives due to the measurement per- 
formed ~. Finally the effective Lagrangian is time- 
dependent even if the original Lagrangian is not. 

In order to estimate a probability distribution for 
the measurement output  o f  a physical system we 
consider the convolution 

/ [ a l  = <@2 IKtal I0, ) 
I f  . . . . . . .  = 02(X )KIal(X , T , X , 0 ) 0 1 ( X ' )  dx '  dx" . 

(5) 

According to the first interpretation o f  Kta j the 
quantity I[al is a probability amplitude for the mea- 
surement.to give the output a(t) under the condition 
that the system has been in the state 0~ before the 
measurement and in the state ~2 after a time r. The 
probability distribution for the measurement output 
is then 

Iltal 12 
Ptal = f d [ a ]  Ilta I 12. (6) 

Note that Ptal depends upon the instrumental un- 
certainty Aa. 

The amplitude Ira I can be also written as a scalar 
product, 

I[=l = <021 ~Ut=l (v) > ,  (7)  

~ For a detailed discussion of this effect and the related irrev- 
ersibility introduced during the measurement see ref. [ 9 ]. 
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where 

~ I - / [ a ] ( X ' , T ) =  ~ Kta l (x" , z ; x ' ,O)Ot (x ' )dx ' .  (8) 

According to the second interpretation of Kta I the 
wave function ~//[a] (X, t )  represents the evolution at 
time t of the state 01 (x) under the action of  a con- 
tinuous measurement with output a(t). This also 
means that ¢/lal (x, t) can be found as the solution 
of the time-dependent SchrSdinger equation 

ih delta1 (x, t) 
Ot =Hefdutal (x, t) (9) 

with an effective Hamiltonian Heft corresponding to 
the Lagrangian Left in (4) and with the choice 
~ut~l(x, 0)=01(x). 

The time dependence of  the effective Hamiltonian 
He~r makes analytical calculations difficult. In this 
case one may more simply evaluate Pt~l through the 
Feynman propagator Kt~ I. However, due to the qua- 
dratic nature of the measurement contribution to Leer, 
analytical calculations are essentially restricted to the 
case in which L(x,  5c, t) is a linear oscillator. In gen- 
eral a numerical approach must be followed and in 
this case the Schrrdinger formalism is more suitable. 
The partial differential equation (9) is reduced to a 
simple finite difference recursive equation by choos- 
ing a proper lattice to simulate the continuous space- 
time [ 10]. No particular problems arise from the 
time dependence and the non-Hermitian nature of 
the differential operator He~r [ 11 ]. 

In order to understand the behaviour of a nonlin- 
ear system let us first consider a linear oscillator 

L= ½m.2 z -  ½ m w 2 x  2 . (10) 

In this case analytical results have been obtained al- 
lowing a test of the numerical technique. The effec- 
tive Lagrangian corresponds to a forced linear 
oscillator 

Lo~= ½ m~c ~ -  ½ mco~ x ~ 

2ih a( t )x+ ih --2 
zAa2 ~ a(t) ( 11 ) 

with renormalized complex frequency 

2ih 2 2 (12) 
0.) r ~ ( 2 )  ~ m ~ A a  2 . 

propagating kernel Kin I can be easily calculated [ 12 ]. 
Let us consider what happens when the quantum 
system is in the ground state of the unmeasured os- 
cillator before and after the period z of the contin- 
uous measurement, 

/ \1 /4  
l e x p ~ - - ~ -  x ) .  (13) 

Due to the shape of 01 and 02 it is natural to choose 
the null boundary conditions a (0)  = a ( z )  =0  for the 
measurement output a(t). Any such function a(t) 
can be written as a Fourier sine series. We consider 
only measurement outputs of the form 

a(t)=~sinf2, t ,  t2n=nn/r ,  . (14) 

where n is an integer number. For a fixed f2n the 
probability distribution Ptaj is reduced to a function 
of the amplitude e. P(~) is a Gaussian function of 
width Aaeff, 

p ( , ) _  ,_1 e x p ( -  E2 ) 
X/~ Aaeff \ A---'~eZff , (15) 

where 

Aa~_2 = 2 Re{2_~a2 (1 _ 2ih 
mzAa2 (.Q 2 --09~ ) ] 

4h.t~ 
mtoza Aa4 ( Qan --o9~ ) 

X[1 _ i  ogr (cot(ogrz)+ ( -  1)" ~ ] - ' ~  
-~  sin (ogr Q]_] J" (16) 

The meaning of Aaefr is linked to the role of the 
measurement device during the evolution of the sys- 
tem under measurement. When the instrument error 
Aa is large in comparison to the characteristic quan- 
tum scale of the system under measurement, 
x/~-/mEo in this case, the corridor shown in fig. 1 
contains the classical trajectory (with null boundary 
conditions). Thus the classical limit is 

Aac-- lim Aaefr=Aa. (17) 
Aa~co 

On the other hand when Aa becomes small quantum 
noise arises. Also corridors far from the classical tra- 
jectory are probable. The quantum limit is written as 

For any choice of the measurement output a (t) the 
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Aaq = lim Aaefr 
A a ~ 0  

3 / 2  =[(h) rt/2°2Aa"" 

+(mT]Z(f2z\2h,/-w2) 2aa2] - ,/2 , (18) 

i.e. the effective error Aacrr diverges as ~ - '/2. In an 
intermediate situation AaCrr interpolates between 
these two limits always maintaining values larger than 
the instrumental error. In fig. 2 the behaviour of AGrr 
versus Aa is shown for three different values of the 
ratio ~,/o).  As shown in (17) and (18), while the 
classical limit is the same for all the situations, dif- 
ferent behaviours appear in the quantum regime. The 
minimum effective uncertainty is maximum at the 
resonance condition f2,=ro. In this case always 
Aa¢rr>~x/'h/mco. When ,(2,#o) the minimum effec- 
tive uncertainty estimated by the intersection be- 
tween quantum and classical limits decreases as 

The comparison between analytical and numerical 
results for Aacrr are shown in fig. 3 for two different 

10 2 
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Fig. 2. Effective uncertainty versus instrumental uncertainty for 
three different values of  the ratio t2n/~o in the case of a linear 
oscillator. The dashed line is the classical limit Aac, the dot-dashed 
lines are the quantum limits Aaq. The value of the other param- 
eters is also indicated. 

<3 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 

j ,- 

~\\' ///// 

_f" 
~ fln= 10~/'T 2m=t~=w=l  

, , , ' ~  I ~ - ,  ~- ,  I . . . .  I . . . .  I . . . .  I . . . .  
0.5 1 1.5 2 2.5 3 

Aa 

Fig. 3. Numerical (dots) and analytical (solid line) effective un- 
certainty versus instrumental uncertainty for a linear oscillator. 
Asymptotic classical (dashed) and quantum (dot-dashed) be- 
haviours are also shown. 

choices of the measurement parameters. Also shown 
are classical and quantum behaviours, correspond- 
ing to the limits expressed in (17) and (18). The 
difference between numerical and analytical results 
is less than 0.1% and it can be further reduced by 
choosing higher resolution space-time lattices. 

The numerical accuracy estimated above allows us 
to perform meaningful computations for a nonlinear 
oscillator represented by the Lagrangian 

L =  ½rn~ 2 -  ' . . . .  2~2 i or4 . . . . .  - ~ w  • ( 1 9 )  

For comparison with the previous linear case we have 
chosen the initial and final states of the form (13) 
and a measurement output of the form (14). In this 
case we expect both non-Gaussian behaviours for the 
wave function at t=  r and the propagator. This also 
means that the distribution P(~) is not a Gaussian 
function. An equivalent width for P(e) may be in- 
troduced through the definition 

1 i Aacrr- = x/~ p(0  ) P(E) de. (20) 

The computed Aaefr versus Aa are shown in fig. 4 for 
two different values of the nonlinearity coefficient ft. 
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Fig. 4. Numerical (dots) effective uncertainty versus instrumen- 
tal uncertainty for the nonlinear oscillator at two different values 
ofp. The solid line is the behaviour of the corresponding linear 
oscillator obtained for fl= 0. The dashed line represents the clas- 
sical limit. 

The comparison with the linear si tuation having the 
same parameters is also shown. It appears that the 
effect of the nonl inear  term is in the direction to en- 

large the region in which the classical approximation 
is meaningful,  The quartic term concentrates the fi- 
nal wave funct ion near the result of  the measure- 
ment  and this implies that the effect of  quan tum 
noise, toward a spreading of the most probable paths, 

is reduced. 
In all the previous considerations we have chosen 

to deal with Aa which is t ime independent .  A more 
general class of cont inuous measurements  is ob- 
tained by considering t ime dependence for Aa. In 
particular to recover chaotic dynamics through 
quan tum measurements  particular condit ions on the 
kind of measurements  must  be satisfied, namely the 

measurement  process has to be a quan tum nonde- 
moli t ion process for the observable under  monitor-  
ing [4]. Q ua n t um nondemol i t ion  strategies for lin- 
ear oscillators have been already analyzed in the 
framework of the path integral with cont inuous mea- 
surements [ 8 ]. The application of the technique de- 

scribed here for quan tum nondemol i t ion  measure- 
ment  processes on nonl inear  systems will be the 
subject of  future investigations. 

One of us (M.B.M.) is indebted to Professor G. 
Immirzi  and Professor F. Marchesoni for the kind 
hospitality at the Universi ty of Perugia where a part 
of  this work has been completed. 
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