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Abstract. We present numerical evidence that in a system of interacting bosons there exists
a correspondence between the spectral properties of the exact quantum Hamiltonian and the
dynamical chaos of the associated mean-field evolution. This correspondence, analogous to the
usual quantum-classical correspondence, is related to the formal parallel between the second
guantization of the mean field, which generates the exact dynamics of the quarthody
system, and the first quantization of classical canonical coordinates. The limit of infinite density
and the thermodynamic limit are then briefly discussed.

1. Introduction

The commonly accepted definition a@fuantum chaosis based on universal statistical
properties of suitably defined fluctuations in the energy spectrum. For instance, a confined
guantum system with a finite number of degrees of freedom, e.g. a particle in a billiard,
is said to be chaotic whenever the nearest neighbour level spacing (NNLS) distribution,
with the spacings normalized to their local average value, is well approximated by the
corresponding Wigner distribution for random matrices [1].

This definition of quantum chaos was conjectured [2] to satisfy a correspondence
principle with thedynamical chaosf the associated classical system, i.e. the exponential
sensitivity of the classical trajectories to a variation of the initial conditions. In fact,

a large collection of numerical examples [3] shows that, whenever the classical system
has a positive (non-positive) maximum Lyapunov exponent, the corresponding quantum
system has a Wigner-like (non-Wigner-like) NNLS distribution. The recent result [4] gives
theoretical support to this conjecture.

In the case of systems made Sfidentical particles nonlinearly interacting, quantum
chaos, in the sense stated above, seems a general rule [5-7]. For these systems, we suggest
looking for a correspondence of the quantum chaos with the dynamical chaos of associated
c-number canonical coordinates well distinguished from the classical ones. d-heseber
canonical coordinates are appropriate combinations of time-dependent mean fields which
approximate the dynamics of thE-body symmetrized or antisymmetrized wavefunction
[8]. The dynamical equations of the mean fields are, in general, nonlinear and allow
the presence of dynamical chaos as in classical mechanics [9%ecAnd quantization
transforms the mean fields into field operators and restores the exact dynamics of the
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guantum N-body system. This second quantization can be made formally identical to
the quantization of classical canonical coordinates and, by analogy, we can expect a
correspondence between the quantum chao¥-tbdy systems and the dynamical chaos

of their mean-field approximations.

In this paper, we numerically investigate a systemvobosons with both periodic and
Dirichlet boundary conditions. In section 2, we analyse the exact system from the point of
view of quantum chaos and find that a Wigner-like NNLS distribution is a general feature
in the presence of nonlinear interaction already for very low value$.ofn section 3, we
study time-dependent mean-field approximations of the same system from the point of view
of the exponential sensitivity to the initial conditions. We find that the mean fields show
dynamical chaos in correspondence to the quantum chaos of the exact system for all the
values of N considered. We naturally assume that this correspondence continues to hold as
N increases. In section 4 we quantize the mean field and in the last section we discuss the
limit of infinite density and the thermodynamic limit.

2. The model and its properties

Let us consider a system & spinless bosons of chargemoving in a one-dimensional
lattice with L sites and described by the Hamiltonian
L L
H =7 lo;a)a; — B;(€%a) 14; + € "aja 0l + ) vid)afaé @)
j=1 j=1
where index correspondenget L = j is assumed. The operatﬁ)} creates a boson in the
site j andw;, B; andy; are the site, hopping and interaction energies, respectively. Periodic
and Dirichlet boundary conditions will be considered. In the first case, the system represents
a ring threaded by a line of magnetic flgxand the phase factors ate= 2w ¢ /¢poL, where
¢o = hc/q is the flux quantum (in the Gauss electromagnetic system). In the second case,
the sites lie on a segment and we pyt= 0 andé = 0. The system (1) has wide interest.
Its time-dependent mean-field approximation has applications to molecular dynamics and
nonlinear optics [10] and to electron transport in heterostructures [11].
All properties of the system (1) can be evaluated by knowing elgenvalues and
eigenvectors ofd. It is simple to work in the space spanned by the Fock states - n’,
Wherenj is the number of bosons in the sﬁeandz _yn}; = N. The indexi runs from 1
to the Fock dimension
— |
_ (% I~I-L 1! @
(L —1)!
obtained by counting all the possible arrangements ofNhilentical bosons into thé
sites. TheD-dimensional matrixH representing the Hamiltonian (1) in the Fock basis has
matrix elements

Hy = (n/i . n12|I:I|n’1 Z[O‘]n + yln](n D]6ki

35 [¢ i ma + DAGG) + e )+ D ARG ®)

where
ifnf:n;+1,nf+1:n;+1—1, andnf‘:nf fori£j,j+1

1
A i i) = ) 4
u(J) { 0 otherwise. “)
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The eigenvalues; and eigenvectorsE;) of the Hermitian matrix (3) can be numerically
evaluated with standard methods [12]. A bound to the maximum dimer3itmat can be
studied is essentially fixed only by the computer memory necessary to store the full sparse
matrix (3).

For a general, asymmetric, system the NNLS distribution is evaluated from all the
eigenvaluesk;. The normalized spacings between nearest neighbour levels, whose
distribution P (s) is of interest, are taken as

si = (Eiy1— E;)/AEa () )
where
1 Nay
AEy(i) = —— E; — E; 6
av(i) INay + 1 k;\]av( +k+1 +k) ( )

with 1 « N <« D. In the case of Dirichlet boundary conditions, the Hamiltonian
matrix is real symmetric and correspondence to the Gaussian orthogonal ensemble (GOE)
of random matrices may be expected. In the case of periodic boundary conditions, the
Hamiltonian matrix is complex Hermitian and, in general, correspondence to the Gaussian
unitary ensemble (GUE) may be expected. However, if the external potential, represented
by the site energiea;, is symmetric under a reflection with respect to some diameter of
the ring, the system has an anti-unitary symmetry and GOE behaviour is restored [13].

In the presence of geometrical symmetries, the level statistics analysis probing the
phenomenon of level repulsion is meaningful only once the trivial crossings of eigenvalues
belonging to different symmetry classes are avoided [14]. This amounts to analysing the
NNLS distribution separately inside each one of the diagonal blocks which compose the
matrix H in a proper basis. For example, a uniform system, i.e. a systemoit; and
y; independent of the site-indek is invariant under rotation

R: j—j+1 (7)
in the case of periodic boundary conditions, and space-inversion
Pij>L+1—j (8)

in the case of Dirichlet boundary conditions. The eigenvalue#l ahust be divided into
L classes, corresponding to the eigenvaluegigxp/L), withv =1, ..., L, of R, in the
first case, and into two classes, corresponding to the eigenvailliesf P, in the second
one. This is accomplished by evaluating the operdioin the basis of the degenerate
eigenvectors o or P in which the corresponding matriif is block-diagonal. Each block
is then independently diagonalized to find the eigenvalueH afithin the corresponding
symmetry class.

The eigenvectory),) of R, q being the degeneracy index, are obtained by numerically
solving the eigenvalue problem

D
D (Rii = Mdii)(nf -+ niplvg) = 0 )
i=1

where

j+1 (10)

1 ifnj?:ni forj=1,...,L
0 otherwise.
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The block of H corresponding to the eigenvalig = exp(i2mv/L) has matrix elements
D .
Hy,y, = Z Vq|n1 sz( ceny V). (11)

A similar, general procedure could be applied alsgPto However, the eigenvectors of
P are, by inspection, single Fock states or symmetric and antisymmetric combinations of
couples of Fock states. The even and odd block#& pfcorresponding to the eigenvalues
+1 of P, have matrix elements which are straightforward combinations of those in (3).

Figure 1 shows the NNLS distribution obtained for a uniform system with periodic and
Dirichlet boundary conditions. The distributions of the normalized spacings (5) evaluated
for each symmetry class of eigenvalues have been summed up for increasing the statistical
confidence. The agreement of the calculated NNLS distribution with the Wigner surmise
for the GOE distributionPgog(s) = (5/2) exp(—ms2/4), also shown in the same figure,
is statistically reliable.

The importance of performing the level statistics analysis within the appropriate
symmetry classes is evidenced in figure 2, where the NNLS distribution for the same uniform
systems of figure 1 is evaluated from the total spectrunHof In the case of Dirichlet
boundary conditions, the mixing of the even- and odd-parity eigenvalues generates a two-
peak distribution which behaves like &xgs) at larges. In the case of periodic boundary
conditions, due to the higher number of symmetry classes and their statistical independence,
we observe a distribution which mimics the Poisson distributiets) = exp(—s) even at
small s [14]. This fact and the observation that similar results are obtained when the

=
o,
B Figure 1. NNLS distribution P(s) for the system
(1) in the uniform caseN = 5, L = 9, o; =
0, B = n andy; = n with ¢/¢o = 0.3 and
1 periodic boundary conditions (full histogram) and
-1 ¢/¢o = 0 and Dirichlet boundary conditions (broken
4 histogram). The solid line is the Wigner surmise for
s the GOE distribution.
1.0
[y
=
[a

Figure 2. As in figure 1 but without separating the
0 1 2 3 4 eigenvalues into the appropriate symmetry classes.
s The broken curve is the Poisson distribution.
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0
[a M
{ Figure 3. As in figure 1 with periodic boundary
1 conditions but choosing; = 2(N — 1)»n§;, where
| 1 & are arbitrary positive numbers WilEjL:1 & =1.
3 4 The full and broken curves are the Wigner surmise
s for the GOE and GUE distributions, respectively.
1.0 I
0
[+ 9

4 Figure 4. As in figure 3 but choosingj,—; = &,+;
s with jo arbitrary.

10 r

P(s)

4 Figure 5. As in figure 1 but choosing, = 3 =
s 0.5n andg; = n for j # 2, 3.

symmetries are only approximate [5], will be relevant in the following.

The above-mentioned geometrical symmetries can be explicitly broken by choosing an
appropriatej-dependence in the parameters g; andy;. Figure 3 shows the NNLS
distribution obtained with periodic boundary conditions when the site energies have the
form «; = 2(N — D)n§;, whereé; are arbitrary positive numbers WitEjL:l & =1, and
all the other parameters are as in the uniform case. The resemblance of the calculated
distribution to the GUE Wigner surmis@gyue(s) = (3252/m2) exp(—4s%/m), expected on
the basis of the complex Hermitian naturef@f is statistically reliable. However, the GOE
behaviour is restored, as shown in figure 4, by choogingymmetric with respect to an
arbitrary jo. Figures 5 and 6 show the NNLS distribution obtained when the hopping and



P(s)

s Figure 6. As in figure 1 but choosing; = 7é;3.

interaction energies have the form indicated in the captions and the other parameters are as
in the uniform case. The calculated distribution is always close to the GOE one for both
periodic and Dirichlet boundary conditions.

Results similar to those discussed above are obtained for other choices of the parameters,
N, L, oj, Bj, v; and ¢, i.e. the system (1) is generally characterized by a Wigner-
like NNLS distribution. Integrability points are the only exception to this rule. A first,
trivial, point of integrability of the system (1) is the noninteracting case obtained for
y; — 0 with eigenvalues given bf; = ZjLzl ejn"]i, ¢; being theL eigenvalues obtained
for N = 1. A second point is approached f@ — O with eigenvalues given by
E; = Zle ajnl 4 ynl(n) — 1). A third point of integrability is obtained by taking the
continuum limit in which equation (1) becomes the second guantization version of the
Hamiltonian of N bosons interacting via &function potential

u h? 92 u
;[ om 2 T cn,;ls(xn xn/)] (12)
with 0 < x, < ¢. This system is solvable by the Bethe ansatz [15] and can be obtained
from (1) by puttinge; = 28; = h?/(mAx?) and y; = C/Ax with Ax = ¢/L and letting

L — oo. When approaching an integrability point, the NNLS distribution transforms into

a non-Wigner-like distribution whose shape strongly depends on the values of the system
parameters.

The results of the level statistics analysis obtained for the boson system (1) are in
agreement with those found in [5-7] for fermion systems. Quantum chaos, in the sense
stated in the introduction, is a generic feature of systems with many particles interacting
nonlinearly. The only apparent exception to this rule is a result of [7] in which a
system of spinless electrons moving in a ring similar to ours is shown to have Poisson-
like NNLS distribution whenever the interaction is limited to a small region of the ring.
However, studying the same fermion system we found that the case considered in [7] has
an approximate symmetry [16]. When this symmetry is taken into account or is removed
by changing the relevant parameters, e.g. adding a random energy to the sites, the NNLS
distribution turns to a GOE distribution as in the example of figure 6.

3. Mean-field approximation

Two substantially equivalent time-dependent mean-field approximations of the Hamiltonian
(1) are obtained by choosing th€ particles to be described by the normalized boson
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condensate

1Zy(0) = (NH?[al@]"|0) (13)
or the normalized coherent state

|Zy (1)) = explV'Nal () — V/Na.(0]]0). (14)

Here, |0) is the vacuum state ami(t) creates a boson in the single-particle state
L
2(1)) = al ()]0} = Zz, 0af10) ="z 0)1)). (15)
j=1

The normalization condition of this statdz(¢)|z(r)) = ZjLzllzj(t)|2 = 1, fixes the
expectation number of particles in the boson condensate (13) or the coherent state (14)
to N since in both cases we havZN(t)m a;|Zy(1)) = N|zj(t)|2. The time evolution of

the complex amplitudes;(r) = (j|z(t)) is obtained from a variational principle for the
Dirac action [8]

—d A
folt(zw)uha — HI1Zy (). (16)

For a general Hamiltonia = 7 + V, which is the sum of a single-particle teriand a
two-particle termV,

o A 1 bt o
H = Z Tknaian + 5 Z karn,,/a,ia,'(/a,,an/ a7)
kn kk'nn’
we have

_d . .. d _
(Zn Ik — HIZy(0) = Y Nz 5 2e(t) - kZ Ten N7k ()2 (1)

k
=3 D Vi NN = DZe(0) 20 ()20 1)z (1). (18)
kk'nn’
In the above expression as well as in the following ones of this section, we use the boson
condensate (13). Similar expressions hold for the coherent state (14) with the substitution
(N —1) — N. The action (16) is stationary with respect to a variatior;0f) if

—d
ih 21 = ;hﬂ[za)]zl(t) (19)
where
hulzO] = Ty + (N = 1) D VikaZe()za (1) (20)
kn

are the matrix elements of the mean-field single-particle Hamiltoajarty)]. In the case
of the Hamiltonian (1), we have

Ty = ;8 — pi€%8j141 — B8, (21)

Vikin = 2¥;8jx0x1n (22)
and the mean-field single-particle Hamiltonian has matrix elements

hilz()] = a;8)1 — Bi€?8) 111 — Bi€ 8110 + 2(N — Dyy;lz; (1)1%85 (23)
with j,i=1,...,L

The system of nonlinear Sdhdlinger equations (19) with;;[z(¢)] given by (23) must
be numerically solved starting from initial valueg(0) with the normalization condition
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Zlelzj(0)|2 = 1. The choice of the numerical algorithm is critically related to the
existence of conservation laws. By inspection, the system (19) has two conserved quantities,
the single-particle probability

L
lzOIP =) 1z () (24)
j=1
and the single-particle energy
L
Elz.7) = D Aeylzj (07 = [B-1€2j-1(6) + Bie " 211(D]Z(1) + (N — Dy;lz;(0[*).  (25)
j=1

The conservation law (24) suggests the use of a finite-difference Crank—Nicholson
scheme [12]

L (a T At)]) (+an=5 (5 | (r)]) ) (26)

; il + 2}7_,12(4- 2t + —; it = 1 ophiilz 2
which is simple to handle numerically due to the tridiagonal nature of the miatrixrhe

above scheme would be correct@§Ar?) if the matrix 2 were time-independent. However,
this is not the case and we have to approximate the matrix elements in the l.h.s. of (26). The
simple approximatiot;;[z (r + Ar)] > hj;[z(t)] has catastrophic effects for the conservation
law (25) unless very small values &ft are chosen. An improvement is obtained with an
iterative procedure. Let us supposé?) known and try

5+ An = lim 2 (t + An). (27)
Then = 0 term is defined by solving
L At L At
; <5jl + lzﬁhjz[l(l)]> Zl(o)(f + At = ; (5j1 - |2]/Thjl[Z([)]) zi(t) (28)

and then > 1 terms are chosen as solutions of
L L
> (511 + i%hjz[z('l_l) (t+ At)]) g+ A=) (3/‘1 - iﬁhihﬂ[Z(f)]) 2(1). (29)
=1 =1
This iterative scheme converges in a very few steps and ensures an excellent conservation
of both quantities (24) and (25).
The system (19) can show local exponential instability. The corresponding maximum

Lyapunov exponent defined by

: 1 szl
A tIer;o A(r) A(r) . In 1520l
measures the exponential separation between two states and |z(¢)) + €[5z (2))
infinitesimally close(e — 0). The site projectionsz;(r) = (j|6z(¢)) satisfy the set of
equations obtained by linearizing (19)

(30)

_d L )
|haazj(t) = l;hﬂ[z(t)]éa(t) + P[z; (1), 8z;(1), 8Z;(1)] (31)

1 The matrixh is tridiagonal only in the case of Dirichlet boundary conditions whereas in the case of periodic
boundary conditions the corner elementg andi 1 are also nonzero. However, in this last case the lower and
upper triangular (LU) decomposition of the matfixand the subsequent solution of system (26) via the forward-
and back-substitution [12] take onl(L) operations as in the tridiagonal case.
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where
Plzj(t), 8z;(1), 6z;(1)] = 2(N — D)y;z;(D)[z; (t)8z;(t) + Z;(t)dz;(1)] (32)

and can be evaluated by numerically integrating (31) simultaneously with (19). The initial
valueséz;(0) cannot be chosen arbitrarily. Indeed, the state)) + €[8z(¢)) must be
normalized up to term&(e?). Sincel|z(r)| = 1, we must have Re(r)|8z(r)) = 0 at any
time. However, by using (19) and (31) we have

d L d_ _d
@ Re(z(1)6z(1)) = Re;‘ [&, (t)azj(t) + z,-(t)aaz,- (r)] =0 (33)

and, therefore, it is sufficient to have R€0)|5z(0)) = 0.

For solving (31) simultaneously with (19) we again adopt an iterative modification of
the Crank—Nicholson scheme in whi¢his considered as a driving term. Let us suppose
z;j(t) anddz;(t) known and try

8z;(t + Ar) = lim (Sz;")(t + A1), (34)

Then = 0 term is defined by solving

= At © = At
Y (a,, + |2}7h,,[z(t)]> 200 +an=Y" <5,, - |2}7h,,[z(t)]> 82(1)
=1

=1
A
—Izi(P[zj (1), 82j(1), 8Z;()] + Plz; (1), 8z; (1), 8Z;(1)]) (35)

and then > 1 terms are chosen as a solution of
L At . L At
Z <8jl + |2}7hﬂ[z(n1)(t)]) 62; )(t + At) = Z ((Sj] — IZ}Thjl[Z(t)]> 8z;(t)
=1 =1
LAt n— n— —(n—
i (Pl + A0, 827"V (1 + A, 87"V + A)]
+P[zj(1), 8z (1), 8Z;(D]). (36)

The quantity||5z(¢)|| can grow exponentially and, therefoie, (r) must be periodically
scaled in order to avoid numerical overflows [17]. The scaling factors are stored for
computing the Lyapunov exponent (30). When the system (19) is chaotic, the computer
round-off errors inevitably make the numerical solutions obtained with different integration
steps At different after a sufficiently long time. Therefore, the comparison of solutions
relative to different steps is not a good check that the algorithm works correctly, unless
time-averaged quantities, e.g. the Lyapunov exponent (30), are compared [18]. On the
other hand, a check based on the conservation of the quantities (24) and (25) is meaningful
and can be used to fix the size of the integration step in relation to a chosen accuracy.
With the modified Crank—Nicholson scheme described aboveAfog 1034/, after 16
iterations we have relative errors in (24) and (25) which are smaller than ditd 104,
respectively.

Figures 7 and 8 show the behaviour afr) with periodic and Dirichlet boundary
conditions, respectively. The curves denoted withe, 8 and y refer to the system in
which all the parameters are independentj as in figure 1; is random as in figure 3,

B; is as in figure 5, ang; is localized in figure 6, respectively. After an initial transient,
not shown in figures 7 and 8\(¢) approximately stabilizes around a positive value which
we take as the corresponding maximum Lyapunov expoheMote thath—t < 10°h/n is
much smaller than the maximum simulation time’4,0;. The value ofx is independent
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u,a
0.100 [~ B =
0.050 |
= A
XN
£
=
< 0.010 - E Figure 7. Maximum Lyapunov exponent for
w 1 the mean-field system (19) with periodic boundary
0005 ¢ 1 conditions. The curves denoted with &, 8 and y
- 1  are obtained with the parameters given in figures 1,
el —— 3, 5 and 6, respectively. The initial conditiong(0)
10 10 10 .
and éz;(0) are a set of arbitrary complex numbers
t (8/7) satisfying[1z(0)2 = 1 and Rez(0)|5z(0)) = 0.
I i T
u
0.100 — £
0.050 |
= i
N
£
s
< 0.010 - -
W
0.005 |
103 10* 105 i I . -
Figure 8. As in figure 7 with Dirichlet boundary
t (/) conditions.

of changes in the initial condition$;(0). It is also independent of changes in the initial
conditionsz; (0) provided that the conserved ener§l, z] is not changed. The maximum
Lyapunov exponent vanishes exceptionally when the initial $td@) is coincident or very
close to one of the stationary states of the system (19) which are defined by

26 (D) = €7 [2(0)) lze@? = 1. (37)

The comparison of figures 1-6 with figures 7—8 suggests a correspondence between the
guantum chaos of a system of interacting particles and the dynamical chaos of its mean-field
approximations. Whenever the exact system (1) shows Wigner-like NNLS distribution the
corresponding mean-field system (19), or that for the coherent state (14), has a positive
maximum Lyapunov exponent.

The simultaneous presence of chaotic behaviour in the exact and mean-field systems
is also obtained for values of the parametdfsL, «;, ;, y; and ¢ different from those
reported. In the three cases in which the exact system has been shown to be integrable,
namelyy; — 0, 8; — 0, and the continuum limit, the corresponding mean-field system is
integrable and has = 0. Fory; — O, the system (19) becomes linear ahd) = 0. For
B; — 0, we have

%|Zj(t)|2 = Z-’(t)%z'f(t) + Zj(f)d*dtzj‘(l‘) =0 (38)
and, therefore,

zj @) = zj (O)e—i(a; +2(N-Dyy; IZ_/(O)IZ)f/E. (39)
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The corresponding variation

3Zj(t) — 8Zj (O)e—i(aj+2(N—1)Vj\Z/(O)IZ)T/E
Lt _ _ i . n
—z; (O)';TZ(N — 1y[62;(0)Z;(0) + z;(0)87;(0)]e (@ +2N =Ll OP)/E (40)

shows that|§z(7)| is O(z) and therefore. = 0. Finally, in the continuum limit the system
(19) becomes the well known nonlinear Satlinger equation,
2 52

" 2m ox2°
solvable via spectral transform [19].

iﬁ%z(x,t) _ (6, 1) + CON = Dz (x, P (x, 1) (a1)

4. Second quantization of the mean field

The correspondence between quantum chaos of an @xdiidy system and dynamical
chaos of the associated mean-field approximations parallels the correspondence between
the quantum chaos of a single-particle system and the dynamical chaos of the associated
classical equations. This parallel can be connected to the fact that the first quantization of
the classical canonical coordinates has a formal counterpart in the second quantization of
the mean field [8]. Let us see this in detail. The mean figld) = sz ®,j=1...,L,

is determined by the dynamical equation

d . . )
iy 2i(0) = 2(1) = Bi—1€°Z;_1(t) — Bi€ 0 Z;1(t) + 2y, Z; (1) Z; (1) Z; (1). (42)

In this section we will consider the coherent state (14) but similar results hold for the boson
condensate (13) with the substitutidh— (N — 1). The quantization rule

Z;(t) = Z;(t) Zj(t) = Zl(1) (43)
with
[Z;0). Zi@] =[2]1). Z[] =0 [Z;(). Z}(©)] = 8 (44)

transforms the nonlinear Sdidinger equation (42) into the Heisenberg equation for the
field operatorZ;(¢). Indeed, in the representation of the site-localized st@t&& ik, We

haver(t) = Z,le qu’f&k(t) = a;(t) whose Heisenberg equation of motion is
—d, N A
Ih&aj (1) = [a; (1), H(1)]

= ;1) — Bi-1€"4;_1(1) — Bie a1 (1) + 23] (Da;(1)a; (). (45)
The second quantization (44) can be made formally identical to the first quantization of
classical canonical coordinates with the standard transformation
3 - 1 /h -
Q) = \/;(Zj(t) + Z;(1)) Pi(1) = i\/;(Zj(t) —Zj(1). (46)
By using the total energy of the system
H[Q, P] = N&[z(Q, P), 2(Q, P)]
L ()2 + P:(1)2 0. PP
— Z{Olj Qj(t) 't ](t) _ |:ﬁjle|9 Qj l(t) +|_ j 1(1)

f= 2h Vi
0 QO+ IR0 Q0 —iPW) Qj(r>2+Pf<r)2>2}

(47)
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the nonlinear Sclidinger equation (42) can be rewritten in the Hamilton formalism

d d d
42O = gp. Q- Pl g b= H[Q. P] (48)

d
dP; (1) ~do;(n)

and the quantization (44) is equivalent to the introduction of Hermitian operétths and
I3j(t) with commutation relations

[0,(0), 0x(®)] = [P;(1), Pu(1)] = 0 [0 (1), Pr(1)] = ih8jz. (49)

5. The limit N — oo

We first analyse the limit of infinite density, in whidii — oo with L constant.

In this limit the quantum theory reduces to-mumber theory and is, therefore, analogous
to a classical limit even though £ 0 [20]. For our system this is easily seen by retracing
the N-dependence in the equations of the previous section. For Myglee system reduces
to a collection of independent nonlinear oscillators whose nonlinearity growsviikerom
the point of view of chaotic properties, the linit/L — oo is therefore trivial. An example
where the same kind of limit gives rise to a nontrivial chaotic system can be found in [21].

It is interesting to see the emergence of the limiting behavidt. — oo by comparing
the cumulative density of states

D
DE)=Tro(E—H)=)Y 0(E—E) (50)
i=1
with the approximate expression obtained according to the Weyl rule

1
Do) = o [ 001++-00, [ dPy---dPL6(E — HIO. PHOW = NTQ. PD. (51)
Note that we have &-function constraint on th@ — P phase space which fixes

= Q)%+ Pi(1)?

N[O, P] = = I
[0. 7] ; o

in agreement with (24). Due to the presence of this constraint, the r.h.s. of (5@ lisl)-

multiple integral which can be evaluated with Monte Carlo integration in the hypercube of

side 2/2hN centred in the origin. Figures 9-11 show, in a case with Dirichlet boundary

conditions, that when the density= N/L is increasedD(E) is approximated byD:(E)

with increasing precision. Similar behaviour is obtained with periodic boundary conditions

and/or different values of the parameters of the system. The total number of levels given

by (50) and (51) become equal in the lin\Nt/L — co. Indeed, we have

- N (52)

. Ni-1 2L, NE-t
DmszlinooDmf(E): oL [dxl-~-deL5<l—jZ;xj) Zm (53)

which is the value of the Fock dimension (2) far> L.

For a single-particle system, the smooth behaviour of the cumulative density of states
is approximated by the corresponding semiclassical expression in the limit of high energies
(h — 0). Analogously, in the case of aM-body system foiV/L large we can us®y(E)
to approximate the smooth behaviour BE) and evaluate the normalized spacings (5)
according to

d
si = (Eiz1— Ei)deDmf(E) >~ Dmi(Eiy1) — Dme(E;) (54)
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Figure 9. Cumulative density of states in the case
N =10, L = 3, «j, B and y; chosen between 0
and n with a random number generator, and with
¢/do = 0 and Dirichlet boundary conditions. The
histogram is the exact result (50) and the broken
E/N? (n) curve is the mean-field approximation (51).
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E/N* (n) Figure 10. As in figure 9 withN = 30.
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E/N* (n) Figure 11. As in figure 9 withN = 90.

as suggested in [5].

Finally, let us briefly discuss the thermodynamic limit. Unlike the lilWifL — oo,
the system preserves its quantum features and the mean fields do not give a complete
description. This is also reflected by the behaviour of the cumulative density of states. For
the system discussed here, whérand L — oo with N/L = p constant by using (53) and
(2) we have

In Drs 1+1Inp
InD  A+p)InA+p)—plnp
The functionu(p) is smaller than unity for any finite and tends to unity fop — oo.

= n(p). (55)
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Therefore,Dmi/ D ~ D"~ vanishes in the thermodynamic limit.

On the basis of our numerical results and the considerations made in the previous section,
the correspondence between quantum chaos &f-Body system and dynamical chaos of its
mean-field approximations can be naturally assumed to holll fer co. In [22] the authors
consider the chaotic behaviour of the same system discussed here when the thermodynamic
limit is approached. In that paper a dynamical version of this correspondence is proposed
and exploited.
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