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A simple and efficient method to deduce the true Auger spectrum from the raw data is 
presented. This method is an application to Auger spectroscopy derived from signal processing 
procedures employed in different fields. It appears particularly promising when complex spectra 
are analyzed as it avoids spurious information to be introduced. The method is also compared 
with the more-standard van Cittert's approach. An experimental check of the common assumption 
that an Auger electron experiences almost the same energy-loss mechanisms as a nearly elastically 
reflected primary electron at the same energy is given. 

1. Introduction and restoration procedure 

Auger electron spectroscopy (AES) is a well established technique to 
explore solid surfaces. The main problem one encounters in using AES is the 
distortion of the true signal by the energy-loss phenomena affecting the 
escaping electrons and also, in the case of electron excitation, by the presence 
of an intense primary background. 

It is now well established that the primary background contribution can be 
reasonably estimated by a lower-power polynomial of the kinetic energy or, 
alternatively, by a properly chosen exponential law [1 ,2]. However the effect of 
finite instrument-resolution and inelastic losses, represented by a function 
G(E, E'), must be carefully considered to recover the clean Auger spectrum, 
A(E), from the measured (and primary-background subtracted) one, N(E). 
Once G ( E, E ') is known, the measured and true spectra are connected 
through the relationship 

f +oo f +oo 
N( E) = A(E) G(E, E') dE"" A(E) G(E-E') dE ' . 

-~ - oo 
(1 ) 

In eq. (1) it has been assumed that G(E, E')"" G(E- E'), so that the 
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integral equation is reduced to a convolution product. Such an approximation 
is expected to be meaningful when E- E ' « E ', i.e. when the spectrum does 
not cover a wide energy range; therefore eq. (1) applies only to Auger spectra 
at relatively high energy. In summary we have two problems: (i) the de
termination of G(E) and (ii) the solution of the integral equation (1). The 
choice of G(E) will be discussed in section 3 while now we deal with the other 
topic. 

The well-known convolution theorem makes the solution of (1) apparently 
very easy; in fact we have: 

N(t) = & .A(t) G(t), (2) 

where 

- 1 ! +co N(t) = r;;- eiEI N(E) dE , 
y2'1T -co 

A(t) = ;._ J+coeiEr A(E) dE, 
v2'1T - oo 

(3) 

G(t) = ;._ j+ oo eiEI G(E) dE. 
v2'1T - oo 

Therefore the clean Auger spectrum is given by: 

A(E) = J.__J +""e- i£t ~(t) dt. 
2'1T - oo G(t) 

(4) 

Because of the random noise associated with all measurements the simple 
solution (4) appears to be disastrous: the high-frequency noise-components 
become much stronger than the measurement itself. This behaviour is hardly 
surprising, in fact the noise added to the real N( E) by the measurement 
operation is expected to be almost white, i.e. with a constant power spectrum. 
Then the regions where G(t) is small or zero introduce an enormous enhance
ment of the noise contribution to A(t) and hence strong oscillations in 
applying eq. (4). However this problem is a quite old one in restoring the true 
information contained in a noisy signal [3] and the well developed technique 
of the Bode- Shannon optimum filter [4] can be used to avoid it. This 
technique allows the determination of the best linear filter in the sense of 
root-mean-square (rms) error. It should be remarked that in any case the true 
information contained in a noisy signal cannot be restored because of the 
random nature of the noise. The only possibility is the determination of the 
best approximation to the true information. If we indicate with A ,( E) the 
restored spectrum, we have that: 

- 1 N(t) -
A,(t) = r;;- -_-q>( t), 

v2'1T G(t) 
(5) 
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where Ar(t) and 4>(t) indicate, in analogy with eq. (3), the Fourier transforms 
of Ar(E) and <P(E), and the filter <P minimizes the rms error, erms• 

! +co f+ oo 
e rms = £ rms (E) dE = ( I A r (E) - A (E) 1

2
) dE, 

-oo -oo 
(6) 

if it has the form [4]: 

4>(t) = _ l!(t) G(t) 1
2 

, 

I A(t) G(t) 1
2 + P(t)!& 

(7) 

P(t) being the power spectrum of the random noise present in the actual 
signal N(£). The symbol ( ) indicates the average taken over the statistical 
ensemble of the noise. In eq. (7) we have implicitly assumed that the noise is 
well described by an additive stationary random-function. As we can see the 
optimum filter is expressed in terms of the true spectrum A(E) and therefore it 
cannot be deduced exactly from the experimental data. Various procedures 
have been suggested to obtain good estimates of <P [5], nevertheless a general 
method cannot be developed because the filter has to be adapted to the 
particular shape of the restoring spectrum and to the noise behaviour. In the 
following sections an application to Auger spectra will be given together with 
further details about the filter technique. 

2. Comparison with van Cittert's method 

As it is well known [1], the restoration of Auger spectra is often performed 
using a method proposed by van Cittert [6-8], therefore it is worthwhile to 
compare the method we have previously described with the more-standard van 
Cittert's approach. Such a method is based on an iterative procedure which 
allows one to determine the nth approximation, An(E), to the Auger spec
trum, starting from the (n - 1)th one: 

A,(E) =A,_ 1(E) + N(E)- j+co G(E- E') A, _1(E') dE', 
-00 (8) 

A0 (E) = N(E) . 

It is not obvious if in the presence of noise this formula produces a good 
approximation to A(£). The only available information has been obtained 
through numerical simulations [9]. Nevertheless an analytical analysis of eq. 
(8) is extremely revealing. First of all we want to observe that, as already 
evidenced by Burger and van Cittert [8], eq. (8) has a closed solution for each 
n when the Fourier transform of this equation is taken. In fact, it is readily 
obtained that 

- - 1 - H(t)"+ 1 

A,( t)=N(t) () , 
1 - H t 

(9) 
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where 

H(t) = 1 --& G{t) {10) 

and An(t) indicates the Fourier transform of A
11
(E) . It is interesting to 

observe that when I H(t) I < 1 the limit of A
11
(t) for diverging n exists and 

recovers the naive solution of eq. (4). If this is the case we can state that the 
van Cittert's method represents an elementary proof of the convolution 
theorem. In general, however, nothing can be said about the convergence of 
formula (8). 

It should be remarked that eq. (9) contains all the drawbacks of eq. (4) as 
the denominator of both equations is the same. Therefore, van Cittert's 
method, for finite n, is equivalent to the use of a filter equal to 1 - H( t )" + 1. 

As a consequence it is quite obvious that an optimum n , which minimizes 
erms• exists as actually found in ref. [9] through a numerical approach. As a 
final remark we observe that if the original noise contained in the experimen
tal data is white, the noise which affects A

11
(E) has a non-constant power 

spectrum, peaked in the regions where G(t) is small or zero. To evidence this 
fact we performed a numerical calculation of the rms error, t:rms(E), as a 
function of E. The van Cittert method was applied 500 times to a model 
spectrum like that employed by Madden and Houston (see fig. 7 of ref. ·[9]) 
adding each time a different random noise to the "measured" spectrum. The 
result of such a calculation is given in fig. 1 where a well defined energy 
dependence of t:rms(E) is seen when the number of iterations, n, is small. On 
the other hand, when n increases t:rms(E) becomes almost constant but higher 
and higher. 
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Fig. 1. Root-mean-square error (see eq. (6)) for a model spectrum restoration in the case of van 
Cittert's method. The result is shown as a function of the number of iterations. 
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Fig. 2. As fig. 1 in the case of the gaussian-filter method (here A(E) represents the true signal 
convoluted with the gaussian function corresponding to the employed filter). The result is shown 

as a function of the filter HWHM. 

In conclusion van Cittert's method is equivalent to a filter technique but 
introduces uncontrolled non-white noise so that spurious information may 
appear. This is the most serious drawback of van Cittert's approach together 
with the fact that the optimum value of n can be determined only using 
empirical methods. 

As already said, the optimum filter can never be exactly known in practical 
cases and suitable approximations must be employed [5]. We propose to use a 
gaussian shaped filter. This choice is dictated by its simplicity, however it gives 
another advantage: the restored spectrum is not arbitrary distorted with 
respect to the true spectrum but it is the best-restored-spectrum convoluted 
with a known gaussian function (namely the Fourier transform of the filter). 
For comparison purposes we repeated the same calculation of fig. 1 using 
gaussian filters with three different HWHM's (half-width at half-maximum) 
comparing the restored spectrum with the corresponding gaussian-convoluted 
true spectrum. The results of this simulation are shown in fig. 2 where it is 
evident that even this simple filter gives a small and almost white rms error. 

The gaussian filter can be improved at the cost of an increased complexity 
[10], but it will be shown in section 4 that it works fairly well when applied to 
real Auger spectra. 

3. Choice of G(E) 

As for the shape of G(E), the current assumption [11 ,12] is to use the 
energy spectrum of backscattered electrons in the neighbourhood of the elastic 
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peak with an incident energy just below the Auger excitation threshold. This 
assumption appears to be meaningful if the probability for elastic backscatter
ing is high compared to the probability of inelastic processes. If this is the case 
and indicating with B(E, E0 ) the number of backscattered electrons at energy 
E when the impinging beam has energy E0 , and with L(E, E0 ) the corre
sponding measured quantity, we have: 

G(E, E0 ) = L(E, E0 ), 

L( E, E0 ) = f+ ooB(E', E0 ) R(E- E') dE' 
-oo 

f
+oo = R ( E') B ( E - E0 - E' ) dE', 

-oo 
(11) 

where B(E, E0 ) has been assumed to depend on E- E0 only and R(E) is the 
instrument response. It is evident that the relationship (11) has the advantage 
of automatically correcting for the instrument response. We remark also that 
the above relationship holds if (i) the Auger and primary electrons interact 
with the solid in an identical manner and if (ii) the instrumental broadening is 
just the same for the two spectra. 

Although the described approximation is quite standard it requires still 
some care [1,13]. We tried an experimental check of the above approximation 
in conditions close to those encountered when one studies LXX Auger spectra 

·in transition metals and alloys. To this purpose we have measured the KLL 
Auger lines of Si in a Fe96 Si4 alloy. This system has been chosen because the 
concentration of Si is rather low and the alloy is known to be almost random, 
so that the atomic KLL lines can be assumed to be delta functions within the 
present resolution. 

The experiment has been performed employing the PHI600 scanning Auger 
microprobe installed at ENEA Casaccia (Rome). The base pressure was 
4 X 10- 10 Torr. A cylindrical mirror analyzer (CMA) with 0.3% energy resolu
tion was used and the excitation was provided by an electron beam. The 
sample was kept under vacuum for several days before the experiment was 
performed. Several spectra with different excitation energies, E 0 , have been 
obtained and, according to Langeron et a!. [14], a good peak-to-background 
ratio with E0 = 20 keY (E0/E. = 12, E. being the Auger electron energy) has 
been found. Before and after the measurements the major contaminants like 
carbon, oxygen and nitrogen have been checked and their content has been 
reduced below the machine sensitivity be xenon sputtering. In fig. 3 the 
electron flux is shown as a function of kinetic energy. The complete set of 
KLL Auger lines of Si is evidenced (EKL

2
L

2 
= 1624 eV, EKL,L

2 
= 1556 eV and 

EKL,L, = 1510 eV). The spectrum of backscattered electrons at an incident 
energy near the Si K-leve! is reported in fig. 4. 
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Fig. 3. Electron excited KLL Auger spectra of Si in a Fe96Si4 alloy (E0 = 20 keY). 

To check the validity of eq. (11) we have fitted the experimental data N( E ) 
of fig. 3 with the following expression: 

p 3 

N(E) = L a;Ei - l + L b;L(E - E;, E0 ). (12) 
i= l i =l 

The first term represents the primary background contribution simulated, as 
already said, by a low order polynomial while the second is the three Auger 
contributions obtained from eq. (1) assuming G(E):::: L(E, E0 ) and A(E) == 
o( E). The coefficients b; are proportional to the integral intensity of the KLL 
lines and E; are the corresponding energies. The result of a rather good fit, 

6~00--~--8~0~0--+-~10~0~0--r--1~20~~-0--+-~,6~00 
E(eV) 

Fig. 4. Back scattered electron spectrum in a Fe96Si 4 alloy a t incident energy E0 = 1580 eV. 
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Fig. 5. Comparison of experimental data of fig. 3 after primary background subtraction (dots) and 
the fit explained in section 3 (solid line). 

obtained with p = 3, is shown in fig. 5. We ascribe the slight difference 
between the fitted and experimental data to the fact that the inelastic loss near 
the elastic peak is greater (5%-10%) than the loss ncar the Auger peak. This 
behaviour appears to be in agreement with the information reported in ref. 
[12]. The parameters b;, employed in the fit, are reported in table 1 where they 
compare favourably with those reported for pure Si [15]. 

4. Restoration of Auger lines 

To establish the real ability of the proposed procedure in recovering the 
appropriate information contained in an actual Auger spectrum, the gaussian
filter method has been applied to the LXX Auger spectrum of iron. In this 
particular case there are several Auger peaks present in a relatively small 
energy range (two hundred eV), some of these peaks involve the valence band 
while others are transitions between core states only. Moreover, there is a 
relatively strong line in the high kinetic energy region so that the correspond-

Table 1 
Relevant parameters of the fit explained in section 3; the values of the parameters relative to the 
pure silicon are taken from experimental data of the authors (no t published) 

Parameter Present Pure Si 

b KL , L 2 
100 100 

f> K1. 1 L 2 
19 18.5 

b Kl.11. 1 
4 4.3 
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Fig. 6. Electron excited Auger spectrum of Fe in the region of the L 2.3 core states (E0 = 3 keY). 

ing inelastic loss is expected to affect the shape of the other lines located at 
lower energy. 

The measurements have been performed with the same experimental 
arrangement described in the case of Fe96Si 4 alloy. The sample was pure 
polycrystalline iron. As already done in the case of Fe96Si 4 , the sample 
contamination was kept as low as possible and several different runs have 
been performed in the energy range 400-800 eV. The excitation energy was 3 
keV, appropriate for the present Auger energy. More than 107 counts have 
been obtained per energy channel (0.2 eV) and different runs were equal 
within the statistical error. The experimental data, after averaging of all 
different runs and after primary background subtraction, are reported in fig. 6. 
The primary electron background has been modeled by a third degree poly
nomial as in the case of Fe96Si4 alloy, where such a procedure worked 

w 

ZL---------
4 0 480 s6o 640 720 8 0 

E(eV) 

Fig. 7. Backscattered electron spectrum of Fe at an incident energy E0 = 700 eV. 
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Fig. 8. Restoration result of the spectrum of fig. 6 obtained with a gaussian filter. The value of the 
HWHM is 1.8 eV in (a), 2.2 eV in (b) and 2.9 eV in (c). 
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successfully (to check this polynomial approximation we measured, with lower 
statistics, the Fe spectrum also in the energy range 100-800 eV). Finally, to 
determine G(E, E0 ), according to eq. (ll), the backscattered electron flux has 
been determined at E0 = 700 e V and is shown in fig. 7. 

The restoration of the iron spectrum has been performed employing the 
simple gaussian filter described in section 2. The results are reported in figs. 
8a-8c for three different choices of the filter HWHM. As we can see an 
HWHM of 2.9 eV is perfectly adequate to the purpose of obtaining a virtually 
loss- and noise-free spectrum. It should be remarked that the experimental 
spectrum so obtained can always be quantitatively compared with a theoretical 
estimate convoluted with the known gaussian resolution [16]. 

Although the restored spectrum looks quite nice, one has to remember that 
the quality of the original data is very important: in fact, the higher the noise 
present in the original data, the broader the filter should be, thus resulting in a 
worse restored spectrum. 

5. Conclusion 

As a conclusion we want to recall the most important features of the 
restoration procedure we have described. First of all this procedure works 
independently of the shape of the experimental spectrum assuring one and 
only one restoration result that is the true result convoluted with a well 
defined gaussian. Moreover a reduced numerical effort is needed, thus allow
ing an almost real-time data analysis. Low signal-to-noise ratio data can be 
restored without particular problems though the noise level characterizes the 
amount of information which can be extracted from the restored spectrum. 

Therefore we can state that a gaussian filter approach to the restoration 
problem is very flexible while the more-standard van Cittert's method, which 
belongs to the same class of filtering methods, shows little adaptability and 
introduces spurious and uncontrolled information. 
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