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Abstract. We present numerical evidence that in a system of interacting bosons there exists
a correspondence between the spectral properties of the exact quantum Hamiltonian and the
dynamical chaos of the associated mean-field evolution. This correspondence, analogous to the
usual quantum-classical correspondence, is related to the formal parallel between the second
quantization of the mean field, which generates the exact dynamics of the quantumN -body
system, and the first quantization of classical canonical coordinates. The limit of infinite density
and the thermodynamic limit are then briefly discussed.

1. Introduction

The commonly accepted definition ofquantum chaosis based on universal statistical
properties of suitably defined fluctuations in the energy spectrum. For instance, a confined
quantum system with a finite number of degrees of freedom, e.g. a particle in a billiard,
is said to be chaotic whenever the nearest neighbour level spacing (NNLS) distribution,
with the spacings normalized to their local average value, is well approximated by the
corresponding Wigner distribution for random matrices [1].

This definition of quantum chaos was conjectured [2] to satisfy a correspondence
principle with thedynamical chaosof the associated classical system, i.e. the exponential
sensitivity of the classical trajectories to a variation of the initial conditions. In fact,
a large collection of numerical examples [3] shows that, whenever the classical system
has a positive (non-positive) maximum Lyapunov exponent, the corresponding quantum
system has a Wigner-like (non-Wigner-like) NNLS distribution. The recent result [4] gives
theoretical support to this conjecture.

In the case of systems made ofN identical particles nonlinearly interacting, quantum
chaos, in the sense stated above, seems a general rule [5–7]. For these systems, we suggest
looking for a correspondence of the quantum chaos with the dynamical chaos of associated
c-number canonical coordinates well distinguished from the classical ones. Thesec-number
canonical coordinates are appropriate combinations of time-dependent mean fields which
approximate the dynamics of theN -body symmetrized or antisymmetrized wavefunction
[8]. The dynamical equations of the mean fields are, in general, nonlinear and allow
the presence of dynamical chaos as in classical mechanics [9]. Asecond quantization
transforms the mean fields into field operators and restores the exact dynamics of the
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quantumN -body system. This second quantization can be made formally identical to
the quantization of classical canonical coordinates and, by analogy, we can expect a
correspondence between the quantum chaos ofN -body systems and the dynamical chaos
of their mean-field approximations.

In this paper, we numerically investigate a system ofN bosons with both periodic and
Dirichlet boundary conditions. In section 2, we analyse the exact system from the point of
view of quantum chaos and find that a Wigner-like NNLS distribution is a general feature
in the presence of nonlinear interaction already for very low values ofN . In section 3, we
study time-dependent mean-field approximations of the same system from the point of view
of the exponential sensitivity to the initial conditions. We find that the mean fields show
dynamical chaos in correspondence to the quantum chaos of the exact system for all the
values ofN considered. We naturally assume that this correspondence continues to hold as
N increases. In section 4 we quantize the mean field and in the last section we discuss the
limit of infinite density and the thermodynamic limit.

2. The model and its properties

Let us consider a system ofN spinless bosons of chargeq moving in a one-dimensional
lattice with L sites and described by the Hamiltonian

Ĥ =
L∑

j=1

[αj â
†
j âj − βj (e

iθ â
†
j+1âj + e−iθ â

†
j âj+1)] +

L∑
j=1

γj â
†
j â

†
j âj âj (1)

where index correspondencej ± L = j is assumed. The operatorâ
†
j creates a boson in the

sitej andαj , βj andγj are the site, hopping and interaction energies, respectively. Periodic
and Dirichlet boundary conditions will be considered. In the first case, the system represents
a ring threaded by a line of magnetic fluxφ and the phase factors areθ = 2πφ/φ0L, where
φ0 = hc/q is the flux quantum (in the Gauss electromagnetic system). In the second case,
the sites lie on a segment and we putβL = 0 andθ = 0. The system (1) has wide interest.
Its time-dependent mean-field approximation has applications to molecular dynamics and
nonlinear optics [10] and to electron transport in heterostructures [11].

All properties of the system (1) can be evaluated by knowing eigenvalues and
eigenvectors ofĤ . It is simple to work in the space spanned by the Fock states|ni

1 · · · ni
L〉,

whereni
j is the number of bosons in the sitej and

∑L
j=1 ni

j = N . The indexi runs from 1
to the Fock dimension

D = (N + L − 1)!

N !(L − 1)!
(2)

obtained by counting all the possible arrangements of theN identical bosons into theL
sites. TheD-dimensional matrixH representing the Hamiltonian (1) in the Fock basis has
matrix elements

Hki = 〈nk
1 · · · nk

L|Ĥ |ni
1 · · · ni

L〉 =
L∑

j=1

[αjn
i
j + γjn

i
j (n

i
j − 1)]δki

−
L∑

j=1

βj

[
eiθ

√
ni

j (n
i
j+1 + 1)1ki(j) + e−iθ

√
ni

j+1(n
i
j + 1)1ik(j)

]
(3)

where

1ki(j) =
{

1 if nk
j = ni

j + 1, nk
j+1 = ni

j+1 − 1, andnk
l = ni

l for l 6= j, j + 1

0 otherwise.
(4)
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The eigenvaluesEi and eigenvectors|Ei〉 of the Hermitian matrix (3) can be numerically
evaluated with standard methods [12]. A bound to the maximum dimensionD that can be
studied is essentially fixed only by the computer memory necessary to store the full sparse
matrix (3).

For a general, asymmetric, system the NNLS distribution is evaluated from all the
eigenvaluesEi . The normalized spacings between nearest neighbour levels, whose
distributionP(s) is of interest, are taken as

si = (Ei+1 − Ei)/1Eav(i) (5)

where

1Eav(i) = 1

2Nav + 1

Nav∑
k=−Nav

(Ei+k+1 − Ei+k) (6)

with 1 � Nav � D. In the case of Dirichlet boundary conditions, the Hamiltonian
matrix is real symmetric and correspondence to the Gaussian orthogonal ensemble (GOE)
of random matrices may be expected. In the case of periodic boundary conditions, the
Hamiltonian matrix is complex Hermitian and, in general, correspondence to the Gaussian
unitary ensemble (GUE) may be expected. However, if the external potential, represented
by the site energiesαj , is symmetric under a reflection with respect to some diameter of
the ring, the system has an anti-unitary symmetry and GOE behaviour is restored [13].

In the presence of geometrical symmetries, the level statistics analysis probing the
phenomenon of level repulsion is meaningful only once the trivial crossings of eigenvalues
belonging to different symmetry classes are avoided [14]. This amounts to analysing the
NNLS distribution separately inside each one of the diagonal blocks which compose the
matrix H in a proper basis. For example, a uniform system, i.e. a system withαj , βj and
γj independent of the site-indexj , is invariant under rotation

R̂ : j 7→ j + 1 (7)

in the case of periodic boundary conditions, and space-inversion

P̂ : j 7→ L + 1 − j (8)

in the case of Dirichlet boundary conditions. The eigenvalues ofĤ must be divided into
L classes, corresponding to the eigenvalues exp(i2πν/L), with ν = 1, . . . , L, of R̂, in the
first case, and into two classes, corresponding to the eigenvalues±1 of P̂, in the second
one. This is accomplished by evaluating the operatorĤ in the basis of the degenerate
eigenvectors ofR̂ or P̂ in which the corresponding matrixH is block-diagonal. Each block
is then independently diagonalized to find the eigenvalues ofH within the corresponding
symmetry class.

The eigenvectors|νq〉 of R̂, q being the degeneracy index, are obtained by numerically
solving the eigenvalue problem

D∑
i=1

(Rki − λνδki)〈ni
1 · · · ni

L|νq〉 = 0 (9)

where

Rki = 〈nk
1 · · · nk

L|R̂|ni
1 · · · ni

L〉 =
{

1 if nk
j = ni

j+1 for j = 1, . . . , L

0 otherwise.
(10)
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The block ofH corresponding to the eigenvalueλν = exp(i2πν/L) has matrix elements

Hνqνp
=

D∑
k,i=1

〈νq |nk
1 · · · nk

L〉Hki〈ni
1 · · · ni

L|νp〉. (11)

A similar, general procedure could be applied also toP̂. However, the eigenvectors of
P̂ are, by inspection, single Fock states or symmetric and antisymmetric combinations of
couples of Fock states. The even and odd blocks ofH , corresponding to the eigenvalues
±1 of P̂, have matrix elements which are straightforward combinations of those in (3).

Figure 1 shows the NNLS distribution obtained for a uniform system with periodic and
Dirichlet boundary conditions. The distributions of the normalized spacings (5) evaluated
for each symmetry class of eigenvalues have been summed up for increasing the statistical
confidence. The agreement of the calculated NNLS distribution with the Wigner surmise
for the GOE distributionPGOE(s) = (πs/2) exp(−πs2/4), also shown in the same figure,
is statistically reliable.

The importance of performing the level statistics analysis within the appropriate
symmetry classes is evidenced in figure 2, where the NNLS distribution for the same uniform
systems of figure 1 is evaluated from the total spectrum ofĤ . In the case of Dirichlet
boundary conditions, the mixing of the even- and odd-parity eigenvalues generates a two-
peak distribution which behaves like exp(−s) at larges. In the case of periodic boundary
conditions, due to the higher number of symmetry classes and their statistical independence,
we observe a distribution which mimics the Poisson distributionPP(s) = exp(−s) even at
small s [14]. This fact and the observation that similar results are obtained when the

Figure 1. NNLS distribution P(s) for the system
(1) in the uniform caseN = 5, L = 9, αj =
0, βj = η and γj = η with φ/φ0 = 0.3 and
periodic boundary conditions (full histogram) and
φ/φ0 = 0 and Dirichlet boundary conditions (broken
histogram). The solid line is the Wigner surmise for
the GOE distribution.

Figure 2. As in figure 1 but without separating the
eigenvalues into the appropriate symmetry classes.
The broken curve is the Poisson distribution.
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Figure 3. As in figure 1 with periodic boundary
conditions but choosingαj = 2(N − 1)ηξj , where
ξj are arbitrary positive numbers with

∑L
j=1 ξj = 1.

The full and broken curves are the Wigner surmise
for the GOE and GUE distributions, respectively.

Figure 4. As in figure 3 but choosingξj0−j = ξj0+j

with j0 arbitrary.

Figure 5. As in figure 1 but choosingβ2 = β3 =
0.5η andβj = η for j 6= 2, 3.

symmetries are only approximate [5], will be relevant in the following.
The above-mentioned geometrical symmetries can be explicitly broken by choosing an

appropriatej -dependence in the parametersαj , βj and γj . Figure 3 shows the NNLS
distribution obtained with periodic boundary conditions when the site energies have the
form αj = 2(N − 1)ηξj , whereξj are arbitrary positive numbers with

∑L
j=1 ξj = 1, and

all the other parameters are as in the uniform case. The resemblance of the calculated
distribution to the GUE Wigner surmise,PGUE(s) = (32s2/π2) exp(−4s2/π), expected on
the basis of the complex Hermitian nature ofH , is statistically reliable. However, the GOE
behaviour is restored, as shown in figure 4, by choosingξj symmetric with respect to an
arbitrary j0. Figures 5 and 6 show the NNLS distribution obtained when the hopping and



6174 P Castiglione et al

Figure 6. As in figure 1 but choosingγj = ηδj3.

interaction energies have the form indicated in the captions and the other parameters are as
in the uniform case. The calculated distribution is always close to the GOE one for both
periodic and Dirichlet boundary conditions.

Results similar to those discussed above are obtained for other choices of the parameters,
N , L, αj , βj , γj and φ, i.e. the system (1) is generally characterized by a Wigner-
like NNLS distribution. Integrability points are the only exception to this rule. A first,
trivial, point of integrability of the system (1) is the noninteracting case obtained for
γj → 0 with eigenvalues given byEi = ∑L

j=1 εjn
i
j , εj being theL eigenvalues obtained

for N = 1. A second point is approached forβj → 0 with eigenvalues given by
Ei = ∑L

j=1 αjn
i
j + γjn

i
j (n

i
j − 1). A third point of integrability is obtained by taking the

continuum limit in which equation (1) becomes the second quantization version of the
Hamiltonian ofN bosons interacting via aδ-function potential

N∑
n=1

[
− h̄2

2m

∂2

∂x2
n

+ C

N∑
n′=n+1

δ(xn − xn′)

]
(12)

with 0 6 xn 6 `. This system is solvable by the Bethe ansatz [15] and can be obtained
from (1) by puttingαj = 2βj = h̄2/(m1x2) and γj = C/1x with 1x = `/L and letting
L → ∞. When approaching an integrability point, the NNLS distribution transforms into
a non-Wigner-like distribution whose shape strongly depends on the values of the system
parameters.

The results of the level statistics analysis obtained for the boson system (1) are in
agreement with those found in [5–7] for fermion systems. Quantum chaos, in the sense
stated in the introduction, is a generic feature of systems with many particles interacting
nonlinearly. The only apparent exception to this rule is a result of [7] in which a
system of spinless electrons moving in a ring similar to ours is shown to have Poisson-
like NNLS distribution whenever the interaction is limited to a small region of the ring.
However, studying the same fermion system we found that the case considered in [7] has
an approximate symmetry [16]. When this symmetry is taken into account or is removed
by changing the relevant parameters, e.g. adding a random energy to the sites, the NNLS
distribution turns to a GOE distribution as in the example of figure 6.

3. Mean-field approximation

Two substantially equivalent time-dependent mean-field approximations of the Hamiltonian
(1) are obtained by choosing theN particles to be described by the normalized boson
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condensate

|ZN(t)〉 = (N !)−1/2[â†
z(t)]

N |0〉 (13)

or the normalized coherent state

|ZN(t)〉 = exp[
√

Nâ†
z(t) −

√
Nâz(t)]|0〉. (14)

Here,|0〉 is the vacuum state anda†
z(t) creates a boson in the single-particle state

|z(t)〉 = a†
z(t)|0〉 =

L∑
j=1

zj (t)a
†
j |0〉 =

L∑
j=1

zj (t)|j〉. (15)

The normalization condition of this state,〈z(t)|z(t)〉 = ∑L
j=1 |zj (t)|2 = 1, fixes the

expectation number of particles in the boson condensate (13) or the coherent state (14)
to N since in both cases we have〈ZN(t)|â†

j âj |ZN(t)〉 = N |zj (t)|2. The time evolution of
the complex amplitudeszj (t) = 〈j |z(t)〉 is obtained from a variational principle for the
Dirac action [8]∫

dt〈ZN(t)|ih̄ d

dt
− Ĥ |ZN(t)〉. (16)

For a general Hamiltonian̂H = T̂ + V̂ , which is the sum of a single-particle term̂T and a
two-particle termV̂ ,

Ĥ =
∑
kn

Tknâ
†
kân + 1

2

∑
kk′nn′

Vkk′nn′ â
†
kâ

†
k′ ânân′ (17)

we have

〈ZN(t)|ih̄ d

dt
− Ĥ |ZN(t)〉 = ih̄

∑
k

Nz̄k(t)
d

dt
zk(t) −

∑
kn

TknNz̄k(t)zn(t)

− 1
2

∑
kk′nn′

Vkk′nn′N(N − 1)z̄k(t)z̄k′(t)zn(t)zn′(t). (18)

In the above expression as well as in the following ones of this section, we use the boson
condensate (13). Similar expressions hold for the coherent state (14) with the substitution
(N − 1) → N . The action (16) is stationary with respect to a variation ofz̄j(t) if

ih̄
d

dt
zj (t) =

∑
l

hjl [z(t)]zl(t) (19)

where

hjl [z(t)] = Tjl + (N − 1)
∑
kn

Vjklnz̄k(t)zn(t) (20)

are the matrix elements of the mean-field single-particle Hamiltonianh[z(t)]. In the case
of the Hamiltonian (1), we have

Tjl = αjδjl − βle
iθ δjl+1 − βj e−iθ δj+1l (21)

Vjkln = 2γj δjkδklδln (22)

and the mean-field single-particle Hamiltonian has matrix elements

hjl [z(t)] = αjδjl − βle
iθ δj,l+1 − βj e−iθ δj+1,l + 2(N − 1)γj |zj (t)|2δjl (23)

with j, l = 1, . . . , L.
The system of nonlinear Schrödinger equations (19) withhjl [z(t)] given by (23) must

be numerically solved starting from initial valueszj (0) with the normalization condition
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j=1 |zj (0)|2 = 1. The choice of the numerical algorithm is critically related to the

existence of conservation laws. By inspection, the system (19) has two conserved quantities,
the single-particle probability

‖z(t)‖2 ≡
L∑

j=1

|zj (t)|2 (24)

and the single-particle energy

E [z, z̄] =
L∑

j=1

{αj |zj (t)|2 − [βj−1eiθ zj−1(t) + βj e−iθ zj+1(t)]z̄j(t) + (N − 1)γj |zj (t)|4}. (25)

The conservation law (24) suggests the use of a finite-difference Crank–Nicholson
scheme [12]

L∑
l=1

(
δjl + i

1t

2h̄
hjl [z(t + 1t)]

)
zl(t + 1t) =

L∑
l=1

(
δjl − i

1t

2h̄
hjl [z(t)]

)
zl(t) (26)

which is simple to handle numerically due to the tridiagonal nature of the matrixh†. The
above scheme would be correct toO(1t2) if the matrixh were time-independent. However,
this is not the case and we have to approximate the matrix elements in the l.h.s. of (26). The
simple approximationhjl [z(t +1t)] ' hjl [z(t)] has catastrophic effects for the conservation
law (25) unless very small values of1t are chosen. An improvement is obtained with an
iterative procedure. Let us supposezj (t) known and try

zj (t + 1t) = lim
n→∞ z

(n)
j (t + 1t). (27)

The n = 0 term is defined by solving

L∑
l=1

(
δjl + i

1t

2h̄
hjl [z(t)]

)
z

(0)
l (t + 1t) =

L∑
l=1

(
δjl − i

1t

2h̄
hjl [z(t)]

)
zl(t) (28)

and then > 1 terms are chosen as solutions of
L∑

l=1

(
δjl + i

1t

2h̄
hjl [z

(n−1)(t + 1t)]

)
z

(n)
l (t + 1t) =

L∑
l=1

(
δjl − i

1t

2h̄
hjl [z(t)]

)
zl(t). (29)

This iterative scheme converges in a very few steps and ensures an excellent conservation
of both quantities (24) and (25).

The system (19) can show local exponential instability. The corresponding maximum
Lyapunov exponentλ defined by

λ = lim
t→∞ 3(t) 3(t) ≡ 1

t
ln

‖δz(t)‖
‖δz(0)‖ (30)

measures the exponential separation between two states|z(t)〉 and |z(t)〉 + ε|δz(t)〉
infinitesimally close(ε → 0). The site projectionsδzj (t) = 〈j |δz(t)〉 satisfy the set of
equations obtained by linearizing (19)

ih̄
d

dt
δzj (t) =

L∑
l=1

hjl [z(t)]δzl(t) + P [zj (t), δzj (t), δz̄j(t)] (31)

† The matrixh is tridiagonal only in the case of Dirichlet boundary conditions whereas in the case of periodic
boundary conditions the corner elementsh1L andhL1 are also nonzero. However, in this last case the lower and
upper triangular (LU) decomposition of the matrixh and the subsequent solution of system (26) via the forward-
and back-substitution [12] take onlyO(L) operations as in the tridiagonal case.
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where

P [zj (t), δzj (t), δz̄j(t)] = 2(N − 1)γj zj (t)[zj (t)δz̄j(t) + z̄j(t)δzj (t)] (32)

and can be evaluated by numerically integrating (31) simultaneously with (19). The initial
values δzj (0) cannot be chosen arbitrarily. Indeed, the state|z(t)〉 + ε|δz(t)〉 must be
normalized up to termsO(ε2). Since‖z(t)‖ = 1, we must have Re〈z(t)|δz(t)〉 = 0 at any
time. However, by using (19) and (31) we have

d

dt
Re〈z(t)|δz(t)〉 = Re

L∑
j=1

[
δzj (t)

d

dt
z̄j(t) + z̄j(t)

d

dt
δzj (t)

]
= 0 (33)

and, therefore, it is sufficient to have Re〈z(0)|δz(0)〉 = 0.
For solving (31) simultaneously with (19) we again adopt an iterative modification of

the Crank–Nicholson scheme in whichP is considered as a driving term. Let us suppose
zj (t) andδzj (t) known and try

δzj (t + 1t) = lim
n→∞ δz

(n)
j (t + 1t). (34)

The n = 0 term is defined by solving
L∑

l=1

(
δjl + i

1t

2h̄
hjl [z(t)]

)
δz

(0)
l (t + 1t) =

L∑
l=1

(
δjl − i

1t

2h̄
hjl [z(t)]

)
δzl(t)

−i
1t

2h̄
(P [zj (t), δzj (t), δz̄j(t)] + P [zj (t), δzj (t), δz̄j(t)]) (35)

and then > 1 terms are chosen as a solution of
L∑

l=1

(
δjl + i

1t

2h̄
hjl [z

(n−1)(t)]

)
δz

(n)
l (t + 1t) =

L∑
l=1

(
δjl − i

1t

2h̄
hjl [z(t)]

)
δzl(t)

−i
1t

2h̄
(P [z(n−1)

j (t + 1t), δz
(n−1)
j (t + 1t), δz̄

(n−1)
j (t + 1t)]

+P [zj (t), δzj (t), δz̄j(t)]). (36)

The quantity‖δz(t)‖ can grow exponentially and, therefore,δzj (t) must be periodically
scaled in order to avoid numerical overflows [17]. The scaling factors are stored for
computing the Lyapunov exponent (30). When the system (19) is chaotic, the computer
round-off errors inevitably make the numerical solutions obtained with different integration
steps1t different after a sufficiently long time. Therefore, the comparison of solutions
relative to different steps is not a good check that the algorithm works correctly, unless
time-averaged quantities, e.g. the Lyapunov exponent (30), are compared [18]. On the
other hand, a check based on the conservation of the quantities (24) and (25) is meaningful
and can be used to fix the size of the integration step in relation to a chosen accuracy.
With the modified Crank–Nicholson scheme described above, for1t . 10−3h̄/η after 108

iterations we have relative errors in (24) and (25) which are smaller than 10−5 and 10−4,
respectively.

Figures 7 and 8 show the behaviour of3(t) with periodic and Dirichlet boundary
conditions, respectively. The curves denoted withu, α, β and γ refer to the system in
which all the parameters are independent ofj as in figure 1,αj is random as in figure 3,
βj is as in figure 5, andγj is localized in figure 6, respectively. After an initial transient,
not shown in figures 7 and 8,3(t) approximately stabilizes around a positive value which
we take as the corresponding maximum Lyapunov exponentλ. Note thatλ−1 . 102h̄/η is
much smaller than the maximum simulation time 105h̄/η. The value ofλ is independent
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Figure 7. Maximum Lyapunov exponent for
the mean-field system (19) with periodic boundary
conditions. The curves denoted with u,α, β andγ

are obtained with the parameters given in figures 1,
3, 5 and 6, respectively. The initial conditionszj (0)

and δzj (0) are a set of arbitrary complex numbers
satisfying‖z(0)‖2 = 1 and Re〈z(0)|δz(0)〉 = 0.

Figure 8. As in figure 7 with Dirichlet boundary
conditions.

of changes in the initial conditionsδzj (0). It is also independent of changes in the initial
conditionszj (0) provided that the conserved energyE [z, z̄] is not changed. The maximum
Lyapunov exponent vanishes exceptionally when the initial state|z(0)〉 is coincident or very
close to one of the stationary states of the system (19) which are defined by

|zE(t)〉 = e− i
h̄
Et |zE(0)〉 ‖zE(t)‖2 = 1. (37)

The comparison of figures 1–6 with figures 7–8 suggests a correspondence between the
quantum chaos of a system of interacting particles and the dynamical chaos of its mean-field
approximations. Whenever the exact system (1) shows Wigner-like NNLS distribution the
corresponding mean-field system (19), or that for the coherent state (14), has a positive
maximum Lyapunov exponent.

The simultaneous presence of chaotic behaviour in the exact and mean-field systems
is also obtained for values of the parametersN , L, αj , βj , γj and φ different from those
reported. In the three cases in which the exact system has been shown to be integrable,
namelyγj → 0, βj → 0, and the continuum limit, the corresponding mean-field system is
integrable and hasλ = 0. For γj → 0, the system (19) becomes linear and3(t) ≡ 0. For
βj → 0, we have

d

dt
|zj (t)|2 = zj (t)

d

dt
z̄j(t) + z̄j(t)

d

dt
zj (t) = 0 (38)

and, therefore,

zj (t) = zj (0)e−i(αj +2(N−1)γj |zj (0)|2)t/h̄. (39)
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The corresponding variation

δzj (t) = δzj (0)e−i(αj +2(N−1)γj |zj (0)|2)t/h̄

−zj (0)i
t

h̄
2(N − 1)γj [δzj (0)z̄j(0) + zj (0)δz̄j(0)]e−i(αj +2(N−1)γj |zj (0)|2)t/h̄ (40)

shows that‖δz(t)‖ is O(t) and thereforeλ = 0. Finally, in the continuum limit the system
(19) becomes the well known nonlinear Schrödinger equation,

ih̄
∂

∂t
z(x, t) = − h̄2

2m

∂2

∂x2
z(x, t) + C(N − 1)|z(x, t)|2z(x, t) (41)

solvable via spectral transform [19].

4. Second quantization of the mean field

The correspondence between quantum chaos of an exactN -body system and dynamical
chaos of the associated mean-field approximations parallels the correspondence between
the quantum chaos of a single-particle system and the dynamical chaos of the associated
classical equations. This parallel can be connected to the fact that the first quantization of
the classical canonical coordinates has a formal counterpart in the second quantization of
the mean field [8]. Let us see this in detail. The mean fieldZj(t) = √

Nzj (t), j = 1, . . . , L,
is determined by the dynamical equation

ih̄
d

dt
Zj (t) = αjZ(t) − βj−1eiθZj−1(t) − βj e−iθZj+1(t) + 2γj Z̄j (t)Zj (t)Zj (t). (42)

In this section we will consider the coherent state (14) but similar results hold for the boson
condensate (13) with the substitutionN → (N − 1). The quantization rule

Zj(t) → Ẑj (t) Z̄j (t) → Ẑ
†
j (t) (43)

with

[Ẑj (t), Ẑk(t)] = [Ẑ†
j (t), Ẑ

†
k(t)] = 0 [Ẑj (t), Ẑ

†
k(t)] = δjk (44)

transforms the nonlinear Schrödinger equation (42) into the Heisenberg equation for the
field operatorẐj (t). Indeed, in the representation of the site-localized statesφk

j = δjk, we

haveẐj (t) = ∑L
k=1 φk

j âk(t) = âj (t) whose Heisenberg equation of motion is

ih̄
d

dt
âj (t) = [âj (t), Ĥ (t)]

= αj âj (t) − βj−1eiθ âj−1(t) − βj e−iθ âj+1(t) + 2γj â
†
j (t)âj (t)âj (t). (45)

The second quantization (44) can be made formally identical to the first quantization of
classical canonical coordinates with the standard transformation

Qj(t) =
√

h̄

2
(Zj (t) + Z̄j (t)) Pj (t) = 1

i

√
h̄

2
(Zj (t) − Z̄j (t)). (46)

By using the total energy of the system

H[Q, P ] = NE [z(Q, P ), z̄(Q, P )]

=
L∑

j=1

{
αj

Qj (t)
2 + Pj (t)

2

2h̄
−

[
βj−1eiθ Qj−1(t) + iPj−1(t)√

2h̄

+βj e−iθ Qj+1(t) + iPj+1(t)√
2h̄

]
Qj(t) − iPj (t)√

2h̄
+ γj

(
Qj(t)

2 + Pj (t)
2

2h̄

)2 }
(47)
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the nonlinear Schrödinger equation (42) can be rewritten in the Hamilton formalism

d

dt
Qj (t) = d

dPj (t)
H[Q, P ]

d

dt
Pj (t) = − d

dQj(t)
H[Q, P ] (48)

and the quantization (44) is equivalent to the introduction of Hermitian operatorsQ̂j (t) and
P̂j (t) with commutation relations

[Q̂j (t), Q̂k(t)] = [P̂j (t), P̂k(t)] = 0 [Q̂j (t), P̂k(t)] = ih̄δjk. (49)

5. The limit N → ∞

We first analyse the limit of infinite density, in whichN → ∞ with L constant.
In this limit the quantum theory reduces to ac-number theory and is, therefore, analogous

to a classical limit even though ¯h 6= 0 [20]. For our system this is easily seen by retracing
theN -dependence in the equations of the previous section. For largeN , the system reduces
to a collection of independent nonlinear oscillators whose nonlinearity grows likeN . From
the point of view of chaotic properties, the limitN/L → ∞ is therefore trivial. An example
where the same kind of limit gives rise to a nontrivial chaotic system can be found in [21].

It is interesting to see the emergence of the limiting behaviourN/L → ∞ by comparing
the cumulative density of states

D(E) = Tr θ(E − Ĥ ) =
D∑

i=1

θ(E − Ei) (50)

with the approximate expression obtained according to the Weyl rule

Dmf(E) = 1

(2πh̄)L

∫
dQ1 · · · dQL

∫
dP1 · · · dPLθ(E − H[Q, P ])δ(N − N [Q, P ]). (51)

Note that we have aδ-function constraint on theQ − P phase space which fixes

N [Q, P ] ≡
L∑

j=1

Qj(t)
2 + Pj (t)

2

2h̄
= N (52)

in agreement with (24). Due to the presence of this constraint, the r.h.s. of (51) is a(2L−1)-
multiple integral which can be evaluated with Monte Carlo integration in the hypercube of
side 2

√
2h̄N centred in the origin. Figures 9–11 show, in a case with Dirichlet boundary

conditions, that when the densityρ = N/L is increasedD(E) is approximated byDmf(E)

with increasing precision. Similar behaviour is obtained with periodic boundary conditions
and/or different values of the parameters of the system. The total number of levels given
by (50) and (51) become equal in the limitN/L → ∞. Indeed, we have

Dmf ≡ lim
E→∞

Dmf(E) = NL−1

πL

∫
dx1 · · · dx2L δ

(
1 −

2L∑
j=1

x2
j

)
= NL−1

(L − 1)!
(53)

which is the value of the Fock dimension (2) forN � L.
For a single-particle system, the smooth behaviour of the cumulative density of states

is approximated by the corresponding semiclassical expression in the limit of high energies
(h̄ → 0). Analogously, in the case of anN -body system forN/L large we can useDmf(E)

to approximate the smooth behaviour ofD(E) and evaluate the normalized spacings (5)
according to

si = (Ei+1 − Ei)
d

dE
Dmf(E) ' Dmf(Ei+1) − Dmf(Ei) (54)
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Figure 9. Cumulative density of states in the case
N = 10, L = 3, αj , βj and γj chosen between 0
and η with a random number generator, and with
φ/φ0 = 0 and Dirichlet boundary conditions. The
histogram is the exact result (50) and the broken
curve is the mean-field approximation (51).

Figure 10. As in figure 9 withN = 30.

Figure 11. As in figure 9 withN = 90.

as suggested in [5].
Finally, let us briefly discuss the thermodynamic limit. Unlike the limitN/L → ∞,

the system preserves its quantum features and the mean fields do not give a complete
description. This is also reflected by the behaviour of the cumulative density of states. For
the system discussed here, whenN andL → ∞ with N/L = ρ constant by using (53) and
(2) we have

ln Dmf

ln D
≈ 1 + ln ρ

(1 + ρ) ln(1 + ρ) − ρ ln ρ
≡ µ(ρ). (55)

The functionµ(ρ) is smaller than unity for any finiteρ and tends to unity forp → ∞.
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Therefore,Dmf/D ≈ Dµ(ρ)−1 vanishes in the thermodynamic limit.
On the basis of our numerical results and the considerations made in the previous section,

the correspondence between quantum chaos of anN -body system and dynamical chaos of its
mean-field approximations can be naturally assumed to hold forN → ∞. In [22] the authors
consider the chaotic behaviour of the same system discussed here when the thermodynamic
limit is approached. In that paper a dynamical version of this correspondence is proposed
and exploited.
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