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A model for the quantum Zeno effect based upon an effective Schriidinger equation originated by the path-integral 
approach is developed and applied to a two-level system simultaneously stimulated by a resonant perturbation. It is 
shown that inhibition of stimulated transitions between the two levels appears as a consequence of the influence of the 
meter whenever measurements of energy, either continuous or pulsed, arc performed at quantum level of sensitivity. 
The generality of this approach allows one to qualitatively understand the inhibition of spontaneous transitions as the 
decay of unstable particles, originally presented as a paradox of the quantum measurement theory. 

The quantum measurement theory has been developed in the thirties to understand the problems which arise 
when quantum mechanical formalism is interpreted and confronted with its macroscopic limit. Some of the 
debates originated by the matching between quantum and classical worlds assumed the form of paradoxes and 
have been discussed in terms of ideal experiments. This is the case of the so-called quantum Zeno effect [I
S], i.e. , the inhibition of the free evolution of a system subjected to continuous measurements. In the original 
example of Misra and Sudarshan an unstable particle whose trajectory is continuously monitored should never 
be observed to decay. Due to recent technological progress in the measurement of physical quantities, especially 
to quantum optics, in the physics of superconducting coherent devices such as SQUIDs, and in experimental 
gravitation, some of these ideal experiments can be actually performed [6]. Claims of the observation of the 
quantum Zeno effect have been reported by 1tano et al. [7], which observed freezing of the stimulated transition 
probability in a two-level system subjected to frequent measurements of the population of a level. 

The original interpretation of the authors in terms of the quantum Zeno effect has been debated both with 
philosophical considerations on the concept of measurement and with detailed calculations (among the exploding 
literature on the debate originated by ref. [7] we cite, without any pretence of completeness, ref. [8]) . In this 
Letter we make use of a measurement model which allows one to discuss the general features of a measurement 
operation independent of the particular measuring apparatus used to perform it. As a result of this analysis the 
quantum Zeno effect turns out to be just an example of the influence of the meter when measurements are 
performed on a system in the quantum regime of sensitivity. 
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The model is based upon restriction of the Feynman paths to the measurement result by introducing a measure 
functional in the space of the paths [ 9,10 ]. In this method the effect of the meter on the measured system is taken 
into account giving the output of the measurement and the accuracy with which it has been performed. No explicit 
degrees of freedom of the meter are introduced, and this makes the considerations quite independent of the 
particular type of measuring apparatus. The model has been applied to understand the accuracy of measurements 
of the position in non-linear systems, monitored in a continuous [ 11] and impulsive way [ 12]. In the case of 
the quantum Zeno effect as investigated in ref. [ 7] we are interested to measure the energy of a system under 
the simultaneous effect of an external potential responsible for stimulated transitions. This makes the Feynman 
paths in the phase space a very adequate tool. Let us suppose that a continuous measurement of the energy with 
result E is performed for a time r (for simplicity the result is considered constant) using an instrument with 
error tlE. The restriction to the paths around the measurement result is obtained by introducing a functional 
weighting the paths, for instance with a Gaussian measure, 

2 I 2 W[EI =exp[-((Ho-E)) !!..E]. (I) 

where ( ) indicates time-average of the argument between 0 and r . The kernel for the propagation ofthe system 
under continuous monitoring of its energy is modified by the weight functional to 

(2) 

which can be rewritten as the usual kernel of a new system in which the effect of the measurement has been 
taken into account through an effective Hamiltonian 

Herr= Ho-ir11~2 (Ho-E) 2 • (3) 

The non-Hermitian nature of the effective Hamiltonian is due to the selective measurement that restricts the 
possible future results [ 13]. According to this selection the state of the measured system loses its normalization. 
During the measurement the evolution of the system, supposed to be in a pure state 111'(0)) at the beginning of 
the measurement, is given by the Schrodinger equation 

(4) 

Let In) and En be the eigenvectors and the eigenvalues of the Hamiltonian H0 of the unmeasured system, the 
state I 111 ( t)) of the measured system can be expanded in the base {In)} 

(5) 
n 

By substituting ( 5) in ( 4) an evolution equation for the coefficients Cn is obtained, 

den _ ( - .En _ (En- E)
2

) 
dt - 1 Ji rtJ.E2 Cn, 

( 6) 

which is solved to get 

(7) 

We note that the coefficients Cn are suppressed by the real exponential factor with a time constant r!!..E 2 I (En- E )2, 

i.e., the state [1/f(t)) collapses around the measurement result. This last is not necessarily an eigenvalue En of 
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the unmeasured system due to the classical uncertainty of the meter (for a detailed discussion of the classical 
properties of the meter see ref. [ 14] ). If the measurement result is some definite eigenvalue Em and~E « En- Em, 
the state of the measured system collapses to 1\if(r)) = Cm(<)lm) at the end ofthe measurement and its squared 
norm, namely lcm (0)12, is the probability associated to the initial state to get the measured result E = Em. 

The transition between different levels is obtained under the action of an appropriate external perturbation 
V(t) which is added to the effective Hamiltonian ofeq. (3). The decomposition of the state lw(t)) in terms of 
the same eigenstates In) of the unmeasured and unperturbed system can be used again. The evolution equation for 
the coefficient Cn contains also a term proportional to the perturbation strength and nondiagonal in the index n, 

(8) 

where Vnk = (niV(t)lk). 
A particularly simple picture is obtained for a two-level system with energies E 1 and E2• Assuming a perturbation 

potential Vi 1 = T-22 = 0 and V12 = Vii = Vo exp [iw (t - to)] with Vo real, the solution of the system ( 8) is 

C1 (t) = exp ( -i ~1 t - (E~~-Elf)
2 

t + iqt) (c1 (0) cos(wt) + qc1 (O) + exf~iwto)pc2 (O) sin(wt)) , (9) 

(t) - ( .E2t (E2-E)
2

1 . t)( (O) ( ) qc2(0)-exp(-iwto)PC1(0). ( )) c2 - exp -1!2 - r!J.El - tq c2 cos wt - iw sm wt , (10) 

where p = V0 /h, 2q = w- (E2 - E 1 )/h + 2i.Q with .Q = [ (E2 - E) 2 - (E1 - E)2 ]/2r!J.E2 and w = Jq2 + p2. 

In order to evidence the Zeno effect in a specific example let us suppose initially the system to be in the state 
II), the perturbation to be resonant, i.e., hw = E2 - E 1, and the result of the continuous measurement to be 
E = E 1• The probability P1 (t) to find the system at time t ~ r in the state 11) is 

where 

w = J ( Vo/h )2 - .Q2 

and 

.Q = (E2- E1)
2 

2r!J.E2 

( 
2) -1 

= l +I Vo/h I 
.Q + w cot(wt) 

(11) 

(12) 

(13) 

A three-dimensional plot of P1 versus time and measurement error ~E is shown in fig. I. When the measurement 
error is large we have Vo/h » .Q and the system oscillates between levels 1 and 2 with Rabi frequency 2 Vo /h. In 
the opposite limit of accurate measurements, when w is imaginary, an overdamped regime is achieved in which 
transitions are inhibited. A critical damping is observed when w = 0. In this case the probability P1 approaches 
asymptotically to the value ~ when r » h/V0. This critical damping is obtained at a measurement error 

(14) 

which defines the borderline between the Rabi-like behaviour (~E > !J.Ecrit) and the Zeno-like inhibition (~E < 
~Ecnt) in terms of the instrumental accuracy of the meter. It should be observed that also in the Rabi regime 
the effect of the meter already appears as a deformation of the simple harmonic law for the probability P1 with 
an evident change in its Fourier spectrum. 
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Fig. I. Probability P1 to observe a two level system in the state 11) during the measurement interval 0 < t < T and versus the 
normalized measurement error /'o.E / l'iEcrit· The system is in the state II } at timet = 0 and the result of the measurement between 
0 and r is E = £ 1 constant. The transition from the underdamped regime with Rabi-Iike oscillations to the overdamped 
regime with Zeno inhibition is evident when decreasing /1.£ below l'iEcrit· We put £ 2 -£1 = V0 = h = I and T = 2nh /Vo. 

In ref. [ 15] plots similar to fig. 1 were obtained integrating the optical Bloch equations for a three-level system 
and extracting the evolution of a two-level subsystem. In the same paper the effect of the measurement was 
expressed in terms of the coupling to a perturbation term. Here we have a more general picture of the meter 
which is taken into account by simply giving the measurement result and the accuracy with which it has been 
determined. 

We want also to point out that, although for simplicity the case of a constant string of results equal to £ 1 has 
been considered in our specific example, the formalism allows one to deal with any possible result E ( t ) realizing 
a possible history of the energy measurement associated to a single quantum trajectory of the system [ 15, 16]. 

The model described here allows one also to recover the case of measurement pulses which is the subject of 
the experiment described in ref. [7]. Let us consider the transition probability P1_ 2 = I- P1 (T) at the end of 
an on-resonance n: pulse of duration T = n: V0 j 2h such that P1_ 2 = 1 without measurements. During this time 
interval n pulsed measurements, each lasting llr, can be performed on the system for a total measurement time 
r = nllr. For example we choose a measurement strategy such that the kth measurement pulse is on from k T j n to 
k T j n + llr and k = 0, I , ... , n- 1. Moreover we choose llr j T = 10-2 so that the number of measurement pulses 
which can be performed in the range 1 ~ n ~ I 00, where for n = I 00 the case of a continuous measurement is 
recovered. By iterating 2n times eqs. ( 9) and (I 0) alternatively with finite llE (during the measurement time 
interval) and infinite ll£ (during the following non-measurement time interval) we obtain the results shown 
in fig. 2. Independently upon the number of measurement pulses the Rabi-like behaviour is observed in the 
classical regime when llE > L'lEcrit = (£2 - £ 1 ) .Jh j 2VoT. In the quantum regime llE < llEcrit the Zeno-inhibition 
increases with the number of measurement pulses until the ultimate limit given by the continuous measurement is 
achieved. This also shows that there is no contradiction between continuous and discrete measurements because 
in both the cases inhibition of the evolution is achieved provided the measurement is sufficiently accurate to 
perturb the system. 
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Fig. 2. Transition probability P1_ 2 at the end of an 
on-resonance rc pulse versus the normalized measurement 
error 6.£/ L'lEcrit for pulsed measurements with I , 4, 16, 64 
pulses and a continuous measurement. 

In all these considerations there is no paradox: the observed system is coupled both to the external perturbation, 
characterized by the Rabi frequency 2V0 fh, and to the measurement system, characterized by the frequency n. 
Both the perturbation and the meter compete to influence the evolution of the observed system. Indeed one 
can choose also quantum measurement strategies which make the effect of the meter negligible. For instance an 
impulsive measurement of the energy each period of the Rabi oscillations should result in measurements of the 
occupation probability at the same instants of time unaffected by the meter itself, therefore realizing a quantum 
non-demolition monitoring of the population in level 1 [ 6, 12, 17]. 

The crucial role played by the meter accuracy in a measurement process also applies to the case of transitions 
due to spontaneous emission. In the original example of ref. [2] the track of an unstable particle is observed and 
the paradoxical inhibition of its decay is raised. Due to the poor spatial resolution in the knowledge of the particle 
track it is not surprising that quantum effects of the measurement are negligible, i.e., the particle is observed to 
decay, despite the microscopic nature of the measured system as already pointed out by Landau and Lifshitz [ 18]. 
The continuous monitoring of the position of a particle schematized as a harmonic or an anharmonic oscillator 
has been discussed [ 11 ]. It turns out that quantum effects of the measurement are important only below a critical 
accuracy of the order of the de Broglie wavelength of the oscillator LlXcrit"' Jnf2mw. In the case of the decay 
of elementary particles the critical accuracy discriminating the free decay from the Zeno-suppressed decay will 
be of the order of the Compton wavelength of the virtual intermediate vector bosons responsible for the decay. 
In the specific example given in ref. [3 ] a charged pion decays due to the coupling with the electroweak vector 
bosons w± which have Compton wavelength h/Mwc:::: 10-18 m: only having a particle detector with spatial 
resolution of such an order of magnitude the quantum Zeno effect could be observed, appearing as a sort of 
electroweak microcavity effect. 

We are grateful to V. B. Braginsky and G. Ruoso for a critical reading of the manuscript. 
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