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An adiabatic approximation in terms of instantaneous resonances to study the
steady-state and time-dependent transport properties of interacting electrons in bi-
ased resonant tunneling heterostructures is used. This approach leads, in a natural
way, to a transport model of large applicability consisting of reservoirs coupled to
regions where the system is described by a nonlinear 8iitger equation. From

the mathematical point of view, this work is honrigorous but may offer some fresh
and interesting problems involving semiclassical approximation, adiabatic theory,
nonlinear Schrdinger equations, and dynamical systems. 1896 American In-

stitute of Physicg.S0022-24886)00510-3

I. INTRODUCTION

Man-tailored semiconductor heterostructdreffer, for the first time, the possibility to test
quantum mechanics at a mesoscopic |évEhe scenario of systems which can be investigated is
so rich that the art of their realization deserves the name of quantum design.

In the simplest case, a quantum designer can grow sandwiches of different semiconductor
alloys by choosing the number of atomic layers for each kind of alloy. In the resulting hetero-
structure, the conduction band profile along the growth direction forms steps whose height can be
continuously varied by a proper choice of the alloy composition. Typical widths and heights are of
the order of tens of A and tenths of eV, respectively.

At low temperature, the mean free path of carriers for scattering from crystal impurities is of
the order of 16 A, and for heterostructures smaller than this size the electric transport along the
growth direction is phase coherent quantum scattering from the conduction band discontinuities.
Due to the translational invariance in the plane orthogonal to the growth direction, the problem is
one-dimensional. Moreover, the carriers are described by an effective mass which accounts for the
microscopic scattering with the periodic crystal sites, and their wave function is an envelope wave
function?

In a homogeneous neutral conductor, the electron—electron interaction can be taken into
account by a renormalization of the carrier effective massesl one deals with a transport
problem like in a noninteracting case. In a heterostructure, even as simple as that described above,
the breaking of translational invariance in the transport direction allows the electric neutrality to be
locally violated. The corresponding interaction potential, obtained, at Hartree level, by solving a
proper Poisson equation, can strongly modify the transport properties. The example of a double
barrier heterostructure with the exterior regions doped with donors is illuminafing to tun-
neling, electrons populate the resonadscereated by the double barrier and the region between
the barriers becomes negatively charged. This generates an electric potential which decreases the
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tunneling probability of electrons in the double barrier region. As a consequence, current oscilla-
tions on the picosecond scafeand chaotic behavior without classical counterbadve been
predicted in a ballistic configuration in which electrons are injected at some chosen energy.

Experiments with ballistic electrons are difficult, and measurements became available only
recently’® Technologically simpler is the case of biased heterostructures where transport is due to
the presence of reservoirs at thermal equilibrium with different chemical potentials. Manifestations
of the electron—electron interaction are known also in this configuration. For example, hysteresis
in the current—voltage characteristics of double barrier heterostructures have been dbsexved
recognized as a consequence of the accumulation of electrons in the resbn&ticethis case,
however, one has the theoretical problem of attaching reservoirs at thermal equilibrium to a piece
of conductor where quantum coherent transport takes place.

In the recent papét we proposed an approach to this problem based on a mathematical
method earlier applied in the framework of ballistic transgbiVe showed that for heterostruc-
tures with a single resonance our approach allows (On® obtain steady-state voltage—current
characteristics having hysteresis or not in agreement with the experimental ‘feantisii) to
predict time-dependent properties analogous to those studied in optically bistable sydteres.
we develop the general mathematical scheme of this approach and discuss the case with several
resonances where multistability phenomena can take place as in superfittices.

For simplicity, consider the one-dimensional double barrier heterostructure discussed above.
The idea is that due to the presence of resonances the correspondindigprproblem can be
divided in two parts: a Schdinger equation for the barrier region and one for the exterior space,
the two being weakly coupled by tunneling. This decomposition corresponds to the schematization
of the transport process as a coherent process fed by reservoirs. In the exteridrepae®irs,
homogeneous and neutral, the electron—electron interaction is neglected and thermal equilibrium
is taken into account by considering a continuous set of energy eigenstates distributed according to
Fermi statistics. In the barrier regidooherent conduct@rthe Coulomb interaction is included in
a self-consistent potential obtained by solving the Poisson equation associated with the local
charge density. Under the assumption that the barriers are wide enough, the corresponding non-
linear Schrdinger problem is discussed in two steps. In the first step we eliminate the potential
well between the two barriers by artificially increasing the potential there, and we solve the
Schralinger equation asymptotically for the new potential by means of WKB-expansions. The
resulting solution is then very small near tfidled) potential well, so we get only a small error in
the Schrdinger equation when we go back to the true potential. In the second step we correct for
this small error by adding a wave function concentrated near the potential well. Assarpiiayi
that the charge in the well changes slowly with time, the correcting wave function can be expected
to be large only at energies close to the resonances, and be well approximated by some linear
combination of the resonant states.

In most of the article we discuss the case in which only one resonance participates. The
validity of this one-mode approximation has been tested numerically with excellent results in the
ballistic configuration of Ref. 17. Here, the coefficient of the one-mode approximation obeys an
ordinary differential equation with respect to time in the infinite-dimensional space of square
integrable functions of energy. We study the stationary points of the corresponding vector field
and their nature, whether they are attractive or not, and arrive at quite neat answers. For solutions
of the dynamical system which have existed as bounded solutions for a long time and in a suitable
asymptotic limit (of wide barriers we derive a simplified scalar differential equation for the
evolution of the sheet density of electrons trapped in the well, which gives a good global under-
standing of the more complete dynamical system. Using these results, we are able to discuss the
phenomenon of hysteresis and we support and illustrate the discussion with several numerical
results. The discussion includes the evolution of solutions away from fixed points which neces-
sarily appears when there is hysteresis. We also discuss the case of several resonances and get
analogous results.
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From the mathematical point of view, the present article could be a starting point for rigorous
work on some fresh problems, involving semiclassical analysis, adiabatic theory, nonlinear Schro
dinger equations, and dynamical systems. A strong motivation for such an enterprise is the fact
that the theory of electric transport in semiconductor devices offers many problems similar to the
one we illustrate heré

The plan of the article is as follows. In Sec. Il we define the model. In Sec. Ill we review the
WKB expansion for slowly varying potentials. In Secs. IV and V we determine the driving term
and the ground resonant state, respectively, within the WKB approximation. The central equation
of our article is derived in Sec. VI, and the general properties of the associated fixed points and
linearizations are discussed in Sec. VII. In Sec. VIII we introduce an approximation valid in the
limit of small resonance width and discuss the corresponding fixed-point solutions and lineariza-
tions. In Sec. IX we obtain a simplified differential equation describing the dynamics of the
electron density in the well. A qualitative discussion of the hysteresis phenomenon in comparison
with numerical results is given in Sec. X. In Sec. XI we finally consider the case with several
resonances.

II. DEFINITION OF THE MODEL

Let us consider a heterostructure whose conduction band profile consists of two barriers of
heightV, located in p,b] and [c,d],

0, x<a
Vo, a<x<b
Vg(x)=1¢ 0, b<x<c (2.1
Vo, c<x<d
0, x>d

with a<b<c<d along the growth directior. We wish to evaluate the transport properties of this
device when a bias enerdyV is applied between the emittex<a) and collector x>d) regions
uniformly doped. Due to doping, the band of conduction electrons formed in the emitter and
collector regions is characterized by a Fermi endEgy= (372np)?°, wheren,, is the net donor
concentration. We will use everywhere effective atomic uits2m*=1 and e*/e=2ag?,
wherem* is the electron effective mass aathe dielectric constant. In these units, every physical
quantity is expressed in terms of the effective Bohr radigs 7.%e/(m* €2). Assuming an ideal
heterostructure homogeneous in the plamzeparallel to the junctiongand orthogonal to the
growth directionx), the single-electron momenkg andk, are conserved quantities. As a conse-
guence, the single-electron wave function at endfgyE, whereE”=k§+ k2, can be factorized
as ¢(x,t,E) x(y,zt,E;) with

1 .
x(y.z,t,E)= 7 el *hezlg iE, (2.2

We will assume periodic boundary conditions in a two-dimensional regiso that the momenta
k, andk, are quantized as in a real device having finite lateral area of’siZée time-dependent
Schralinger equation for the single-electron wave function at en&gfong thex direction is

[—id— 02+ Vey(X) +U(¢,X)]b(X,t,E) =0, (2.3

where U (¢,x) takes into account the applied bias and, at Hartree level, the electron—electron
interaction. Assuming ideal metallic behavior in the emitter and collector regions, i.e., neglecting
the formation of accumulation and depletion layét$e,x) can be obtained as the solution of the
Poisson equation
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FZU(¢,x)=—8mag "p(¢) (2.4

with Dirichlet boundary conditiondJ(#,a)=0 andU(¢,d)=—AV. The densityp takes into
account all the electrons in the occupied energy states and depends only on the wave-function
componentg. Indeed, if the emitter and collector regions are at thermal equilibrium with tem-
peratureT we have

P=2J'oodE; |¢(X,t,E)X(yyz't,Eu)|2(1+e(E+E”7EF)/kBT)7l=f dE g(E)|#(x,t,E)|?,
0 I
(2.5

where the factor 2 takes into account the spin degeneracy. Energies are measured from the bottom
of the emitter conduction band, and the lower integration bdtid in the first line of Eq(2.5

stems from the fact that fdE <AV, as we will assume, only electrons from the emitter conduc-

tion band can penetrate the regiam ] where the electron density is of interest. In the second

line of Eq. (2.5 this lower bound is absorbed in the definitiongi{fE) by a Heaviside function

6(E). The functiong(E) can be explicitly evaluated by approximating the sum over the parallel
degrees of freedom with an integral

(1+ e E+E~Ep)/kgT) —1

g(E)= H(E)Z dEu pp

1
=0(E) 5 [keT In(1+eE-ErkeT) + EL—E]. (2.6)

Note that the chemical potential at temperattliren the Fermi function has been approximated
with its value atT=0, i.e., the Fermi energy determined by the net donor concentration.

In general, the solution of E¢2.4) cannot be handled analytically. We will suppose that, due
to the accumulation of electrons in the well with sheet density

S(¢)—f dE Q(E)f dX| P(x,t,E)[%, (2.7

ideal metallic behavior in the wellb,c] and ideal insulating behavior in the barriems,p] and
[c,d] hold. This is equivalent to approximate E&.4) with

92U(¢p,x)=—8mag 's($)[BS(x—b)+Cé(x—c)], B+C=1 (2.9

and the condition that,U(¢#,x) =0 for b<<x<<c. In this casdJ(¢,x) becomes a piecewise linear
function of x with 9,U(¢,Xx) having jump discontinuities at=b andx=c. The total potential
VptU in Eq. (2.3 is better rewritten a¥ +W, where

0, x<a
—AV(x—a)/l, a<x<b
V(x)={ —AV(b—a)/l, b<x<c (2.9
—AV(b—a+x—c)/l, c<x<d
—AV, x>d

gives the band profile modified by the external bias and
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Vo poe-

a b ¢ d

FIG. 1. PotentiaV(x) representing the band profile modified by the external bias eneyggsolid line) and total potential
V(x)+W(s,x) including the electrostatic contribution due to electrons trapped in the well with sheet deridaghed
line).

0, x<a

(x—a)(d—c)/l, a<x<b
W(s,x)=8mag 's(¢) x4 (b—a)(d—c)/l, b<x<c (2.10

(b—a)(d—x)/l, c<x<d

0, x>d

depends on the wave functiafi through the sheet density of electrons in the ve¢lh). Here
I=b—a+d—c. The potentiald/(x) andW(s,x) are shown in Fig. 1.
We will try to solve the nonlinear partial differential equation

[—id— a2+ V(X)+W(s,x)]h(x,t,E)=0, (2.11)

wheres(¢) is given by Eq(2.7), in two steps. LeWg(X) = V(X) + Vol (X) be the potential
obtained by filling the well b,c]. Here 1, ,(x) is the characteristic function of the interval
[b,c]. First we solve

[—i0— a5+ Ve (x) +W(s,x) J(x,t,E)=0 (2.12
and then we look fokp in the form ¢=u+7v, wherev should solve
[—i0y= 35+ V) +W(S) T(X,LE) = Volpp () B(X,LE). (213

The wave function describes an electron at energywhich is delocalized in the emitter and
collector regions and has an exponentially small probability to be found in the forbidden region
[a,d]. The wave functionv describes the localization, driven Qy, of the same electron in the
well [b,c]. The wave functiong of the original problem2.11) can be approximated by or

inside or outside the two barriers, respectively, with an error which is exponentially small in the
limit of wide barrierst’

To evaluaten we will use a WKB approximation in the forbidden regioa,{l]. Equation
(2.13 will be treated with a one-mode approximation in whighis assumed proportional to a
resonant state corresponding to the potentialW. To evaluate this resonant state and the cor-
responding resonance, we will again use a WKB approximation. In both cases, the justification of
using a WKB approximation stems from the fact thgj,+W and V+W are slowly varying
potentials in the barriers regionsbf-a andd—c are large whileAV ands remain bounded.
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lll. WKB EXPANSION FOR SLOWLY VARYING POTENTIALS

Let 7=7/,(x) be a real valued potential on some interval, with7z=(|h|) and
927/=c(h?), where|h|<1 is a parameter. Let be a real energy and assume thgi(x) — < is
bounded from above and from below by some strictly positive constants that are indeperident of
This means that we are in the classically forbidden region. Then

X
[— o2+ = 2)(7—2) "1 exp(—f dx' (7~ 5)1’2)

5 ; - 4 1 7 o\ —
=| =15 (7= o+ g (w= )

X
exp( - f dx’' (7% 5)1’2)

= /(=0 (h2), (3.
and therefore
X
(76— &)~ Y4 exp( - f dx'(%— &) 1’2) (3.2

is a good approximation to a corresponding exact eigenfunction, even over intervals of length
o(lh|7Y).

In the following sections, we will apply the above approximation in the barrier regiayg [
and [c,d] with h equal to thex derivative of V+W in these intervals.

IV. THE DRIVING TERM

Equation(2.12 can be solved by evaluating the instantaneous eigenstates of the potential
Vi +W. We setu(x,t,E)=exp(—iEt) u(X,t,E) and suppose thatV ands are slowly varying
functions of time so that alsp(x,t,E) is slowly varying in time. Thus in the equation

[—idi— 02+ Vg (x) +W(s,x) — E]u(x,t,E)=0, 4.2

we make a very small error if we neglect the ternd, ., as we shall do in the following. In the
emitter regiorx<<a, we takeu(x,t,E) as the sum of a left- and a right-going plane wave at energy
El

1
(X, t,E) = ———— [ EC- a1 (E)e 1By, (4.2

\/477\/E

wherer (E) is a reflection amplitude to be computed. Note that the normalization factor in Eq.
(4.2 is chosen in order to havedxu(x,t,E) u(x,t,E') = S(E — E’), in agreement with the ex-
pression of the electron densi®.5) in terms of an integral over the ener§y We propagate the
expression(4.2) to the adjacent regions by requiringto be of clas<C! and applying the WKB
approximation described in Sec. IlIl. In the intervalp] the potential isVy, +W=Vy+ a(x—a),
where

_ 8mag s(d—c)—AV
a= b—a+d—c

4.3

plays the role of the small parameterof Sec. lll. Fora<x<b we can then use the WKB
approximation
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1 (VO_ E)1/4 "
w(x,t,E)= t(E)exp(—f dx'[Vo+ a(x' —a)—E]¥?|,

/477\/E [Vo+a(x—a)—E]Y

wheret(E) is a transmission amplitude to be determined witg) from theC?* condition atx=a

4.9

1+r(E)=t(E), (4.53
iVE-iVEN(E)=t(E)[(Vo—E)"*~ {(Vo—E)*a]. (4.5D
Neglecting the last term in the square brackets, which(ig|), we get

C1Hi(Vo/[E-1)Y?
T

(4.6a

t(E)=

1-i(Vo/E- 1)V (460
Note that the neglected term would give correction factorg”l|a|) to r (E) andt(E).

At x=Db we can set up a similar transition problem but h¥g+W is continuous and the
corresponding transmission amplitude is-(|a]). Neglecting again a factor 1(|«a|), for
b<x<c we get

w(X,t,E) = Mo(t,E)e—[V0+a(b—a)—E]1/2(x—b)’ (4.7)
where

1 (Vo— E)1’4 2el(Vo- E)32—[Vo+ a(b—a)—E]¥32/3
mo(t,E)= . 4.9

/4W\/E(Vo+a(x—a)—E)1’4 1+i(Vo/E—1)Y?

Only this expression of: in the region p,c] will be used in the following as driving term of Eq.

(2.13.

V. RESONANCE AND RESONANT STATE

In this section we will obtain a WKB approximate expression for the ground-state resonance
N(s)=ERg(s)—iI'(s)/2 and the corresponding resonant s&ts x) for the potentialvV+W. We
will assume that—b is bounded from below and from above by positive constants, vihila
andd—c are large enough.

To start with, we recall the construction of the ground state eigenv@ajluef the potential
Viu(X) =Vo[ 1]« p)(X) + 1[c, +(X) ] Which coincides, up to the constant shift

8mag 's(b—a)(d—c)—AV(b—a)
E= b—a+d-c ’ 69
with the potentiaV +W in the well region p,c]. The corresponding ground eigenstate is

cog VEN(c—b)/2]e Vo ED b0 y<p
e(x)=C¥x 4 cof VEL[x—(b+c)/2]}, b<x<c (5.2
cog VEN(c—b)/2]e" Vo ED -0l x>
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where 0<EY<min(V,, 7%/ (c—b)?) is determined by the requirement thedf(x) is of classC?,
tar] VE§(c—b)/2]=(Vo/Ef—1)2, (5.3
and the normalization constant is

CW_ E\(I)V .\ c—b . (VO_E\(I)V)1/2 —-1/2
O [ Vo(Vo—ER)? " 2 Vo ’

(5.9

where we used the identities éas=(1+tarf u) "%, (sin 2u)/2=sinu cosu=tanu(1-+tarf u)"*. In
the following we will assume thaEy+AE<V,—AV.
Next we look at the ground state of the potential

Vot+a(a—b), x<a
Vo+a(x—b), a<x<b

Vy(x)=1{ 0, b<x<c (5.5
Vo+ B(x—c), c<x<d

which coincides, up to the constant shiftt, with V+W on the larger regiond,d] which
includes the barriers. In E@5.5) « is given by Eq.(4.3) and

_ —8mag's(b—a)—AV
B b—a+d—c

(5.6

Note that the potentiaV,, has been obtained by bending the barrier¥gfin the intervals &,b]
and [c,d] proportionally toa and 3, respectively. LeES be the ground state &f, andef(x) the
corresponding eigenfunction. Singg and || are small, from the same WKB considerations of
Sec. Ill we haveES=EY+(|al+|8]) andel(x)=e¥(x) +(|al+|8)). To get the leading asymp-
totics of the resonance width, we need to determine the linear contributiotjdpt|8)) in ES. By
differentiating the eigenvalue equation for the potertig| we have

+ oo b
aaEgla:ﬁZOZ f_w dxeg(x)aavb(x)|a:B:0e8(X):f de(X_b)|e‘3’(X)|2, (57)

+ oo + oo
95ED = p=0= f_x dxeg(x)ﬂﬂvb(x)|a:B:Oe8(x)zfC dx(x—c)|eg(x)|?, (5.8
and using Eq(5.2) we get

0 W
908l amp—0=— 9gEQl 4= p—0=(C{)? cog[ VEF (c—b)/2] jﬁxdx x Vo~ o)

o (CP)*Ey (5.9
4Vo(Vo—Eg) '
Observing thatv— B=8mag's, we finally get
(CW 2EW ,
Eb=EV—87magls ——————+(a+ ). (5.10

4Vo(Vo—Ep)
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The real partEg(s) of the shape resonance efd2+V-+W which is close to the ground-state
eigenvalue of- 32+ V,+ AE is very well approximated by the above calculaﬁ%AE which
can be rewritten as

Er(s)=ERr(0) + s, (5.12)
where
Er(0)=EY—AV(b—a)/l (5.12)
and

_ 8mag'(b—a)(d—c) 8mag(CY)’EY
7T h-avd-c 4Vo(Vo—EY) -

(5.13

Now we discuss the determination of the imaginary pgd) of the resonance. In the interval
[a,d] the ground state oY, is

eb(x)=CH

cod \ER(c—b)/2](V,— ER) 14 b
ot atx—b) X eXp( } f AX Vo a(x' =b)~Eg)*®
x{ cod VEN[x—(b+c)/2]}, b<x<c
cog VEB(c—b)/2](Vo—ED Y
[Vo+ B(x—c)—Eg1¥*

, a<x<b

X
exp(—f dx’[V0+,8(x’—c)—E8]1’2), c<x<d
C

(5.19

whereC8=C¥+(|a|+|8)). In the interval p,d], the resonant state(s,x) can be approximated
by adding to Eq(5.14 terms due to reflections at=a andx=d. Forx<d we try with

Cy cog VE§(c—b)/2](Vo—Ef)H d b1ro
e(s,x)= [V0+B(X—C)—Eg]l/4 ex;{—fe dx'[Vo+ B(x'—c)—Eq] )
x (@~ [Vo+ Ad=c)~EqlAx=d) g Vo+ B(d—0)~Eg]YAx—d)). (5.15

where we have also replaced the exponent with its linear approximation Gt Forx=d we try
the right-going plane wave

_ Cy cog VER(c—b)/2](Vo— Ef)H
=TTV a0 - R

d )
Cc

The C* condition atx=d gives, up to terms’(|3)),
1+r=t, (5.17a
—[Vo+B(d—c)—Eg]"*+[Vo+ B(d—c)—Eg]Vr =i[Eg— B(d—c)]"%,  (5.17H

which determines andt so that forx=d we have
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_ CY cof VEQ(c—b)/2)(Vo—EQY™ [ [ES—p(d—c)]¥? | 2
A= Vo a0 EI T Vorpa-o-Eg <P 3!V
—53)3’2—[V0+B(d—0)—E8]3’2}+i[EB—ﬂ(d—C)]l’Z(X—d)]- (5.18

In these calculations we have assumed El%& B(d—c)>0, VO+,8(d—c)—E8>O. The first
inequality is always fulfilled in experimentally relevant situations, while the second one, equiva-
lent to Ex(s)<Vy—AV may be more critical and, possibly, one should replace(E4.8 by a
more complicated formula.

The same calculation can be repeatedxdera. For x=a we try with

_ CY cog VER(c—b)/2](Vo—E)M
B [Vo+ a(x—b)—EJY*

b
e(s,X) ex;{ —f dx'[Vo+ a(x’—b)—Eg]l’z)
a
« (e[v0+a<a—b)—Eg]1’2<x—a)+ re—[vo+a(a—b)—Eg]l’z(x—a)), (5.19

with a new reflection amplitude. For x<a we try the left-going plane wave

_ CY cog VER(c—b)/2](Vo—ESM
~ [Vota(a—b)—Egl”

b
e(s,X) ex;{ —f dx’' (Vo+ a(x’—b)—Eg)l’z)
a
Xtefi[Enga(b*a)]l/z(X*a) (5.20
with a new transmission amplitude The C* condition atx=a gives, up to terms”(|al),

1+r=t, (5.213
[Vo+ a(a—b)—EI*?~[Vo+a(a—b)—EJ]*r = —i[Eg—a(a—b)]¥%,  (5.21b

which determines andt so that forx<a we have

_ CY cog VEY(c—b)/2](Vo—EQYA ~ [El+a(b-a)]¥2 ]t
M= T Vo atb-a) - E31 ' Vo~ alb-a)-E51™

X exp{ % {[Vo— a(b—a)—Eg1¥*— (Vo—EQ)*3 —i[Eg+ a(b—a) YA x— a)] :
(5.22

Note that forx<a, e(s,x) is a true left-going plane wave only fakV not too large when
ES+a(b—a)>0. If EJ+a(b—a)<0, Eq.(5.22 becomes an exponentially decaying function
whose corresponding probability current density vanishes. $r8&ea(b—a)= Er(s), this case
corresponds toEg(s)<0. In Eq. (5.22, we also assumed that,—a(b—a)—EJ>0, i.e.,
Er(s)<V,.

The resonance width can be now computed by means of the Green formula

d’ _— d’
I'(s) fa, dxle(s,x)|?=2 Im[e(s,x)dye(s,x)]| (5.23

a’

wherea’ <a andd’>d. The integral in the left-hand sidéhs) of Eq. (5.23 is 1+(|a|+|8]) and
using Eqgs(5.18 and(5.22 we get, up to such a factor,
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I'(s)=8(CY)2E§(Vo—EQ YAy X[ Vo+ B(d—c)—ESIYVI ES— B(d—c)] 12
 el(Vo—EQ)¥?=[Vo+ B(d—c)~EQ1324/38 [Vo— a(b—a)—EBJY2
X[ES+ a(b—a)]¥2e(lVomatb-a)~Eg**- (Vo &g ¥34/am (5.24

where we used . = 6(u) u.

VI. ONE-MODE APPROXIMATION

Equation(2.13 can be simplified by developing into the instantaneous eigenstates of the
potentialV+W and keeping only the contributions from the discrete resonant states, i.e., neglect-
ing the contributions from the continuous spectrtinFor the moment, we will suppose there is
only one resonant state and 3€k,t,E) =exp(—iEt)z(t,E)e(s,x) wheree(s,x) is the (ground
resonant state of the potentih W,

[—\(s)— 92+ V(x)+W(s,x)]e(s,x)=0, (6.2)

with complex eigenvalua (s)=Eg(s) —iI'(s)/2. The eigenfunctior(s,x) is of classL? on the
contour y=(e'?] —,0]+a)U[a,d] U(d+€'’[0,+[) for 8 conveniently chosén and satisfies

fdx g(s,x)?=1, fdx (s, X)d<e(s,x)=0. (6.2
Y Y

Multiplying Eq. (2.13 with e(s,x) and integrating ovet, we get
0z(t,E)=i[E—\(s)]z(t,E)+ .%(t,s,E) (6.3

with the driving term given by

ﬁ(t,s,E)=iV0bedx r(Xt,E)e(s,x) (6.4)
and the sheet densif@.7) reduced, with small error, to

s0- | dE 9Bzt P=l20) 65

VII. FIXED POINTS AND LINEARIZATIONS: GENERAL RESULTS

We consider the vector field in the Ihs of E§.3),

7(z,E)=_#|2|% E)z(E) +.%(|2|* E), (7.0
where
A(s,E)=—T(s)/2+i{E—[ER(0) + s]}, (7.2

is a nonvanishing function. For simplicity, we assume thais independent of. When.% varies
slowly with t, the discussion below should be applied to each such fixed valtue of

We first look for fixed points of”; i.e., functionsz=z(E) in L2(g(E)dE) with 7(z(E),E)
=0. Clearlyz=z(E) is a fixed point iff
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A2|%,E)
4B AP By @3
so theL2-norm s=||z||2 has to satisfy
| %(s,E)|?
s=f dE 9E) o Er (7.4)

Conversely, ifs=0 is a solution of Eq(7.4), then

A(s,E)

8=~ 766

(7.9

gives the unique fixed point oF" with ||z|*=s.

Assuming that we have found a fixed pointz(E), we look for the linearization of the
vector field7" at that point. By giving an infinitesimal incremeéit(E) to z(E), the correspond-
ing incrementé7 " to 7" is

8712,E)=.%s,E) 02(E) + ((62]2) +(62[2))[ 05 /(S E)2(E) + 0 A(S,E)], (7.6
wheres= | z|? is the corresponding solution of E.4) and(u|v) = fdE g(E)u(E)v(E). Hence,

671(2,8)=/(s.E) 52(E) + ((2/2) +(522))[ 05 AS.ENZE) +d ASE)], (1.7
so withu(E) = 8z(E) andv(E) = 5z(E), we get the complexification of the linearization,

u) (70N u) (U2 +(v[2)(ds 22+ 95.7)
o) Vo o) T2+ (@) (s A2t 05 7))

(7.9

The matrix in the first term of the rhs has a continuous spectrum contained' {i3)/2+iR and
the second term appears as a rank one perturbatiare @ is an eigenvalue ofZ with a real part
different from—1'(s)/2, we get

[.#4(s,E)—Nu+({u|2)+(v[2))[ ds #(S,E) 2+ ds #(S,E) =0, (7.99
[A(5,E)=Nv+((ul2)+(v[2))[ 5 (5, E)z+ a5 4(S,E)]= 0. (7.9b

We must then have

e A(S,E)z+ dg H(S,E)

WE) =r = e (7.108
. 9o A(S,E)Z+ 35 A(S,E) 10
VB TS B, (7100

wherex=(u|z)+(v|[z). In order to have a nontrivial solutiok+0, it is necessary and sufficient
that

IL(A=NA=N)]|B 2= A A= N)BIg B~ A A—N\). BB
1+f dE o(E) [(Re 7Z—\)2+ (Im 22| 72 =0.
(7.1D)
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Here, the lhs is real for real, and tends to 1, wheR— +o,
On the other hand, the-derivative of the Ihs minus the rhs of E(.4) is

| 2(s,E)|204. #(S,E)|?>—|. #(s,E)|?ds
1+f dE g(E) T ZGET

which coincides with the lhs of E¢7.11) for A=0. So if the expressiof¥.12) is <0, we see that
Eqg. (7.12) must have a solutioR>0. Let us say that the fixed point is stable if the spectrum of the
linearization. %’ is contained in the open left half-plane and unstable otherwise. The discussion
above then gives the following.

Proposition VII.1: Let z be a fixed point of” so that Egs. (7.4) and (7.5) hold. If the
s-derivative of thdhs minus therhs of Eq. (7.4) is<0, then z is an unstable fixed point. More
precisely, the linearizatiort# then has an eigenvalue which 3s0.

g 2
A(s,E)| | 712

VIII. FIXED POINTS AND LINEARIZATIONS: THE SMALL- T" LIMIT

In this section we assume that the driving tesfiis,E) is a sufficiently smooth function d&,
at least near the poititz(0)+ 7s, wheres solves Eq(7.4). When the barriers are very widg(s)
will be very small and

1 1
| Z(s,E)[2 [T(5)/2]?+[Er(0)+ 7s—EJ2

is a function ofE which is sharply peaked d&g(s)=Eg(0)+ 7s. In Eq. (7.4 it is therefore
justified to replacg(E)|.%(s,E)|? by the constant valug(E(0)+ 7s)|.%(s,Ex(0)+ 7s)|>. Then
Eq. (7.4) is well approximated by

9(ER(S))|.A(s,Er(9))|?

S=2 T(s) . (8.1

We shall next apply a similar argument to Ed@.11) for the eigenvalues of the linearization
< and, for more transparency, we start with a simplified case, in which

% and T are independent o86. (8.2

In this case, Eq(7.11) reduces to

[E—Er(0)— #s]g(E)[AE)|? ~
1-20 | € fr T Eg0 - AT E BT O 3
We shall use
T Rep>0, Req>0
+ o t2 mi p 1 q
f_m dt (P+t3)(p?+tD) | = (8.4
——, Rep>0, Req<O0
p—q
T Rep>0, Req>0
f”dt 1 _ ) ap(p+a)’ ’ .
e (PP | —w 8.5
— Rep>0, Reg<O0.
ap(p—a)
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in the integral in Eq.(8.3) with its value atE=Eg(0)+ #s, that

integral vanishes since the integrand becomes an odd functiBr-&z(0)— #s. Instead, we get
an approximation of the integral in E8.3) by replacingg(E)|.#(E)|? with the linear term in its
Taylor expansion aE=Eg(0)+ #s. Using Eq.(8.4), we then get from Eq(8.3

A?)'[Er(0)+ 5s
1-2, 9 )[rf(x) 71T _ ) when T/2+Re x>0, 8.6

#1%)'[Er(0)+ s
1+277(g| il :( E7SIT 6 when I/2+ Ren<0, 8.7

where(g|. 7% =d(g|.#%). The solution of Eq(8.6) is
N=2m7(g|. 4 [ER(0)+ 7s] T, (8.9
and this is an eigenvalue of the linearizatighas long as

r
2m (9| A12) [Ex(0)+ 781> 8.9

The solution of Eq(8.7) is

71?)'[Er(0)+ 78] (8.10

and describes an eigenvalue @fprecisely when Eq8.9) is fulfilled. We then have the following
conclusion under the simplifying assumptit82) and in the smalF limit.

When277(g|. %% [Er(0)+ 5s]<T'/2: no eigenvalues of~ and hence an attractive fixed
point.

WhenI'/2<2m7(g|.%>)'[Er(0)+ 5s] <T': two eigenvalues of# and still an attractive fixed
point.
#?)'[Er(0)+ 5s] =T': two eigenvalues and a nonattractive fixed point.

The main conclusmn under the same assumptions is then the following.

Proposition VIII.1: We have an attractive fixed point precisely when the s-derivative of the
difference of thdhs and therhsin Eq. (8.1) is>0.

Now we drop the simplifying assumptioi®.2) and see that the preceding proposition still
holds in the smalF limit. Let z be a fixed point, so that=||z||? (approximately solves Eq(8.1).
In view of Eq.(7.2), Eqg.(7.11) can be written as

A (A~ A)( -\)]|.7)%— 7/ \)dg BB /( A= N).Jd B
1+ [ 4E o) (o E o) nS]z}{[T(S)/2]2+[E En(0)— 7SI
(8.11
Here, the numerator of the integrand can be simplified to
[3sL(T/12+\)|. 22— (T12)(T 12+ \) 4. 7?1+ {[ E— Er(0) — 5s][ — 2|.7|?
+iN(de B I~ B33 5) ]} —{[E—Er(0) — 55]%34 .72 (8.12

Accordingly, we split the integral into three pieces and apply the shhalbproximation to each
one. If we assume, for simplicity, thd¥2+ReX>0 (which is necessarily the case if the eigen-
value\ is to ruin attractivene$swe get
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[0T(T/24 N) |52 (T12)(T 12+ \)ag A2 g
1+ (T/2) T2+ )TN

, Gelol =20 A+ iN(9s 2.7~ 705 )y~ 9o AV _
T+\ B

0 (8.13

at E=ER(0)+ #»s. This can be rewritten as

27(aLIT)gl. B2 2ma4(gl. B2 2mnoe(g|. B2  INTI[Q(deBF— B3 5)] s
T+\ T+\ T+\ T+\ e
(8.19
again atE=Eg(0)+ #»s. Noticing that
d 2 2
ds [(g]-#1%)(s,Er(0) + 75) 1= (nde+ ds)(9].7]%) (S,ER(0) + 75),
and multiplying withI'+X, we get the following approximation of E¢7.11)
— — %) (s,Er(0)+ 5s
M1+imag[g(ds 5 — 5o )} =—T(s)—2m (9.7 )(r(sF;( 7)o rs)
d 7| 2
+27  [(9l A7) (S Er(0) + 75)]. (8.19

We assume that-ti w&E[g(aS.,%’.E—.%’aSJT’)PO, so that the solution of Eq. (8.15 is real and
has the same sign as the rhs of Eg}15.
On the other hand, the-derivative of the Ihs minus the rhs of E@.1) is

o A 72 dsI'(s)
‘@d—s[(gl. 71)(s,Er(0) + 78)]+ 27(9|.#1%)(s,ER(0) + 75) T(s)?
- . d 7|2
_—@ —F(S)+27Td—s[(g|ﬁ| )(s,Ex(0)+ 75)]
(gl/j)|2)(S,ER(O)+ 7S)
T I'(s) dsI(s) |,

which is of the opposite sign to the rhs in E§.15. We then have the following.

Proposition VIII.2: Under the weaker assumptions above and in the dmkthit, we still
have an attractive fixed point precisely when the s-derivative ofhminus therhsof Eq. (8.1)
is >0.

IX. A SIMPLIFIED DIFFERENTIAL EQUATION FOR THE SHEET DENSITY
Consider the differential equatid.3)
dz(t,E)= (=T (s(1))2+i{E—[ER(0)+ 5s(t)1})z(t,E) +.%(s(t),E), 9.9

wheres(t)=|z(t,-)|?, and where we could also le¥ be a slowly varying function of through
s(t). Assumings(t) to be a known function, the solution of E¢P.1) with a prescribed initial
value at timet, is
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t . t . t
z(t,E)=ft dt’ exr{l[E—ER(O)](t—t’)—Ldt”l“(s(t”))lz—lnﬁydt”s(t”)).%’(s(t’),E)
0

+exp(i[E—ER(0)](t—t0)— fdt’l“(s(t’))/Z—i nf:dt's(t'))z(to,E).
0 0

Assuming that the solution has existed as a bounded solution for a very long time, say from the
time —o, we can lett, tend to—« in the formula above and get

t t t
z(t,E)=f_xdt’ exp(i[E—ER(O)](t—t')—ftldt"r(s(t"))/z—inftldt"s(t"))%(s(t'),E).
(9.2)

Taking the scalar product of E(.1) andz gives the following equation for the derivative of the
sheet density

% s(t)=2 Rgz|d;z) = —T'(s(1))s(t) + 2 Rgz|.%), (9.3

where
t t
2Rdz|.7)=2 ReJ dE g(E)J dt’ exr{i[E—ER(O)](t—t’)—J dt"T"(s(t"))/2
s v

=i nJ’:,dt”S(t”)).ﬁ(s(t’),E),%’(s(t),E). 9.9

We now assume tha(t) varies slowly witht and replaceZ(s(t’),E) in the above integral by
#(s(t),E). Making theE-integration first, we get

t t t
2 Rez|.#)=2 Ref dt’ exp( —iER(O)(t—t’)—J dt’T(s(t”))/Z—inJ dt”s(t”))
—® t’ t’

X.7(9].4%) (s(t),t" —1), (9.9

where.7 denotes the Fourier transform with respect&oAssuming thatg(E)|.#(s(t),E)[* is

sufficiently smooth as a function &, we see that7(g].Z?)(s(t),t’' —t) is sufficiently rapidly
decreasing as a function of—t for the following approximations to be madg) sincel’(s) is

small, we may assume that €xp f:,dfT(t”)/Z} = 1 and(ii) sinces(t") varies slowly, we may
replacef,,dt"s(t") by s(t)(t—t’). We then get

t H ! _
2 Rez|.%)=2 Ref dt’ e [ERO+7sI=1) 77 g| 7|?)(s(t),t' —t)
0 H !
=2 Ref dt’ e'lErO+ 7OV 77 g| 7]2) (s(1),t").
Using the property7(u)( — t) = .7(u)(t), valid for any real valued function(E), we obtain

2Res].7)= f gt B0 IO (g 712 (s(1),t) = 27(g]. A1) (5(1), Er(0) + 7S(1).
(9.6)
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Inserting this in Eq.(9.3), we get the approximate differential equation for the sheet density

s(t) =zt )[1?

A?)(s(1),Er(0) + 75(1))
I'(s())

This equation is valid for slowly varying solutions which have evolved for a time much longer

thanT L.

(9

d
&S(t)=—1“(s(t)) s(t)— 2« (9.7

X. QUALITATIVE DISCUSSION AND NUMERICAL RESULTS

We start by examining the simplified fixed-point equati8rl). For O<E<E with Eg<V,,
we haveV,—E~V, (of the same order of magnitudey evaluating the integral in E¢6.4) with
e(s,x) approximated by Eq5.2) and the driving term given by Eg¢4.7), we have

|.%’(S,E)|2~(C‘(’,")2V6 1E\6vE1/26{(v0—E)3’2—[v0+a(b—a)—E]3’2}4/3a.
Assuming for simplicity zero temperature, so tigldE) = 6(E)(E—E) . /27, we get

9(ER(9))| (s, Er(S))| 2~ (CY) 2V, 'EYER(S) YA Er—Er(S)]+

 ellVo~Er($)1¥?~[Vo—Eg(s) + a(b—a)]¥34/3a_

Recalling thaEg(s) = Ex(0)+ 7s=E§+ a(b—a)=E{— B(d—c)— AV, wherea and3 are given
by Egs.(4.3) and (5.6), respectively, from Eq(5.24 we get

I'(s)~ (C‘(’)V)ZEBVg 3/2{[\/0 —Er(S)]1Y2ER(S) 1+/2€{[v0— Er(8)1%2~[Vo—ER(S) + a(b—2a)]%34/3a
+[Vo—AV— ER(S)]lIZ[ Er(S)+AV] 12{[Vo— AV~ Er(s)— B(d—¢)]32~[Vvo—AV- ER(S)]3/2}4/3B}_

We will consider the following two cases:

(1) The barrier E,d] is more opaque tharg]b] in the sense that the exponential factor in the
second term of the above expression fdis) is much smaller than the exponential factor in the
first term.

(2) The barrier g,b] is more opaque tharc[d].

In the intermediate case when the two barriers have opacity of the same order, the discussion
of case(1) will roughly apply. Notice that opacity depends not only on the relative sizés-of
andd—c, but also ors andAV. Therefore, we may have transitions between the two cases when
these parameters vary. Interesting phenomena appear whefiLc&spossible and we start with
that case, recalling th&tg(s) =Eg(0)+ ns=E§—AV(b—a)/l + %s. In this casdand neglecting,
to start with, the possibility of a transition to the cd2g| the first term in the expression fbi(s)
dominates, except wheEg(s) is negative or very small and positive. The function

9(ER(8)|- #(s,ER(9))|?
I'(s)

f(s)=2m (10.3

vanishes folEx(s)<0 and rises very sharplyith a square root singularity &g(s)=0] from 0
to

fmax—Er (10.2

whenEg(s) is increased from 0 to a small positive value. WHeg(s) is further increased, the
function f(s) decreases roughly linearly and vanishes y(s)=Er. The valuesEg(s)=0,
Er(s)=Eg correspond to
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FIG. 2. Graphical solution of the equatisr f(s) for different values of the bias enerdyV. Note that the support df(s)

has widthAs=E/# (equality strictly holds at zero temperatur@he example shown here corresponds to a typical
GaAs—-AlGaAs heterostructure in which the parameters described in the text have the following ughsesx 10V
cm 3 T=1K,b—a=40 A, c—b=56 A, d—c=70 A, V,=0.34 eV,e=11.44, andn* =0.061, wherem is the free
electron mass.

s=[AV(b—a)/|—E¥]/5, s=[AV(b—a)/l—EY+Eg]/7, (10.3

and describe the boundary points of the support of the fun¢tiOrl). When AV is increased,

these two points move to the right with the same speed as shown in the example of Fig. 2. In Fig.
2 we also see the graphical solution of E§.1), s=f(s), for different values ofAV. It is clear

that Eq.(8.1) will first have only one solution wheAV(b—a)/l — E}'<0, then three solutions for

AV in some interval, untiAV(b—a)/l — Ef'~ 5f ., and again only one solution for even larger
values ofAV. According to the results of Sec. VIII, we see that in the case in whic&#). has

only one solution, this solution corresponds to an attractive fixed point, and when there are three
solutions, the smallest and the largest of these correspond to attractive fixed points, while the
intermediate solution corresponds to an unstable fixed point.

For many experimentally relevant situations the resonance width is much smaller than the
other energy scaldgssentiallyEg). In this case we may expect the simplified fixed-point equation
(8.1) to be a very good approximation of the more correct equdficf), except near the boundary
points of the support of the functiofl0.1). This is confirmed by Fig. 3 where we show the
numerical solutions(stable and unstableof both Egs.(7.4) and (8.1) for a system having
I'(0)/EL=0.01 atAV=0.2 eV. In the case of E(7.4), the corresponding energy integral has
been evaluated on a uniform energy mesh having a density of point®) .

The solutions of the simplified differential equatié®7) converge to one of the solutions of
Eq. (8.1), associated with an attractive fixed point. The phenomenon of hysteresis then becomes
clear. We letAV increase very slowly from some sufficiently small value up to some sufficiently
large positive value and subsequently decrease it very slowly, back to its initial value. Consider a
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1012;..‘...‘.‘

0.16 0.2 0.24 0.28
AV (eV)

FIG. 3. Fixed point solutions of the sheet density of electrons in thesadla function of the bias enerdyV in the same
case of Fig. 2. The thick line is the exact c43e}) and the thin line the small-approximation(8.1). Unstable solutions
are represented by dashed linbsth thick and thin

corresponding solution of the time-dependent Sdimger equation(2.3) so that we expect the
corresponding evolution of the sheet density to be well approximated by the solution &f. Bg.
where.% varies slowly with time. First, there is only orattractive fixed point and the time-
dependent solution has to stay close to that fixed point. Then we have creation of a pair of fixed
points (one stable and one unstapkway from the solution, but the solution continues to stay
close to the oldstable fixed point. WhemV reaches a sufficiently large value, the unstable fixed
point runs into the old stable one and they both disappear. At this point, the time-dependent
solution has no other choice than to converge to the only remaining fixed (pdiith is stable

When decreasingd V back to its initial value, we have the same behavior, in the sense that the
solution stays close to the initially unique fixed point as long as it exists and converges to the new
unique fixed point after the old one has collapsed with the unstable one. The bias Ahealy
which this collapse happens depends on the value of the time-dependent solution and therefore is
different whenAV is increased or decreased.

The phenomenon of hysteresis is clearly seen in Fig. 3, where the collapse poit¥ for
decreased from large values aful increased from small values have been marked #itdndB,
respectively. We havaV,<AVg. We can estimate the order of magnitude of the hysteresis
width AVg— AV, by considering thaAV, is determined by the conditidBz(s=0)=0 andAVy
by the conditionEg(s=f,,,0=0. We have

AVg— AV~ pf nad (b—a) "1~ag 'Ex(d—c). (10.9

In Figs. 4 and 5 we show the time-dependent evolution of the sheet ds(t3ityhen we start
from a fixed point solution corresponding to the paktor B and give an instantaneous small
decrement or incremerdV to AV, or AVg, respectively. In these figures, the thick lines are the
solutions of the full equation§6.3) and (6.5 and the thin lines the solution of the simplified
differential equatior(9.7). In Fig. 4 the solutions corresponding to the snialimit and the full
Schradinger equation start, as shown in Fig. 3, from different fixed point valgés), and
converge to the sam@pproximatively values. On the other hand, when the starting poir is
(Fig. 5 the smallf" approximation is close to the solution of the full equation except for the value
which s(t) has to converge to, again in agreement with Fig. 3.

As a third example of time evolution of the sheet density of electrons in the well, in Fig. 6 we
show the behavior of thg(t) solution of the full equation$6.3) and (6.5) after an instantaneous
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FIG. 4. Sheet density of electrons in the wg(t) as a function of time after an instantaneous decrédsef the bias
energy from the poinA of Fig. 3 (thick lines. The crosses are the fixed point solutions at &5 — 5V wheres(t) is
expected to converge. The thin lines are the corresponding $hagdproximation starting frons(0)=0.

changedV of the bias energy corresponding to the pdihbf Fig. 3 well inside the hysteresis
region. If| 5V| is chosen sufficiently large, we observe oscillations(¢f on the picosecond time
scale. Contrary to the claim of Ref. 14, these oscillations are dampedstit)ckas to converge
to the fixed point solution corresponding the bias eneXyi-+ 6V.

In case(2), when the barrierd,b] is more opaque than the barrier, ], the function(10.1)
is very small, and for solutions of E¢.1) we can observe only a microscopical hysteresis effect,
due to the square root singularityBk(s) =0, which is likely to be completely absent in the more
correct equatior{7.4). The absence of the hysteresis effect in this case is in agreement with the
experimental results of Ref. 18 and is discussed in Ref. 16.
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FIG. 5. Sheet density of electrons in the ws(t) as a function of time after an instantaneous increfdéeof the bias
energy from the poinB of Fig. 3 (thick lines. The crosses are the fixed point solutions at &g+ 5V wheres(t) is
expected to converge. The thin lines are the corresponding $hagproximation. FoBV not too large a ghost fixed-point
solution is observed wits(t) decaying linearly fot<t, andty defined by the conditioig(s(tg))=0.
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FIG. 6. Sheet density of electrons in the w&ll) as a function of time after an instantaneous chas\jef the bias energy
from the pointC of Fig. 3. The crosses are the fixed-point solutions at s + 6V wheres(t) is expected to converge.
For | 8V| not too small damped oscillations are seen at the picosecond scale.

Let us finally consider the case of very wide barriers and see that a transition between
cases(1l) and (2) has to take place in the hysteresis region. tetb=const, p—a)/(d—c)
=consk1, andb—a—o. In this limit, ~ag!(b—a), and the values in Eq10.3 are the
end points of a short interval of length Erag/(b—a). Let us consider Eq(8.1) whenAV is
increased from the initial valueE — Eg)l/(b—a) for which the right end point in E¢10.3 is
0. If the constant §—a)/(d—c) is sufficiently small, we are in casgl). For
(E¢—Ep)l/(b—a)<AV<E]Il/(b—a), we remain in casg€l), provided that b—a)/(d—c)
is sufficiently small, and Eq(8.1) has a unique solution. AAV=EJl/(b—a) we have the
creation of two new fixed points. If we follow the old fixed point, we cannot remain in ¢Bse
until it disappears. Indeed, if we did, the disappearance would take placeswhigp,, and at a
bias energy AV~agl(d—c)f, Obtained by the condition Ex(s=f.)=0. Since
Er(s)=EB+ a(b—a) is between 0 ané, the inclinationa of the first barrier would have to be
very small, and we get a finite inclinatigh~ — ag *f ., for the barrier ,d]. Therefore, when
b—a—o only the opacity of the first barrier would diverge and, at some point, we would be no
longer in caseg1l). What will actually happen is that wheAV reaches some value which is
bounded independently bf—a, we have a transition from cas¢#) to case(2), andf ., decreases
to some value which is much smaller than the rhs in®#.2. This will cause the disappearance
of the fixed point for a much smaller value ef When a transition from casg) to case(2)
happens, we still observe a hysteresis phenomenon, but this is now caused not only by the
translationof f(s) as a function oAV but also by avariation of its height. This effect is already
apparent in Fig. 3 where we see a decreasing heigh(fwhen increasin@\ V.

Xl. THE CASE OF SEVERAL RESONANCES

In this section we discuss very briefly the case with several shape resonances. Much of the
discussion is similar to the case of one resonance and we shall assume that we are in a parameter
range where all the WKB considerations apply.

First we review the approximation for the shape resonances. We start with the poigntial
and consider its eigenstatee‘j"’(x), j=0,1,...N—1 and the corresponding eigenvalues
0<Ep<E7Y<---<E\-1<V,. Sincee'(x) is even as a function of—(b+c)/2 for evenj and
odd for oddj, we have
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sinf (j +1) m/2— \JEM(c— by/2le- (Vo ENYAbx  y<p
eV(x)=Cx { sin{(j+1)m/2+ VE[x—(b+c)/2]}, b<x<c
sin (j+1)m/2+ \/E—}’V(c— b)/2]e—(Vo—E}N)1/2(x—c)’ X>C.

The C! condition atx=b, or equivalently ak=c, gives the quantization condition
tar{ (j+1)m/2+ \/E_}N(C— b)/2]=—(Vo/Ej'~1)" "2,
which can also be written as
tar{ VE'(c—b)/2— jm/2] = (Vo /E}'— 1)*2 (11.9

Representing this equation graphically, we see Matl is the largest integer1 with \V(c
—b)/12> (N — 1)m/2. The functions—z}”(x) are normalized, if we choose

_ 1/2\ —1/2
oo B (c=b) (Vo—E})
P Vo(Vo—EN™ T 2 Vo ‘

(11.2

The eigenvalueEJb associated with the potentisl, in Eq. (5.5 can be studied as before, and
we get

(e

EP=EY—8magls —— L
PRI AV(Vo—E))

+@‘(a2+,82). (113

In the following, we neglect the erraf(o?+ 5°). The shape resonancegs) =Egj(s) —il';(s)/2
for the potentiaV + W are then given by

Erj(s)=Er;j(0)+ 7n;s, (11.9
where
8mag(b—a)(d—c) 8wag'(CVY)’EY
(0)=EW— _ = J |
and
I'(s)=8(C}")2E)(Vo—E)) YA A{[ Vo + B(d—c) —EPJYA EY - B(d—c) ]2
w el(Vo- Ef’)3’2—[v0+,3(d—c>—E}’]3’2}4/3/3+ [Vo—a(b—a)— EJb]l/Z
x[E})+a(b—a)]i’ze{[vo—a<b—a>—E?J3’2—<Vo—E§’ DEEEDY (11.6

The corresponding resonant sta{és,x), satisfying Eq.(6.2), can be described as in Sec. V.

We still try to solve Eq.(2.11) in two steps. Equatio2.12) is treated as before, while Eq.
(2.13 is now handled by lettingy be a linear combination of théN resonant states
€o(S,X),....en—_1(S,X). More precisely, we writév(x,t,E)=exp(—iEt)»(x,t,E) and u(x,t,E)
=exp(—iEt) u(x,t,E), so that Eq(2.13 becomes

[—id,— 02+ V(X)+W(s,X) — E]v(X,t,E) = Vol c(X) (X, t,E). (11.7

Assume,
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N—-1
v(X,t,E)= go z(t,E)exs,x), (11.9

where s is defined in Eqg. (2.7 and hence will be time dependent. The functions
ey(S,X),....en_1(sS,X) approximately form an orthonormal family ib?([(a+b)/2,(c+d)/2]),
and if we assume that dominates ove in [(a+b)/2,(c+d)/2] then, with a small error, we
have

N—-1

s(t)= go lzi(t, 2= z(t, )%, (11.9

where the norms are ih?(g(E)dE) and inL2(g(E)dE)N, respectively.
Substituting Eq(11.8 into Eq.(11.7), multiplying by e;(s,x), and integrating over the con-
tour y, we get

N—1
2 f dx[—iat+)\k(s)—E][zk(t,E)ek(s,x)]ej(s,x)=VOJ dx u(x,t,E)ej(s,x).
k=0 Jy b
(11.10
From the relationg ,dx g(s,x)e;j(s,x)=dy;, we conclude thaf ,dx[Jse.(s,x)]e;(s,x) is an

antisymmetric matrix, and sinag(s,x) are approximately real functions nedr, €], this matrix
is also very close to a real one. Equatidi.10 can be written as

N—1
[—id+ )\j(s)—E]zj(t,E)—i&t(s(t))kEO f dx[ dsex(s,x)1ej(s,x)
= Y

=V0chdx m(X,tL,E)e(s,x). (11.11

Due to the facts thati) J,s(t) can be expected to be very small atid e(s,x) is roughly
independent o6 near |b,c] so that the integral ,dx[d.ec(s,x)]€;(s,x) can be expected to be
very small, we will neglect the sum in the lhs of E4.1.11. In this case, we have

0zi(t,E)={~T(s)/2+i[E~Eg (5)]}Z(t,E) +.7(t,S,E), (11.12

where. 7(t,s,E) =iV [dx u(X,t,E)e(s,X).

We assume thats; vary slowly witht, so it is meaningful to look at instantaneous fixed
points of the vector field defined by the rhs of E41.12 in L2(g(E)dE)N. Assuming, for
simplicity, that.7; are independent df we see that(E)=(zy(E),...,zy-1(E)) is a fixed point
precisely when

~ #(s,E)
—T,(8))2+i[E—Egy(s)]’

Z(E)= j=0,...N—1 (11.13
from which we get the compatibility condition far=|z|?:

N—1 ;
) gE|AEP
=2 JdE[rj<s>/2]2+[E—ER,,-<s>]2‘

0. (11.14

Conversely, ifs is a solution of Eq(11.14, then Eq.(11.13 defines the unique fixed point with
|z|*=s.
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FIG. 7. Graphical solution of the equatisr f(s) for different values of the bias energdyV in a multiple-resonance case.
We used the same parameters of Fig. 2 exbepa=20 A, c—b=360 A,d—c=50 A.

In the smallF limit, as in Sec. VIII we get the simplified fixed-point equation

N-1 212
N (9].5°)(s,ER ()
s JZO 2m e =0. (11.15

In view of Eq. (11.4), the term of index in Eqg. (11.15 is a function ofs with support in the
interval

[AV(b—a)/l —E]/ p<s<[AV(b—a)/| —E\'+E]/;, (11.16

and whenAV increases this interval moves to the right with speled &)/(1 ;) as shown in the
example of Fig. 7.

In Fig. 8 we compare the corresponding fixed point solutions obtained by solving EG4
with those obtained in the smdllHimit (11.15 as a function of the bias enerdyV. Between the
points marked a#\ andB we observe five fixed points. Below we give some results about the
nature of fixed points, which are more complicated than those in the case of a single resonance,
and it is not clear that those results are applicable in the situation of Fig. 8. If we assume that they
are applicable, then three fixed points are stable and two unstable. The existence of more than
three fixed points, i.e., the maximum number allowedNet 1, is related to the possibility that the
intervals(11.16 are not disjoint, as clearly understood by Fig. 7.

It is interesting to study the evolution of the sheet dens(ty away from a point likeB in
Fig. 8 where dpresumably stable fixed point and an unstable one collapse while two other fixed
points survive. In Fig. 9 we show the behavior sgt) obtained by numerically integrating Eq.
(11.12 after an instantaneous increageV of the initial bias AVg. If the total bias
AVg+ 6V<AV., whereC is the next point where a new couple of fixed points collajg$t),
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FIG. 8. Fixed-point solutions of the sheet density of electrons in thesxadla function of the bias enerdyV in the same
case of Fig. 7. The thick line is the solution of E§1.14 and the thin line the small-limit (11.15. Possibly unstable
solutions are represented by dashed litsth thick and thin

converges to the fixed point closest to its initial vak(®). When AVg+ 6V>AV,, s(t) first
approaches the value corresponding to the collapse @dintt finally has to converge to the lower
unique fixed point corresponding to the chosen bias.

Next we study the linearization of the vector field defined by the rhs of Egl2 at a fixed
point under the following simplifying assumption:

I'; is independent ofs, .7;=.%|(E) is independent oft ands,
(11.19
»;=m Iis independent ofj.

Then Eq.(11.12 becomes,

102 ——————
i/_'.‘ ------ i
A .

B ) |
GV=AV—AV—-5x1072 eV
o
) L
E \ -3
o ' SV=5x10"° eV
| \ i
n A\
F '\. 4
e Lol = -
SV=AV,—AVp+5x107° eV

101t Lol 1 P N SR R

0 01 02 2 4 6 8

t (107% s)

FIG. 9. Sheet density of electrons in the wg(t) as a function of time after an instantaneous incre®éeof the bias
energy from the poinB of Fig. 8. The crosses are the fixed-point solutions at Ai¥g+ 5V wheres(t) is expected to
converge.
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9zj(t,E)=[ T j/2+i[E—Eg;(0)— 7s]1z(t,E)+.7,(E). (11.18

The same calculations as in Sec. VIl show that the complexificatioof the linearization of the
vector field defined by the rhs of E(L1.18 at a fixed point is given by

Up {—To/2+i[E—Ego(0)— ns]}up—i 7({u|z)+(v[z))zo
o Un-1 | {~Tn-2/2+iI[E-Egn-1(0)— sT}un-1—i n({u|2) +(v[2))Zn -1
Tl ove | {~To/2—i[E—Egro(0)— nsT}lvo+in({u|z)+(v[z))z
UN-1 {=Tn-1/2—I[E—Egn-1(0)— #S]}on_q Fi n((u|z)+(v[z))Zn-1 (

Here,(u|z) = Ej“‘;01<uj|zj>Lz(g(E)dE). The operator¥ is a rank one perturbation of an operator
with essential spectrum contained lim}\‘gol(—l“j/2+iR). We look for eigenvaluea. e C with
Reh# —I'j/2 forall j. If (Ug,...,Un_1,00,---Un-1) IS @ cOrresponding eigenvector, we get as in
Sec. VI

_ xZ;(E) 3 —kz(E)
I —Tj/2+i[E—ERg;(0)— 7S] -\’ Vit —T;/2—i[E—Eg;(0)—ns]—\" (11.20

u

where
k=in({u|z)+{v]z)). (11.21

Using Egs.(11.13 and(11.20 in Eq. (11.21, we see thak is an eigenvector precisely when

N—-1 _
[E—Er(0)— 78]9(E)| A(E)|? )
1-292, f O T2 N7 H [E— Eny(0)— 7813 {(T W22+ [E—Eng(0)— 787
(11.22

As in the caseN=1, we observe that the lhs of Eq11.22 for A=0 is equal to the
s-derivative of the lhs of Eq11.14. Moreover, whem\— +, the |hs of Eq(11.22 converges to
1, so if it is <O for A=0, it has to vanish for some>0. Hence, as in the cad¢=1, we get the
following:

Proposition XI.1: Let z be a fixed point of Eq. (11.18), so thaltd solves Eq. (11.14). If the
s-derivative of thdhs of Eq. (11.14) is<0, then z is not an attractive fixed point

We now pass to the smdil-limit, where Eq.(11.19 is replaced by Eq(11.19 and we keep
the simplifying assumptio11.17.

Proposition X1.2 (smalF limit): Assume that the intervals (11.16) are disjoint and let z be a
fixed point of Eqg. (11.18). Then z is attractive precisely when the s-derivative of the lhs of Eq.
(11.15) is>0.

Proof: The s-derivative of the lhs of Eq(11.15 is

1_55 279(g]-5]?)' [Er,(0) + 78]
P

I '

(11.23

where(g|.%>j|2)’=(9E(g|.%’j|2). On the other hand, in the smdlldimit, Eq. (11.22 for the eigen-
values of the linearization becomes as in Sec. VIII
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m(g-?)" (Erk(0) + 75)

1-2
nk:Fk/2+Re)\>O e+
m(9]-%?) (Er(0) + 15
2 (9l A) (Erul0)+79) _ (1124
kT /2T Re A <0 A

We are only interested in the possible existence of solutions to this equation witk&®end for
such\ Eq. (11.29 reduces to

. 71'(g|/fk|2)'[ER,k(O)-i-775]_O
=0 Fk+)\ e

N
k

If \ is a solution, then by the condition that the intervdl.16 are disjoint, only one term in the
last sum, say fok=m, is #0, so that Eq(11.25 becomes

(9| Zml?) [Er m(0) + 5]
-2 ‘ =0, 11.2
K T +\ (11.26
while expressior(11.23 becomes
Bol?) [Erm(0)+ 7S
1-2y 71'(gl )m| ) [ R,m( )+ 7 ] (11.27

I

It is then easy to see that the solution of E§j1.26 has a negative real part precisely when
expressior(11.27 is positive, and this concludes the proof of the last proposition.

When the intervalg11.16 have nonempty intersections, the situation is more complicated,
and the following example is an indication that the last proposition may be false.

Example: There exist I';,[',>0, a;,a,eR, such that I (a;/T';+a,/T'5)>0, while
1-[a;/('1+N)+ay/(I';+N)] =0 for some positivex. Indeed, choos&,=1, a;=2, I',=6>0
very small,a,= —24. Then 1-a,/I";—a,/T',=1>0. If 6<\;<<1, we have

Hence 1-[a,/(I'1+\) +a,/(I',+\)] must vanish for somé between 0 and,.

As in Sec. IX, we can derive a simplified differential equation @&(t),...,sy_1(t)), where
si(t)=lz(t,-)]|?, so thats(t) = =N5's;(t). We drop the simplifying assumptid1.17, but keep,
for simplicity, the assumption that.”; are independent oft. Assume that
z(t,E)=(zy(t,E),...,zy_1(1,E)) is a solution of Eq.11.19 which has existed for a long time
with a uniformly bounded norm. As in Sec. IX, we take the scalar product of Eql12 with z;
and get

d ,,
Using
Z(LE)= ft dt/ei[EfER’j(O)](tft’)7J’i,dt"1"j(s(t”))/27injf:,dt”s(t”)_ﬁj (s(t'),E),  (11.29

and, under the assumption thsft’) is slowly varying, we get as in Sec. IX
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2 Re(z)|.74)=2m(9|.7}|?)(s(t),Eg (0) + 7;S(1)), (11.30
and the simplified equations

(91517 (s(t),Er j(0) + 7;s(1))

I'j(s(t)) ’
forj=0,1,...N—1, ands:EJN;Olsj . We notice that the region defined by=0 for O<j<N-1
is stable under the forward flow associated with the systelr831). Moreover, if (g, ...,Sy_1) IS
a fixed point of this system, then we get precisely @d..19. Conversely, ifs is a solution of Eq.
(11.15, then

(t)=—T;(s(v) sj(t) —27

3 (11.3)

_o (9]-7] 2)(51ER,j(0)+77js)
Sj=zm FJ(S)

(11.32

defines the corresponding unique fixed point solution witlﬁ}“;olsj .
We end this section by investigating the linearization of 84..3) at a fixed-point solution,
under the simplifying assumptiqd1.17. An easy calculation shows that the linearization is given

by

vo ~Touo+2m9s(9] Zol?) [Ero(0) + 7SI ZR g
WA : = : . (11.33
UN-1 —T'noqon—1+ 27 98(9) n-1]?) [Ern-1(0) + 78]= R vk

If N is an eigenvalue of#Z with I';+A+#0 for everyj, and'(vg,...,un_1) a corresponding
nontrivial eigenvector, we have

A2 TEg (0 Nt
(9(].%1°)'[Erj(0) + 7s] go o

T, +\

vj=2mn

Then necessarily the sum#s0, and by summing thed¢ relations, we see thatis an eigenvalue
precisely when Eq(11.25 holds. We finally get:

Proposition XI1.3: Under the simplifying assumption (11.17) and in the shéfhit, let z be
a fixed point of Eqg. (11.18) and l€sg,...,Sy—_1) be the corresponding fixed-point solution of Eq.
(11.31). Then the linearizations of Egs. (11.18) and (11.31) at the corresponding fixed points have
the same eigenvalues in the right half plaRe\=0 [given by Eq. (11.25)]. In particular, z is an
attractive fixed point for Eq. (11.18) precisely whisy,...,Sy_1) is an attractive fixed point for
Eq. (11.31).
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