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A model for dealing with energy and momentum exchanges between ballistic electrons and the vacuum barrier in a tunneling 
probe used as an electromechanical transducer is studied and its physical significance in devices of size comparable to the mean 
free path of the tunneling electrons is discussed. 

The use of tunneling probes for scanning micros
copy on surfaces is well known (see for instance ref. 
[ I] ) . More recently, use of tunneling probes to 
monitor displacements of macroscopic masses has 
been proposed as a high-sensitivity, low-noise elec
tromechanical transducer to detect gravitational 
waves [ 2] . Further investigations on the device have 
shown that the back-action of the amplifier following 
the transducer is negligible and that the quantum 
limit comes earlier from the interaction process be
tween the tunneling electrons and the barrier ( 3] . 
The application of the Heisenberg uncertainty prin
ciple to a vacuum tunneling probe has been the sub
ject of two papers in which calculations in a second 
quantization [ 4] and in a first quantization frame
work [ 5] have been performed. The underlying 
physical hypothesis is the complete release of the 
momentum and energy of the tunneling electrons to 
the test mass. However, in the same papers [ 4,5] a 
tunneling transducer is proposed to measure inter
atomic forces and to detect quantum noise. Due to 
the small size of the test mass in both these situations 
the total absorption of the tunneling electrons is not 
assured. When the sample has a size smaller than the 
mean free path for inelastic scattering the energy of 
the electrons is conserved or only partially released 

to the test mass, i.e. the electrons can move ballist
ically through the test mass. A partial conservation 
of the momentum of the electrons is also obtained 
with the diminishing of the number of elastic pro
cesses in a small travelled length. In this Letter we 
discuss a new deftnition of the momentum and en
ergy transferred by the tunneling electrons to the test 
mass which is more adequate for dealing with such 
situations. Some consequences relevant for the pro
posed devices are finally stressed. 

The vacuum gap between the test mass and a tip 
put close to its surface is schematized by a potential 
V(x) taken to be a one-dimensional barrier extend
ing between points a and b (the tip is located at x <a 
and the test mass at X>b). The force av;ax im
parted by the tunneling electrons to the two sides of 
the barrier may be decomposed in two contributions, 

av avl av2 
ax= ax + ax ' ( I ) 

representing the forces imparted to the tip and to the 
test mass respectively. The decomposition procedure 
is explained in ref. ( 4] for two relevant shapes of 
V(x), namely a piecewise constant or a linearly 
varying potential for a< x < b. For instance, in the 
case of a square well barrier of height V0 the two 
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forces are the g-distributions aV1/ ax= V0o(x-a) 
and aV2/ax=- V0g(x-b) . The force aV2/ax is rel
evant in calculating [ 4,5] the momentum current 
11 transferred to the test mass by an electron in a 
tunneling eigenstate VJ, 

n+ 

J~=1p(b + )+ I a;:z Vl*llfdx , (2) 

where f p(b+) is the momentum current 1p(X), 

nz ( a'l'*aVI .a2'1' az'l'• ) 
1p(X)= 4m l~ ax -'If ax2 - ax 2 'If ' (3) 

evaluated inside the test mass (x=b+ ) . Eq. (2) is 
obtained, under stationary conditions, from the con
tinuity equation for the momentum flux which 
translates, in a quantum mechanical framework, the 
second law of dynamics 

ap11 aJP av .. 
at + ax =- ax 'I' 'I' (4) 

and by considering only the contribution to the force 
due to the test mass. Analogously, in the case of a 
first quantization approach use is made of the trans
ferred momentum squared current 

!J + 

1• 1 c b + ) . ... I a v, ( • a"' a"'. ) 
p l = pl -!fl a; 'I' ax - ~ 'I' dx ' 

a-

(S) 

where 111, (b +) is the momentum squared current 
111 , (x ) , 

. n3 
( .a 3

"' a"'•a
2
"' 

l p> =!4m 'I' ax 3 - ax ax 2 

(6) 

evaluated inside the test mass. As in the case of the 
momentum current eq. ( S) is obtained, under sta
tionary conditions, from the continuity equation for 
the momentum squared flux 

In eqs. ( 2) and ( S) the momentum and momen
tum squared currents transferred to the test mass 
consist of two terms. The first one represents the mo
mentum and momentum squared current, propor-

tiona) to the energy, of the electrons moving inside 
the test mass. The second one is the contribution due 
to the quantum mechanical scattering at the inter
face between the vacuum and the test mass. Let us 
consider a model of interaction in which the trans
ferred momentum and momentum squared currents 
are written, respectively as 

t>+ - I avz f~ = ax 'l'*'l'dx, (8) 
a -

b+ 

J-. = - .... I a Vz ( .. a 'I' - a 'I'· ) dx 
P' '" a "' a a "' . X X X 

(9) 
a -

The meaning of the new definition is quite clear: the 
exchange of energy and momentum is only related to 
the presence of the interface. This definition is ap
propriate to describe a ballistic propagation of the 
electrons inside the test mass (eq. (9)) with con
servation of the longitudinal momentum ( eq. ( 8)) 
along the direction from the tip to the test mass. In 
this situation we obtain, for ]~ and ]~, in the case 
of a rectangular barrier of height V0 and width I (the 
eigenstates 'I' are normalized with respect to the wave 
vector), 

-, I n 2 k z kz 
1~~ = -2rc2mT( + o) , ( 10) 

-, I fz 3 k 2 k 2 k 111, = - -
2 

- T( + o) , 
rcm 

( 11 ) 

where nk= ) 2mE and nk0 = ) 2m( V0 - E) , E being 
the electron energy and T = T(E ) the transmission 
coefficient of the barrier. They must be compared 
with the analogous expressions obtained according 
to the definitions (2) , (S ) , 

J' = .J_ !!::._ T( k 2 - k 2 ) 
11 2rc 2m 0 

' 
( 12) 

t I f1 3 k2 
1 , = - -- T. ok . 11 2rc m 

(13) 

We observe that, in the limit V0 ---+ 0, k0 ---+ ik and J~ , 
]~, ---+0. On the other hand ( 12) and ( 13 ) do not have 
the same limit, this fact expressing an exchange of 
energy and momentum also in the absence of the 
barrier, namely a release of these quantities to the 
second electrode. For this reason we will call, in the 
following considerations, the first model corre-
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spending to ( 8) and ( 9) the elastic model, the latter 
model corresponding to ( 2) and ( 5) the inelastic 
model. 

The evaluation of the momentum uncertainty of 
the test mass due to N incident electrons is obtained 
from the momentum and momentum squared cur
rents [ 5] and in the elastic and inelastic models, re
spectively, gives 

(14) 

and 

Note that t:.p 2 ;::;t:.p2
• The test mass shows also a po

sition uncertainty t:.l. This arises from the uncer
tainty t:.N in the number of tunneling electrons 
through the dependence of the transmission coeffi
cient on the width l of the vacuum gap [ 5), 

t:.N= j NT( 1-T) =N~~~t:./ , (16) 

and it gives us finally the uncertainty products t:.l t:.p 
for both the elastic and inelastic models. These are 
shown in fig. 1 as a function of the energy of the in
cident electrons in the case of a rectangular barrier 
having V0 = 5 eV and 1=0.5 nm. The graph also in-
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Fig. l . Heisenberg uncertainty product of the test mass versus the 
energy of the incident electrons (normalized to the barrier poten
tial) for the elastic (solid) and inelastic (dashed) models in a 
symmetrical rectangular barrier of height V0 and width /. 
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eludes the tunneling for an electron energy greater 
than the barrier height, obtained by simply replacing 
k0 -+ ik0 in eqs. ( 14) and ( 15). The peaks in the curve 
of the elastic case are due to the divergence in the 
position uncertainty in the proximity of the zeros of 
the derivative of the transmission coefficient with 
respect to the displacement. By taking into account 
the second order expansion 

(1 7 ) 

the divergence disappears but in this case the trans
duction of the displacements is not linear. So one 
should avoid such conditions for a proper working 
of the device. We observe that these points are al
ways in the regime of energy higher than the height 
of the barrier. Moreover, the divergences disappear 
considering, instead of an energy eigenstate for the 
tunneling electron, a more realistic wave packet. 

We have repeated the calculations of the uncer
tainty product for an asymmetrical rectangular bar
rier (fig. 2a) and a linearly slowing barrier (fig. 2b). 
Some results are shown, respectively, in figs. 3 and 
4 as a function of the drop voltage across the barrier 
for different values of the incident energies. In both 
the cases the elastic model predicts higher sensitivity 
to the drop voltage with respect to the inelastic model. 

The situation corresponding to electron tunneling 
through a double barrier potential (fig. 5), was al
ready studied in ref. [ 4) as a schematization of an 
atomic impurity near the surface of an electrode. In 
fig. 6 the momentum flux transferred to the test mass 

a) b) 

a b a b 

Fig. 2. Asymmetric rectangular barrier (a) and linearly slowing 
barrier (b). C/J represents the voltage drop between the top and 
the test mass. 
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Fig. 3. Heisenberg uncertainty product of the test mass versus 
voltage drop for the elastic (solid) and inelastic (dashed) models 
for three different electron energies in the case of an asymmetric 
rectangular barrier. In the elastic case the uncertainty product 
has always the same value. 
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Fig. 4. Heisenberg uncertainty product of the test mass versus 
voltage drop for the elastic (solid) and inelast ic (dashed) models 
for three different energies in the case of a linearly slowing barrier. 

is shown versus the electron energy for both the elas
tic and inelastic models. The behaviour of the two 
curves is very similar and in both the cases the mo
mentum flux goes from negative to positive values 
for increasing energy of the tunneling electrons 
crossing the zero for an energy roughly correspond
ing to the peak of maximum transmission. When the 
energy of the electron is small, the two curves are al
most coincident. 
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Fig. 5. Double barrier potential for the tunneling through an ad
sorbed atom. 
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Fig. 6. Transmitted momentum current normalized to the inci
dent electron current for the elastic (solid) and inelastic (dashed) 
models and transmission coefficient (dot-dashed) versus the en
ergy of the electrons tunneling through the double barrier of fig. 
5 with V0 =4 eV, V, = -2.1 eV, /1 =8 A, 12=2 A and 13 = 1.2 A. 

To understand what the physical situations are in 
which the elastic model is more adequate to describe 
the electron barrier interaction we recall that both 
the proposed applications in refs. [ 4,5] , because of 
the need for a momentum detection, are meaningful 
only if other sources of mechanical noise, like 
Brownian motion, are made negligible. This is ob
tained if the devices operate at very low tempera
tures, of the order of 1-1 0 mK. In this case the elec
tron-phonon coupling, proportional to the 
temperature, is negligible with respect to the elec
tron-electron scattering. This last contribution has 
already been investigated in bulk metals and both 
models and measurements are in agreement with an 
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increase of the mean free path of the electrons A.(£) 
when their energy is below 20-30 eV, this last value 
depending upon the specific material. At low energy 
the behaviour of.).(£) follows approximately the law 
[6] 

(18) 

where A and B are empirically known. In the range 
which is of interest for tunneling of electrons, i.e. 
I0- 1-1 eV, mean free paths of the order of 104-105 

A are estimable. Another possibility is to consider 
the test mass to be a semiconductor crystal. In this 
case an electron mobility of I 0 m2 /V s can be 
achieved [ 7] which again gives a mean free path of 
105 A for electrons of energy equal to 0.1 eV. In both 
the cases, despite the crude approximations, we have 
a mean free path of the same order, or more, of the 
size of the micromachined test masses to be used in 
the devices. In a very low energy regime we have 
shown that the results of the two models discussed 
here are almost identical. However, a range of ener
gies in which tunneling happens and in which the two 
models give different predictions exists, according to 
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the graphs in figs. 1, 3, 4 and 6. Therefore, we con
clude that the elastic model has to be taken into ac
count as a more adequate tool for the design of small
size, micromechanical devices based upon detection 
of momentum exchange in a tunneling probe. 

We thank F. Sacchetti for useful discussions and 
B.S. Waller for a critical reading of the manuscript. 
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