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Selective relaxation method for numerical solution of Schrodinger problems
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We propose a numerical method for evaluating eigenvalues and eigenfunctions of Schrodinger
operators with general confining potentials. The method is selective in the sense that only the
eigenvalue closest to a chosen input energy is found through an absolutely stable relaxation algorithm
which has a rate of convergence that is infinite. In the case of bistable potentials the method allows
one to evaluate the fundamental energy splitting for a wide range of tunneling rates.

PACS number(s): 02.70.Bf, 03.65.Ge

According to the von Neumann theory [1], in an ideal
measurement of energy the state of a quantum sys-
tem collapses instantaneously and completely into some
eigenstate of the Hamiltonian. If one knows how to
handle the collapse mechanism and how to select the
final eigenstate, measurements of energy may be used
for determining the spectrum of quantum systems. The
restricted Feynman path-integral approach to quantum
measurements [2] offers this possibility. During a con-
tinuous measurement of energy with known result E (we
consider the particular case of E constant) the Feynman
paths far from those compatible with the measurement
result are damped proportionally to the accuracy of the
measurement itself [3]. Choosing a damping of Gaussian
type we obtain a Schrodinger problem with an efFective
Hamiltonian

H, tt = H —ih~(H —E),
where the x gives the strength of the coupling to 'the
measurement apparatus. In collaboration with Ono&io
[4] we have recently discussed the dynamics of the wave-
function collapse induced by the efFective Hamiltonian
(1). Let us consider the case of H with a nondegenerate
discrete spectrum

H@„(x)= E„@„(x),

where in units h = 2m = 1

eigenvalues and eigenfunctions of H close to the select-
ing energy E. In practice, we can speed up the relaxation
by letting z ~ oo. In this case we obtain the evolution
equation

d
g(x, t;—E) = (H —E-) Q(x, t; E),

where the scaled time t has dimensions [E 2]. The func-
tion @(x,t; E) is complex in general and we have empha-
sized its dependence on the selecting energy E. If we
define the relaxed wave function and energy

s„i(s) = fQ. i(z;E)'Hg„i(x; E) dx,

they have the property that vP, &(x; E) = @ (x) and
E„)(E) = E„when E e I'„—:](E„+E„g)/2, (E„+
E +q)/2[ for n P 0. Relaxation to the ground state
n = 0 is obtained through the weaker condition E
l o =

]
—oo, (Eo + Eq) /2[.

It is worth noting the relevance of selectivity. We can
evaluate whatever eigenstate of the spectrum just giving
an estimate of it up to an error of the order of the local
energy spacing. On the other hand, nonselective relax-
ation methods, like those based on the heat equation [5]

H = —V' + V(x)

with x E & . The wave function of the measured sys-
tem can be decomposed in terms of the eigenfunctions

which are also eigenfunctions of H, tt. Due to the
presence of the anti-Hermitian term in (1), during the
measurement the initial wave function converges, up to
a normalization factor, to the eigenfunction with energy
closest to E at a rate exponentially proportional to e.

In principle, the numerical solution of the time-
dependent Schrodinger equation with the efFective Hamil-
tonian (1) represents a relaxation method for evaluating

H@, —
dt

converge only at the ground state (we suppose H & 0).
Excited states can be obtained by using an initial wave-
function orthogonal to all the lower-energy states. How-
ever, only exactly orthogonal wave functions ensure re-
laxation to the desired eigenfunction. The errors in-
troduced by finite-accuracy numerical orthogonalizations
make the method unstable and not practical for deter-
mining high-energy states.
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Beside selectivity, another advantage characterizes a
relaxation method based on Eq. (4). We can solve that
equation through a finite-difference algorithm which is
absolutely stable and allows us to evaluate the relaxed
quantities (5) and (6) in one step. Let us explain the idea
in the one-dimensional case x g LR. The domain of x can
be restricted to some interval [x;„,x „],depending on
the selection energy E and the confining potential V(x),
outside which the relaxed wave function vanishes within
the computer accuracy. The interval is discretized by
introducing the space lattice

x~x, =x;„+jdx, j =0, 1, 2, . . . , J+1, (8)

where (J + 1)Ax = x „—x;„. If the time also is
discretized according to

= mAt, m = 0, 1, 2, . . . , (9)

(12)

Eq. (4) can be reduced to the following set of finite-
difFerence equations:

m+1 m
2 2

( @m+1 p
—pm+1

At ~ ~+2 ~ ~+1

+c 4, +PC, 1+&0, 2) (1)
where

1
7 ~ 4 7

Stability is obtained when the growing ratio (15) is
smaller than unity, i.e., when

2GDt&—~2+ g2

This means that we can choose Lt very large and obtain
convergence to the relaxed quantities (5) and (6) in a sin-
gle iteration of Eq. (14). DifFerently stated, the rate of
convergence for the recursive equation g +1 = 7Z iiti is
infinite. This can be seen directly by the formula for the
rate of convergence [6], —lnS(R ), where S( .) means
spectral radius. In the limit At —+ oo the eigenvalues of
'R ~ and its spectral radius vanish and the rate of con-
vergence diverges. Finite computer accuracy imposes a
limitation on the value of At. The relaxed wave function
is obtained after normalization of the vanishing Q(x, t; E)
and At cannot be so large that @1 yields underflow. The
limitation, however, is not crucial and full relaxation can
be usually obtained with very few iterations (we never
use more than ten iterations) even without making an
optimal choice for Dt (maximum value allowed).

EfBciency and precision obtainable &om the selective
relaxation inethod [7] have been checked in various cases.
These include exactly solvable problems as well as prob-
lems where results obtained with different numerical pro-
cedures are available for comparison [8,9]. Here we report
only on a comparison with the exact results of the Morse
potential and on the possibility to evaluate with great
accuracy the fundamental energy splitting of double-well
potentials.

The eigenvalue problem with the Morse potential

and V~, V', and V-" are the values of the potential and
its Grst two space derivatives at x~. Due to the boundary
conditions we can rewrite (10) in a compact form suitable
for numerical solution

pm+1 @m (i4)

where

pm+1

(m
1

~1+ (a+ ib)b, t~
(i5)

a= (V, —E) + (V, —E)sin
8 . 2 t'kAxb

ax ' (2)
16 . , (kax~+ SlilAx4

q 2
sin (kAx) —V", (16)

2
b = — V.'sin (kAx)Lx

where the matrix 'R is pentadiagonal with nonvanish-
ing elements 7Z;; = 1 + Atm, , R;;~1 —— Atp,+ , and.
7Z,,~2 ——Atp. Starting with a known vP the system (14)
is eFiciently solved with standard decomposition and the
back-substitution method [5] in a number of operations
per time step proportional to J.

Following the von Neumann stability analysis [5], the
eigenmodes @. (k) = ( e'"& substituted back into (14)
give

V(x) = e " —2e (19)

has well known analytical solutions [10]. In Figs. 1 and
2 we compare the exact eigenvalues and eigenfunctions
with the corresponding energies and wave functions ob-
tained with the selective relaxation method for different
values of the lattice step Ax. We chose p = 0.2 which
corresponds to having Ave bound states n = 0, . . . , 4.

I I I I I I I I ' '''''I
1oo
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10—3
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1O-9 I I I I I 1 I I I s I I I I I I I

10 10 10—1 1oo

FIG. 1. Comparison of the exact eigenvalues E of the
Morse potential with the relaxed eigenvalues E, ~ for dif-
ferent values of the lat tice step Ax. The potential is
V(x) = e " —2e " with p = 0.2 and has five bound states
n=0, . . . , 4.
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1oo
for the fundamental energy splitting T, j obtained as the
difference of the lowest two relaxed eigenvalues

10 T i = T + (Ey —Ep)Ax (21)
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FIG. 2. Comparison of the exact eigenfunctions Q„of the
potential of Fig. 1 with the relaxed eigenfunctions Q„1 for
different values of the lattice step Ax.

T„i shows a systematic error due to the finite lattice,
(ei —eo) Ax, which is the difference of two close numbers
and vanishes for T vanishing. In addition, the condition
Ep Ey causes no trouble in selecting the two eigen-
values since the corresponding eigenfunctions go and @i
have different parity. Initial wave functions @(x,0; E)
with the same selecting energy, e.g. , chosen as the WKB
approximation to the ground state, but different parity
automatically relax toward the eigenfunctions with the
corresponding parity.

An example of the discussed behavior is shown in Fig.
3. We have considered the bistable potential

V(x) = —Ax'+ x' (22)

The convergence to the nth bound state is absolutely in-
sensitive to the choice of the initial wave function as well
as of the selecting energy E in the interval I'

According to the discretization scheme used in (10)
the algorithm is first-order accurate in the lattice step
Lx. More explicitly, for the eigenvalues we observe a
systematic error

2E,ei —E„=e„Ax (20)

with e increasing with n. Since the computation time
is proportional to the number of steps in the space lat-
tice, we conclude that the error in the evaluation of the
eigenvalues decreases quadratically with the computation
time. In order to fix the ideas, the computation time for
J = 10, which is a typical figure in evaluating E4 with a
0.01% error, is about 2 s per time iteration in a 25 MHz
486 personal computer.

The increase of e„with n may become a problem when
evaluating high-energy eigenstates. Indeed, the dimen-
sion J of the space lattice necessary for controlling the
error (20) through very small Ax may exceed the com-
puter capacity. The problem is overcome by resorting
to a higher-order approximation in the discretization of
the operator (H —E)2. If we substitute the right-hand
side of Eq. (10) with a kth-order accurate expression
the error (20) gets proportional to Ax"+i and we have
higher precision for a given lattice dimension J. In this
case, however, the matrix 'R has 2(k + 1) + 1 nonvan-
ishing diagonals (for x C K) and the computation time
for the same J increases [5]. A quantitative comparison
between the minimal-accuracy algorithm presented here
and higher-accuracy ones, also in the cases x E Zk and
x g &, is deferred elsewhere.

Even in its minimal-accuracy version the selective re-
laxation method allows us to make a relevant advance
in the evaluation of the fundamental energy splitting
T = Ei —Ep of a double-well potential. It is well known
that this problem gets rapidly unapproachable with stan-
dard numerical methods when the tunneling rate between
the two wells decreases [11]. A different situation arises

for A = 15. The values of T„1 obtained for different
values of the space step Ex follow accurately law (21).
A linear fit gives T = 1.9496 x 10 and e1 —ep

2.6404 x 10 . This last figure should be compared with
the single level accuracy ep e1 7.22 which is eight
orders of magnitude greater.

Comparison of the splitting values obtained through
selective relaxation with those obtained through other
techniques establishes a clear superiority of our method.
Recently a substantial advance in evaluating the funda-
mental energy splitting of double-well potentials was real-
ized with the technique of supersymmetric quantum me-
chanics [ll]. Using as input the ground-state wave func-
tion @o(x), obtained, for instance, with standard Runge-
Kutta integration, the supersymmetric approach allows
one to evaluate the splitting through a logarithmic per-
turbation series which converges rapidly in the limit of
small tunneling rate. In Table I we compare the funda-

1.965x 10

1.955x10

1.950x10

Zx10 4x10 6x10

FIG. 3. Fundaroental energy splitting T, & obtained as,

the difference of the lowest two relaxed eigenvalues of
the potential V(x) = —15x + x for difFerent values
of the lattice step Ax. A linear fit (solid line) gives
T„i ——1.9496 x 10 + 2.6404 x 10 &2; .
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TABLE I. Fundamental energy splitting of the double-well
potential V(x) = —Az + x obtained in Ref. [11] with
Runge-Kutta integration, TRK, and supersymmetric pertur-
bation series at third. order, Tss3, compared with the selec-
tive relaxation result, T„~, at lattice step Az = 10 . Notice
that numerical Runge-Kutta calculations are unreliable for
A & 10 while the supersymmetric result becomes inaccurate
for A small.

A

0.5
1
2
3
4
5
6
7
8
9
10
11
12
15

TRK
2.464
2.177
1.575
9712 x 10
4.624 x 10
1.595 x 10
4.14 x 10
8.65 x 10
1 52 x 10
2.28 x 10
2.86 x 10

Tss3
2.451
2.168
1.573
9712 x 10
4.624 x 10
1.595 x 10
4.14 x 10
8.65 x 10
1.52 x 10
2.28 x 10
2.98 x 10
343 x 10
3.51 x 10
1 95 x 10

Trel
2.4637
2.1769
1.5752
9.7115 x
4.6242 x
1.5947 x
4.1398 x
8.6531 x
1.5164 x
2.2792 x
2.9821 x
3.4338 x
3.5093 x
1.9499 x

10-'
10-'
10
10
10
10
10-4
10-'
10
10
10—10

First-order supersymmetric result using as input the ground
state obtained with selective relaxation.

mental energy splitting of the double-well potential (22)
evaluated with the Runge-Kutta method, the supersym-
metric series at third order, and the selective relaxation
for difFerent values of A. For A small the potential is
weakly bistable and the Runge-Kutta method is reliable.
The supersymmetric result shows weak convergence in
this limit. For A large the Runge-Kutta method is unre-
liable for evaluating the splitting. However, this method

is still good for evaluating the ground state used in the su-
persymmetric series which shows good convergence. The
selective relaxation method gives the right result in the
full range of A values with a minimal amount of compu-
tation time. Notice that, in addition to the cases consid-
ered in Ref. [11],we are able to evaluate the splitting for
A = 15, i.e. , in a region where T is close to the maximal
accuracy available in our computer (double precision).

Some 6nal comments are in order. We have considered
only Hamiltonians with nondegenerate spectra. The se-
lective relaxation method, however, applies also in the
presence of degeneracy which may occur in two- or three-
dimensional cases. Initial wave functions which are mu-
tually orthogonal converge to the corresponding degen-
erate eigenfunctions. In fact, this property was used for
selecting the nearly-degenerate fundamental levels of the
double-well potential (22).

Modi6ed boundary conditions, e.g. , asymptotic known
values at the points x;„and z „,allow one to evaluate
eigenfunctions in the continuous spectrum. In particular,
extended resonance states can be found. through the so-
called quantum transmitting boundary method [12). Pe-
riodic boundary conditions allow one to calculate eigen-
values and eigenfunctions of periodic potentials.

The main characteristics of the proposed relaxation
method, namely selectivity and absolute stability, can be
extended to different classes of eigenvalue problems such
as those involving Fokker-Planck and Dirac operators.
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