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Optimal Monitoring of Position in Nonlinear Quantum Systems
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We discuss a model of repeated measurements of position in a quantum system which is monitored
for a finite amount of time with a finite instrumental error. In this framework we recover the optimum
monitoring of a harmonic oscillator proposed in the case of an instantaneous collapse of the wave
function into an infinite-accuracy measurement result. We also establish numerically the existence
of an optimal measurement strategy in the case of a nonlinear system. This optimal strategy is
completely defined by the spectral properties of the nonlinear system.
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Improvement in the precision of measurements brings
us to consider the ultimate limits of sensitivity imposed
by quantum mechanics and to develop measurement
strategies overcoming such limits [1]. One proposed ex-
ample of these strategies, also called quantum nondemo-
lition (QND) measurements, was the stroboscopic mea-
surement of position in a harmonic oscillator. A series of
ideal infinite precision and instantaneous measurements
performed each half period of a harmonic oscillator rep-
resents an optimal measurement strategy with perfectly
predictable results [2—4]. In a realistic scenario it is com-

pulsory to study a strategy based on measurements which
are affected by an instrumental error and which last a fi-

nite amount of time. Besides this generalization, as out-
lined in [1], quantum measurement models for nonlinear

systems, i.e. , systems which are not a harmonic oscillator,
are still missing. In this Letter we study optimal strate-
gies for measuring position in nonlinear systems moni-
tored for a finite time with finite accuracy. By using the
path-integral approach to quantum measurements [5, 6]
we quantitatively recover the results for the QND stro-
boscopic measurements of a harmonic oscillator and we
establish the existence of an optimal monitoring for a

nonlinear system.
The standard quantum limit in a continuous measure-

ment of position for nonlinear systems has been already
analyzed in the framework of the path-integral approach
[7]. The measuring system is schematized by an arbitrary
measurement output a(t) and an instrumental error Aa.
The effect of the measurement modifies the path integral
giving privilege to the paths close to the output a(t).
The propagator of a system in which the position is mea-
sured includes the inBuence of the measurement through
a weight functional

tology [x]:

Kl 1(x",~; x', 0) =

The quantity Kl 1(x",r; x', 0), called measurement am-
plitude hereafter, can be interpreted in two alternative
ways. If the measurement output a is known, this is a
transition amplitude from the point x at time t = 0 to
the point x" at time t = 7 for the system undergoing
the measurement with output a(t). On the other side, if
x', x" are known, the same expression can be understood
as an amplitude for the measurement to give the output
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a(t) with the above boundary conditions. If the system
is initially in a pure state described by the wave function
g(x, 0), according to the first interpretation of K( ), the
quantity

where

l(4( ) (~) I 4( ) (~) ) I'

f I(@( ) (~) IO( ) (~)) I'd[a]
(2)

g( )(x",~) = K( )(x",~;x', 0)g(x', 0)dx',

can be interpreted as a probability functional for the mea-
surement output. Due to the influence of the measure-
ment an effective position uncertainty arises:

f r fo [a(t) —a(t)] dt P( )d[a]

f P(,)d[a]
(4)

where a(t) is the most probable path which makes P(~)
extremal. The effective uncertainty Aa, s is greater than
the instrumental error La unless the system is monitored
in a classical regime, i.e. , when Aa && o. where o. is the
width of the initial wave function Q(x, 0), or in a QND
way [6].

For simplicity we represent an actual measurement
with instrumental error Aa lasting a time ~ through a
weight functional u)( ) [x]:

1
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with renormalized complex frequency
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Since we are interested in a finite but small value of 7,
we choose to approximate the measurement results with
constant values a(t) = e which are the set of all the ar-
bitrary measurement outputs in the limit 7 ~ 0. The
probability functional of the measurement path PI j

is
then reduced to a function of the amplitude e. When the
initial state is chosen to be Gaussian of width o.,

ii (*,O) = (,,) STC
l

—2,),

As shown in [7], the evaluation of the path integral can
be overcome by writing an effective Schrodinger equa-
tion which takes into account the influence of the mea-
surement. This equation can be solved analytically in
the case of the harmonic oscillator or numerically for a
generic system. In the former situation the effective La-
grangian corresponds to a forced linear oscillator

m .z m&„2 ih ih,I,fr = —x — "x — a(t)x+ a(t)76a 276a2

the probability P(e) is also a Gaussian function,

P( )S= SXP(— S )
with an effective uncertainty

Aa, „(~)= Re 1+ i —P p
1 o,2P+ 1

Aa La QQ)r 7

La4 sin w„7

(
1+ icstee(tc, T)

)x Re
1 + —' tan(~„~)

having introduced o. = m~„(r /h, , P = [cos(w„~)—
1]/[cu„w sin(u„w)], and p = 1/[1 —in cot(a„r)]. Under the
influence of the measurement the initial state collapses
into a state localized around the measurement result. If,
for simplicity, we suppose that this measurement result
is most probably compatible with (8), i.e. , a(t) = 0, the
initial Gaussian state just changes its width to

1
ce (wsceT) Ttl ccs(tc„T)

)o 7 =o Re
Sln Mr7 tA COS Mr

After the measurement the state evolves according to the
dynamical law of the free, i.e. , unmeasured system. For
the harmonic oscillator the state remains a Gaussian hav-
ing a width oscillating in time,

] 1+ [h, /m~o. (7) ]2 tan2(~t)ot+w =or 2 12
1 + tan (wt)

Equations (10) and (12) allow us to study quantitatively
a measurement strategy which consists of a sequence of
measurements of duration 7 equally spaced by a quies-
cent time LT in which no measurement is performed.
The repeated collapses of the wave function during the
measurements determine an asymptotic effective uncer-
tainty. This is evident in Fig. 1 where we show the
dependence of the effectiv uncertainty upon the number
of measurements. After a few measurements the effective
uncertainty reaches an asymptotic value which does not
depend on the initial state of the system.

The measurement strategy we have described can be
optimized by choosing the duration 7 of each measure-
ment and the quiescent time LT between two consecu-
tive measurements. As we show in Fig. 2 the asymptotic
Aa, fI has minima when LT is a multiple of half period
of the harmonic oscillator T—:2vr/w, i.e. , in coincidence
with the minima of Eq. (12). The minima of Aa,s reach
the instrumental error La if 7 (& 7„where 7, is the
critical value,

+ —
Im Aa2 o2)

Indeed for this impulsive regime the effective uncertainty
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FIG. 1. Effective uncertainty Aa, & vs the number n of
repeated measurements in the case of a harmonic oscillator.
Three different quiescent times AT are shown: circles are nu-

merical results and solid lines are the analytical result of Eqs.
(10)—(12). Note that the cases AT/T = 1/4 and AT/T = 3/4
coincide. We put 2m = h = u = 1, Aa = 1, o = 5, and
r/T = 10

and the width of the collapsed wave function are simply
written as

lim Aa, g(~) = QAa2+ os
w —+0

(14)

lim o(~) =
v~0

o.24a2
o.2 + Aa2

In the limit of an infinite number of measurements the
wave function asymptotically collapses to a 6 function,
Aa, s approaches Aa, and an ideal QND stroboscopic
strategy is obtained. It is worthwhile to observe that only
for ~ w, the optimal effective uncertainty significantly
departs from La while for ~ (( 7; the ideal situation
La,g = La is very well approximated. In other words
~, is the time scale which defines a quasistroboscopic be-
havior of the measurement.

In Fig. 1 we also compare the analytical results of Eqs.
(10) and (12) (solid curves) with the numerical integra-
tion of the efFective Schrodinger equation (dots). This
allows us to check the accuracy of a numerical method
(the error is less than O. l%%uo) we use to study nonlinear
systems. We focus our attention on a system described
by the Lagrangian

m. s mu) ~ A 4
2

L= —x x ——x
2 2 4

Also in this case the measurement strategy discussed for
a harmonic oscillator gives rise to an asymptotic e8'ec-
tive uncertainty. As shown in Fig. 3 the asymptotic
La,g does not depend on the initial state but is a func-
tion of the measurement and quiescent times. Figure 4
shows that in the impulsive regime ~ (( 7, the asymp-
totic La,~ is an approximatively periodic function of
the quiescent time AT. The nature of these oscilla-
tions is understood in terms of the energy eigenvalues

FIG. 2. Dependence of the asymptotic effective uncer-
tainty Aa, & on the quiescent time AT for the harmonic oscil-
lator. The different curves are relative to different measure-
ment times 7.: two solid coincident lines are for ~ = 0 and
v = 10 T; the dashed line is for w = 10 T

E, of the nonlinear oscillator. Indeed these eigenvalues
dictate the time evolution of the wave function during
the quiescent intervals according to characteristic periods
T~/T = hw/IE, —E~ I. Since after each measurement the
wave function collapses around the measurement result,
again chosen as a(t) = a(t) = 0, the relevant characteris-
tic periods are those corresponding to the smallest even
eigenstates. A WKB evaluation of the first two relevant
terms gives T20/T = 0.225 and T4o/T = 0.098. The fun-
damental time T20 corresponds to the principal minima
shown in Fig. 4 and T40 corresponds to the other sec-
ondary minima. When the quiescent time LT is close
to a multiple of both T20 and T40 an absolute mini-
mum is expected. This is what we observe in Fig. 4
at 4T 3Tg0 7T40. Unlike the case of the harmonic
oscillator, the general incommensurability of the charac-
teristic periods T,z forbids reaching an optimal strategy
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FIG. 3. Effective uncertainty Aa z vs the number n of
repeated impulsive measurements for the anharmonic oscilla-
tor with A = 4. Two different quiescent times AT are shown.
Circles correspond to an initial Gaussian state with cr = 5
and crosses are relative to a double peaked initial state. The
solid lines are an eye guide. We put ~/T = 10
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FIG. 4. Dependence of the asymptotic e6'ective uncer-
tainty Aa, z on the quiescent time AT for the anharmonic
oscillator with A = 4.

with an asymptotic La,g = La also in the impulsive
regime.

Two problems recently under investigation also from
a phenomenological point of view may take advantage
of our approach. First, it has been suggested that the
hypothesis of realism underlying classical mechanics can
be confronted in the macroscopic domain with quantum
predictions, namely, the existence of macroscopic dis-
tinguishable states, measuring the magnetic flux in a rf
SQUID [8—10]. In this proposal there is also the assump-
tion of a so-called noninvasive measurement whose role
has been criticized due to a potential incompatibility with
limitations in the accuracy of any measurement dictated
by the uncertainty principle [11—13]. Second, a quantum
Zeno effect has been proposed to account for an experi-
ment involving inhibition of optical transitions between
quantum states due to the measurement process [14] but
some debate in the literature followed on the validity of
such an interpretation [15, 16]. A quantitative study of
both these problems is possible within the framework we
propose here.
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