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An adiabatic approximation in terms of instantaneous resonances to study the
steady-state and time-dependent transport properties of interacting electrons in bi-
ased resonant tunneling heterostructures is used. This approach leads, in a natural
way, to a transport model of large applicability consisting of reservoirs coupled to
regions where the system is described by a nonlinear Schro¨dinger equation. From
the mathematical point of view, this work is nonrigorous but may offer some fresh
and interesting problems involving semiclassical approximation, adiabatic theory,
nonlinear Schro¨dinger equations, and dynamical systems. ©1996 American In-
stitute of Physics.@S0022-2488~96!00510-5#

I. INTRODUCTION

Man-tailored semiconductor heterostructures1 offer, for the first time, the possibility to test
quantum mechanics at a mesoscopic level.2 The scenario of systems which can be investigated is
so rich that the art of their realization deserves the name of quantum design.

In the simplest case, a quantum designer can grow sandwiches of different semiconductor
alloys by choosing the number of atomic layers for each kind of alloy. In the resulting hetero-
structure, the conduction band profile along the growth direction forms steps whose height can be
continuously varied by a proper choice of the alloy composition. Typical widths and heights are of
the order of tens of Å and tenths of eV, respectively.

At low temperature, the mean free path of carriers for scattering from crystal impurities is of
the order of 104 Å, and for heterostructures smaller than this size the electric transport along the
growth direction is phase coherent quantum scattering from the conduction band discontinuities.3

Due to the translational invariance in the plane orthogonal to the growth direction, the problem is
one-dimensional. Moreover, the carriers are described by an effective mass which accounts for the
microscopic scattering with the periodic crystal sites, and their wave function is an envelope wave
function.4

In a homogeneous neutral conductor, the electron–electron interaction can be taken into
account by a renormalization of the carrier effective masses5 and one deals with a transport
problem like in a noninteracting case. In a heterostructure, even as simple as that described above,
the breaking of translational invariance in the transport direction allows the electric neutrality to be
locally violated. The corresponding interaction potential, obtained, at Hartree level, by solving a
proper Poisson equation, can strongly modify the transport properties. The example of a double
barrier heterostructure with the exterior regions doped with donors is illuminating.6 Due to tun-
neling, electrons populate the resonance~s! created by the double barrier and the region between
the barriers becomes negatively charged. This generates an electric potential which decreases the
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tunneling probability of electrons in the double barrier region. As a consequence, current oscilla-
tions on the picosecond scale7,8 and chaotic behavior without classical counterpart9 have been
predicted in a ballistic configuration in which electrons are injected at some chosen energy.

Experiments with ballistic electrons are difficult, and measurements became available only
recently.10 Technologically simpler is the case of biased heterostructures where transport is due to
the presence of reservoirs at thermal equilibrium with different chemical potentials. Manifestations
of the electron–electron interaction are known also in this configuration. For example, hysteresis
in the current–voltage characteristics of double barrier heterostructures have been observed11 and
recognized as a consequence of the accumulation of electrons in the resonance.11–15 In this case,
however, one has the theoretical problem of attaching reservoirs at thermal equilibrium to a piece
of conductor where quantum coherent transport takes place.

In the recent paper16 we proposed an approach to this problem based on a mathematical
method earlier applied in the framework of ballistic transport.17 We showed that for heterostruc-
tures with a single resonance our approach allows one~i! to obtain steady-state voltage–current
characteristics having hysteresis or not in agreement with the experimental results18 and ~ii ! to
predict time-dependent properties analogous to those studied in optically bistable systems.19 Here,
we develop the general mathematical scheme of this approach and discuss the case with several
resonances where multistability phenomena can take place as in superlattices.20,21

For simplicity, consider the one-dimensional double barrier heterostructure discussed above.
The idea is that due to the presence of resonances the corresponding Schro¨dinger problem can be
divided in two parts: a Schro¨dinger equation for the barrier region and one for the exterior space,
the two being weakly coupled by tunneling. This decomposition corresponds to the schematization
of the transport process as a coherent process fed by reservoirs. In the exterior space~reservoirs!,
homogeneous and neutral, the electron–electron interaction is neglected and thermal equilibrium
is taken into account by considering a continuous set of energy eigenstates distributed according to
Fermi statistics. In the barrier region~coherent conductor!, the Coulomb interaction is included in
a self-consistent potential obtained by solving the Poisson equation associated with the local
charge density. Under the assumption that the barriers are wide enough, the corresponding non-
linear Schro¨dinger problem is discussed in two steps. In the first step we eliminate the potential
well between the two barriers by artificially increasing the potential there, and we solve the
Schrödinger equation asymptotically for the new potential by means of WKB-expansions. The
resulting solution is then very small near the~filled! potential well, so we get only a small error in
the Schro¨dinger equation when we go back to the true potential. In the second step we correct for
this small error by adding a wave function concentrated near the potential well. Assuminga priori
that the charge in the well changes slowly with time, the correcting wave function can be expected
to be large only at energies close to the resonances, and be well approximated by some linear
combination of the resonant states.

In most of the article we discuss the case in which only one resonance participates. The
validity of this one-mode approximation has been tested numerically with excellent results in the
ballistic configuration of Ref. 17. Here, the coefficient of the one-mode approximation obeys an
ordinary differential equation with respect to time in the infinite-dimensional space of square
integrable functions of energy. We study the stationary points of the corresponding vector field
and their nature, whether they are attractive or not, and arrive at quite neat answers. For solutions
of the dynamical system which have existed as bounded solutions for a long time and in a suitable
asymptotic limit ~of wide barriers! we derive a simplified scalar differential equation for the
evolution of the sheet density of electrons trapped in the well, which gives a good global under-
standing of the more complete dynamical system. Using these results, we are able to discuss the
phenomenon of hysteresis and we support and illustrate the discussion with several numerical
results. The discussion includes the evolution of solutions away from fixed points which neces-
sarily appears when there is hysteresis. We also discuss the case of several resonances and get
analogous results.
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From the mathematical point of view, the present article could be a starting point for rigorous
work on some fresh problems, involving semiclassical analysis, adiabatic theory, nonlinear Schro¨-
dinger equations, and dynamical systems. A strong motivation for such an enterprise is the fact
that the theory of electric transport in semiconductor devices offers many problems similar to the
one we illustrate here.22

The plan of the article is as follows. In Sec. II we define the model. In Sec. III we review the
WKB expansion for slowly varying potentials. In Secs. IV and V we determine the driving term
and the ground resonant state, respectively, within the WKB approximation. The central equation
of our article is derived in Sec. VI, and the general properties of the associated fixed points and
linearizations are discussed in Sec. VII. In Sec. VIII we introduce an approximation valid in the
limit of small resonance width and discuss the corresponding fixed-point solutions and lineariza-
tions. In Sec. IX we obtain a simplified differential equation describing the dynamics of the
electron density in the well. A qualitative discussion of the hysteresis phenomenon in comparison
with numerical results is given in Sec. X. In Sec. XI we finally consider the case with several
resonances.

II. DEFINITION OF THE MODEL

Let us consider a heterostructure whose conduction band profile consists of two barriers of
heightV0 located in [a,b] and [c,d],

Vcb~x!55
0, x,a
V0 , a,x,b
0, b,x,c
V0 , c,x,d
0, x.d

~2.1!

with a,b,c,d along the growth directionx. We wish to evaluate the transport properties of this
device when a bias energyDV is applied between the emitter (x,a) and collector (x.d) regions
uniformly doped. Due to doping, the band of conduction electrons formed in the emitter and
collector regions is characterized by a Fermi energyEF5(3p2nD)

2/3, wherenD is the net donor
concentration. We will use everywhere effective atomic units\52m*51 and e2/e52aB

21,
wherem* is the electron effective mass ande the dielectric constant. In these units, every physical
quantity is expressed in terms of the effective Bohr radiusaB5\2e/(m* e2). Assuming an ideal
heterostructure homogeneous in the planeyz parallel to the junctions~and orthogonal to the
growth directionx!, the single-electron momentaky andkz are conserved quantities. As a conse-
quence, the single-electron wave function at energyE1Ei , whereEi5ky

21kz
2, can be factorized

asf(x,t,E)x(y,z,t,Ei) with

x~y,z,t,Ei!5
1

AA
ei ~kyy1kzz!e2 iE it. ~2.2!

We will assume periodic boundary conditions in a two-dimensional regionA so that the momenta
ky andkz are quantized as in a real device having finite lateral area of sizeA. The time-dependent
Schrödinger equation for the single-electron wave function at energyE along thex direction is

@2 i ] t2]x
21Vcb~x!1U~f,x!#f~x,t,E!50, ~2.3!

whereU(f,x) takes into account the applied bias and, at Hartree level, the electron–electron
interaction. Assuming ideal metallic behavior in the emitter and collector regions, i.e., neglecting
the formation of accumulation and depletion layers,U(f,x) can be obtained as the solution of the
Poisson equation
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]x
2U~f,x!528paB

21r~f! ~2.4!

with Dirichlet boundary conditionsU(f,a)50 andU(f,d)52DV. The densityr takes into
account all the electrons in the occupied energy states and depends only on the wave-function
componentf. Indeed, if the emitter and collector regions are at thermal equilibrium with tem-
peratureT we have

r52E
0

`

dE(
Ei

uf~x,t,E!x~y,z,t,Ei!u2~11e~E1Ei2EF!/kBT!215E dE g~E!uf~x,t,E!u2,

~2.5!

where the factor 2 takes into account the spin degeneracy. Energies are measured from the bottom
of the emitter conduction band, and the lower integration boundE50 in the first line of Eq.~2.5!
stems from the fact that forEF!DV, as we will assume, only electrons from the emitter conduc-
tion band can penetrate the region [a,d] where the electron density is of interest. In the second
line of Eq. ~2.5! this lower bound is absorbed in the definition ofg(E) by a Heaviside function
u(E). The functiong(E) can be explicitly evaluated by approximating the sum over the parallel
degrees of freedom with an integral

g~E!5u~E!2E
0

`

dEi

A

4p U 1AAU
2

~11e~E1Ei2EF!/kBT!21

5u~E!
1

2p
@kBT ln~11e~E2EF!/kBT!1EF2E#. ~2.6!

Note that the chemical potential at temperatureT in the Fermi function has been approximated
with its value atT50, i.e., the Fermi energy determined by the net donor concentration.

In general, the solution of Eq.~2.4! cannot be handled analytically. We will suppose that, due
to the accumulation of electrons in the well with sheet density

s~f!5E dE g~E!E
~a1b!/2

~c1d!/2
dxuf~x,t,E!u2, ~2.7!

ideal metallic behavior in the well [b,c] and ideal insulating behavior in the barriers [a,b] and
[c,d] hold. This is equivalent to approximate Eq.~2.4! with

]x
2U~f,x!528paB

21s~f!@Bd~x2b!1Cd~x2c!#, B1C51 ~2.8!

and the condition that]xU(f,x)50 for b,x,c. In this caseU(f,x) becomes a piecewise linear
function of x with ]xU(f,x) having jump discontinuities atx5b andx5c. The total potential
Vcb1U in Eq. ~2.3! is better rewritten asV1W, where

V~x!55
0, x,a
V02DV~x2a!/ l , a,x,b
2DV~b2a!/ l , b,x,c
V02DV~b2a1x2c!/ l , c,x,d
2DV, x.d

~2.9!

gives the band profile modified by the external bias and
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W~s,x!58paB
21s~f!35

0, x,a
~x2a!~d2c!/ l , a,x,b
~b2a!~d2c!/ l , b,x,c
~b2a!~d2x!/ l , c,x,d
0, x.d

~2.10!

depends on the wave functionf through the sheet density of electrons in the wells(f). Here
l5b2a1d2c. The potentialsV(x) andW(s,x) are shown in Fig. 1.

We will try to solve the nonlinear partial differential equation

@2 i ] t2]x
21V~x!1W~s,x!#f~x,t,E!50, ~2.11!

wheres(f) is given by Eq.~2.7!, in two steps. LetVfill (x) 5 V(x) 1 V01@b,c#(x) be the potential
obtained by filling the well [b,c]. Here 1@b,c#(x) is the characteristic function of the interval
[b,c]. First we solve

@2 i ] t2]x
21Vfill ~x!1W~s,x!#m̃~x,t,E!50 ~2.12!

and then we look forf in the formf5m̃1 ñ, whereñ should solve

@2 i ] t2]x
21V~x!1W~s,x!#ñ~x,t,E!5V01@b,c#~x!m̃~x,t,E!. ~2.13!

The wave functionm̃ describes an electron at energyE which is delocalized in the emitter and
collector regions and has an exponentially small probability to be found in the forbidden region
[a,d]. The wave functionñ describes the localization, driven bym̃, of the same electron in the
well [b,c]. The wave functionf of the original problem~2.11! can be approximated byñ or m̃
inside or outside the two barriers, respectively, with an error which is exponentially small in the
limit of wide barriers.17

To evaluatem̃ we will use a WKB approximation in the forbidden region [a,d]. Equation
~2.13! will be treated with a one-mode approximation in whichñ is assumed proportional to a
resonant state corresponding to the potentialV1W. To evaluate this resonant state and the cor-
responding resonance, we will again use a WKB approximation. In both cases, the justification of
using a WKB approximation stems from the fact thatVfill1W and V1W are slowly varying
potentials in the barriers regions ifb2a andd2c are large whileDV ands remain bounded.

FIG. 1. PotentialV(x) representing the band profile modified by the external bias energyDV ~solid line! and total potential
V(x)1W(s,x) including the electrostatic contribution due to electrons trapped in the well with sheet densitys ~dashed
line!.
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III. WKB EXPANSION FOR SLOWLY VARYING POTENTIALS

Let U5Uh(x) be a real valued potential on some interval, with]xU5O (uhu) and
]x
2U5O (h2), whereuhu!1 is a parameter. LetE be a real energy and assume thatUh(x)2E is
bounded from above and from below by some strictly positive constants that are independent ofh.
This means that we are in the classically forbidden region. Then

@2]x
21U2E #~U2E !21/4 expS 2Ex

dx8~U2E !1/2D
5F2

5

16
~U2E !29/4~]xU!21

1

4
~U2E !25/4]x

2
UGexpS 2Ex

dx8~U2E !1/2D
5e2*xdx8~U2E !1/2O ~h2!, ~3.1!

and therefore

~U2E !21/4 expS 2Ex

dx8~U2E !1/2D ~3.2!

is a good approximation to a corresponding exact eigenfunction, even over intervals of length
O (uhu21).

In the following sections, we will apply the above approximation in the barrier regions [a,b]
and [c,d] with h equal to thex derivative ofV1W in these intervals.

IV. THE DRIVING TERM

Equation~2.12! can be solved by evaluating the instantaneous eigenstates of the potential
Vfill1W. We setm̃(x,t,E)5exp(2 iEt)m(x,t,E) and suppose thatDV ands are slowly varying
functions of time so that alsom(x,t,E) is slowly varying in time. Thus in the equation

@2 i ] t2]x
21Vfill ~x!1W~s,x!2E#m~x,t,E!50, ~4.1!

we make a very small error if we neglect the term2 i ] tm, as we shall do in the following. In the
emitter regionx,a, we takem(x,t,E) as the sum of a left- and a right-going plane wave at energy
E,

m~x,t,E!5
1

A4pAE
@ei

AE~x2a!1r ~E!e2 iAE~x2a!#, ~4.2!

wherer (E) is a reflection amplitude to be computed. Note that the normalization factor in Eq.
~4.2! is chosen in order to have*dxm(x,t,E)m(x,t,E8) 5 d(E 2 E8), in agreement with the ex-
pression of the electron density~2.5! in terms of an integral over the energyE. We propagate the
expression~4.2! to the adjacent regions by requiringm to be of classC1 and applying the WKB
approximation described in Sec. III. In the interval [a,b] the potential isVfill1W5V01a(x2a),
where

a5
8paB

21s~d2c!2DV

b2a1d2c
~4.3!

plays the role of the small parameterh of Sec. III. Fora,x,b we can then use the WKB
approximation
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m~x,t,E!5
1

A4pAE

~V02E!1/4

@V01a~x2a!2E#1/4
t~E!expS 2E

a

x

dx8@V01a~x82a!2E#1/2D ,
~4.4!

wheret(E) is a transmission amplitude to be determined withr (E) from theC1 condition atx5a

11r ~E!5t~E!, ~4.5a!

iAE2 iAEr~E!5t~E!@~V02E!1/22 1
4~V02E!25/4a#. ~4.5b!

Neglecting the last term in the square brackets, which isO ~uau!, we get

r ~E!5
11 i ~V0 /E21!1/2

12 i ~V0 /E21!1/2
, ~4.6a!

t~E!5
2

12 i ~V0 /E21!1/2
. ~4.6b!

Note that the neglected term would give correction factors 11O ~uau! to r (E) and t(E).
At x5b we can set up a similar transition problem but hereVfill1W is continuous and the

corresponding transmission amplitude is 11O ~uau!. Neglecting again a factor 11O ~uau!, for
b,x,c we get

m~x,t,E!5m0~ t,E!e2@V01a~b2a!2E#1/2~x2b!, ~4.7!

where

m0~ t,E!5
1

A4pAE

~V02E!1/4

~V01a~x2a!2E!1/4

2e$~V02E!3/22@V01a~b2a!2E#3/2%2/3a

11 i ~V0 /E21!1/2
. ~4.8!

Only this expression ofm in the region [b,c] will be used in the following as driving term of Eq.
~2.13!.

V. RESONANCE AND RESONANT STATE

In this section we will obtain a WKB approximate expression for the ground-state resonance
l(s)5ER(s)2 iG(s)/2 and the corresponding resonant statee(s,x) for the potentialV1W. We
will assume thatc2b is bounded from below and from above by positive constants, whileb2a
andd2c are large enough.

To start with, we recall the construction of the ground state eigenvalueE0
w of the potential

Vw(x)5V0@1]2`,b] (x)11[c,1`[ (x)# which coincides, up to the constant shift

DE5
8paB

21s~b2a!~d2c!2DV~b2a!

b2a1d2c
, ~5.1!

with the potentialV1W in the well region [b,c]. The corresponding ground eigenstate is

e0
w~x!5C0

w3H cos@AE0
w~c2b!/2#e2~V02E0

w
!1/2~b2x!, x,b

cos$AE0
w@x2~b1c!/2#%, b,x,c

cos@AE0
w~c2b!/2#e2~V02E0

w
!1/2~x2c!, x.c

~5.2!
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where 0,E0
w,min„V0 ,p

2/(c2b)2… is determined by the requirement thate0
w(x) is of classC1,

tan@AE0
w~c2b!/2#5~V0 /E0

w21!1/2, ~5.3!

and the normalization constant is

C0
w5F E0

w

V0~V02E0
w!1/2

1
c2b

2
1

~V02E0
w!1/2

V0
G21/2

, ~5.4!

where we used the identities cos2 u5~11tan2 u!21, ~sin 2u!/25sinu cosu5tanu~11tan2 u!21. In
the following we will assume thatE0

w1DE,V02DV.
Next we look at the ground state of the potential

Vb~x!55
V01a~a2b!, x,a
V01a~x2b!, a,x,b
0, b,x,c
V01b~x2c!, c,x,d
V01b~d2c!, x.d

~5.5!

which coincides, up to the constant shiftDE, with V1W on the larger region [a,d] which
includes the barriers. In Eq.~5.5! a is given by Eq.~4.3! and

b5
28paB

21s~b2a!2DV

b2a1d2c
. ~5.6!

Note that the potentialVb has been obtained by bending the barriers ofVw in the intervals [a,b]
and [c,d] proportionally toa andb, respectively. LetE0

b be the ground state ofVb ande0
b(x) the

corresponding eigenfunction. Sinceuau and ubu are small, from the same WKB considerations of
Sec. III we haveE0

b5E0
w1O ~uau1ubu! ande0

b(x)5e0
w(x)1O ~uau1ubu!. To get the leading asymp-

totics of the resonance width, we need to determine the linear contribution toO ~uau1ubu! in E0
b. By

differentiating the eigenvalue equation for the potentialVb , we have

]aE0
bua5b505E

2`

1`

dxe0
b~x!]aVb~x!ua5b50e0

b~x!.E
2`

b

dx~x2b!ue0
w~x!u2, ~5.7!

]bE0
bua5b505E

2`

1`

dxe0
b~x!]bVb~x!ua5b50e0

b~x!.E
c

1`

dx~x2c!ue0
w~x!u2, ~5.8!

and using Eq.~5.2! we get

]aE0
bua5b5052]bE0

bua5b505~C0
w!2 cos2@AE0

w~c2b!/2#E
2`

0

dx xe2~V02E0
w

!1/2x

52
~C0

w!2E0
w

4V0~V02E0
w!
. ~5.9!

Observing thata2b58paB
21s, we finally get

E0
b5E0

w28paB
21s

~C0
w!2E0

w

4V0~V02E0
w!

1O ~a21b2!. ~5.10!
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The real partER(s) of the shape resonance of2]x
21V1W which is close to the ground-state

eigenvalue of2]x
21Vb1DE is very well approximated by the above calculatedE0

b1DE which
can be rewritten as

ER~s!5ER~0!1hs, ~5.11!

where

ER~0!5E0
w2DV~b2a!/ l ~5.12!

and

h5
8paB

21~b2a!~d2c!

b2a1d2c
2
8paB

21~C0
w!2E0

w

4V0~V02E0
w!

. ~5.13!

Now we discuss the determination of the imaginary partG(s) of the resonance. In the interval
[a,d] the ground state ofVb is

e0
b~x!5C0

b

35
cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V01a~x2b!2E0
b#1/4

expS 2E
x

b

dx8@V01a~x82b!2E0
b#1/2D , a,x,b

cos$AE0
b@x2~b1c!/2#%, b,x,c

cos@AE0
b~c2b!/2#~V02E0

b!1/4

@V01b~x2c!2E0
b#1/4

expS 2E
c

x

dx8@V01b~x82c!2E0
b#1/2D , c,x,d

~5.14!

whereC0
b5C0

w1O ~uau1ubu!. In the interval [a,d], the resonant statee(s,x) can be approximated
by adding to Eq.~5.14! terms due to reflections atx5a andx5d. For x&d we try with

e~s,x!5
C0
w cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V01b~x2c!2E0
b#1/4

expS 2E
c

d

dx8@V01b~x82c!2E0
b#1/2D

3~e2@V01b~d2c!2E0
b
#1/2~x2d!1re@V01b~d2c!2E0

b
#1/2~x2d!!, ~5.15!

where we have also replaced the exponent with its linear approximation atx5d. For x*d we try
the right-going plane wave

e~s,x!5
C0
w cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V01b~d2c!2E0
b#1/4

3expS 2E
c

d

dx8@V01b~x82c!2E0
b#1/2D tei @E0b2b~d2c!#1/2~x2d!. ~5.16!

TheC1 condition atx5d gives, up to termsO ~ubu!,

11r5t, ~5.17a!

2@V01b~d2c!2E0
b#1/21@V01b~d2c!2E0

b#1/2r5 i @E0
b2b~d2c!#1/2t, ~5.17b!

which determinesr and t so that forx*d we have
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e~s,x!5
C0
w cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V01b~d2c!2E0
b#1/4

2F12 i
@E0

b2b~d2c!#1/2

@V01b~d2c!2E0
b#1/2

G21

3expH 2

3b
$~V0

2E0
b!3/22@V01b~d2c!2E0

b#3/2%1 i @E0
b2b~d2c!#1/2~x2d!J . ~5.18!

In these calculations we have assumed thatE0
b2b(d2c).0, V01b(d2c)2E0

b.0. The first
inequality is always fulfilled in experimentally relevant situations, while the second one, equiva-
lent toER(s),V02DV may be more critical and, possibly, one should replace Eq.~5.18! by a
more complicated formula.

The same calculation can be repeated forx5a. For x*a we try with

e~s,x!5
C0
w cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V01a~x2b!2E0
b#1/4

expS 2E
a

b

dx8@V01a~x82b!2E0
b#1/2D

3~e@V01a~a2b!2E0
b
#1/2~x2a!1re2@V01a~a2b!2E0

b
#1/2~x2a!!, ~5.19!

with a new reflection amplituder . For x&a we try the left-going plane wave

e~s,x!5
C0
w cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V01a~a2b!2E0
b#1/4

expS 2E
a

b

dx8~V01a~x82b!2E0
b!1/2D

3te2 i @E0
b
1a~b2a!#1/2~x2a! ~5.20!

with a new transmission amplitudet. TheC1 condition atx5a gives, up to termsO ~uau!,

11r5t, ~5.21a!

@V01a~a2b!2E0
b#1/22@V01a~a2b!2E0

b#1/2r52 i @E0
b2a~a2b!#1/2t, ~5.21b!

which determinesr and t so that forx&a we have

e~s,x!5
C0
w cos@AE0

b~c2b!/2#~V02E0
b!1/4

@V02a~b2a!2E0
b#1/4

2F12 i
@E0

b1a~b2a!#1/2

@V02a~b2a!2E0
b#1/2

G21

3expH 2

3a
$@V02a~b2a!2E0

b#3/22~V02E0
b!3/2%2 i @E0

b1a~b2a!#1/2~x2a!J .
~5.22!

Note that forx&a, e(s,x) is a true left-going plane wave only forDV not too large when
E0
b1a(b2a).0. If E0

b1a(b2a),0, Eq. ~5.22! becomes an exponentially decaying function
whose corresponding probability current density vanishes. SinceE0

b1a(b2a)5ER(s), this case
corresponds toER(s),0. In Eq. ~5.22!, we also assumed thatV02a(b2a)2E0

b.0, i.e.,
ER(s),V0 .

The resonance width can be now computed by means of the Green formula

G~s!E
a8

d8
dxue~s,x!u252 Im@e~s,x!]xe~s,x!#U

a8

d8
, ~5.23!

wherea8,a andd8.d. The integral in the left-hand side~lhs! of Eq. ~5.23! is 11O ~uau1ubu! and
using Eqs.~5.18! and ~5.22! we get, up to such a factor,
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G~s!58~C0
w!2E0

b~V02E0
b!1/2V0

22$@V01b~d2c!2E0
b#1/2@E0

b2b~d2c!#1/2

3e$~V02E0
b
!3/22@V01b~d2c!2E0

b
#3/2%4/3b1@V02a~b2a!2E0

b#1/2

3@E0
b1a~b2a!#1

1/2e$@V02a~b2a!2E0
b
#3/22~V02E0

b
!3/2%4/3a%, ~5.24!

where we usedu15u(u) u.

VI. ONE-MODE APPROXIMATION

Equation~2.13! can be simplified by developingñ into the instantaneous eigenstates of the
potentialV1W and keeping only the contributions from the discrete resonant states, i.e., neglect-
ing the contributions from the continuous spectrum.17 For the moment, we will suppose there is
only one resonant state and setñ(x,t,E)5exp(2 iEt)z(t,E)e(s,x) wheree(s,x) is the ~ground!
resonant state of the potentialV1W,

@2l~s!2]x
21V~x!1W~s,x!#e~s,x!50, ~6.1!

with complex eigenvaluel(s)5ER(s)2 iG(s)/2. The eigenfunctione(s,x) is of classL2 on the
contourg[(eiu]2`,0]1a)ø[a,d]ø(d1eiu[0,1`[) for u conveniently chosen23 and satisfies

E
g
dx e~s,x!251, E

g
dx e~s,x!]se~s,x!50. ~6.2!

Multiplying Eq. ~2.13! with e(s,x) and integrating overg, we get

] tz~ t,E!5 i @E2l~s!#z~ t,E!1B~ t,s,E! ~6.3!

with the driving term given by

B~ t,s,E!5 iV0E
b

c

dx m~x,t,E!e~s,x! ~6.4!

and the sheet density~2.7! reduced, with small error, to

s~ t !5E dE g~E!uz~ t,E!u2[iz~ t !i2. ~6.5!

VII. FIXED POINTS AND LINEARIZATIONS: GENERAL RESULTS

We consider the vector field in the lhs of Eq.~6.3!,

V ~z,E!5A~ izi2,E!z~E!1B~ izi2,E!, ~7.1!

where

A~s,E!52G~s!/21 i $E2@ER~0!1hs#%, ~7.2!

is a nonvanishing function. For simplicity, we assume thatB is independent oft. WhenB varies
slowly with t, the discussion below should be applied to each such fixed value oft.

We first look for fixed points ofV , i.e., functionsz5z(E) in L2„g(E)dE… with V „z(E),E…
50. Clearlyz5z(E) is a fixed point iff
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z~E!52
B~ izi2,E!

A~ izi2,E!
, ~7.3!

so theL2-norm s5izi2 has to satisfy

s5E dE g~E!
uB~s,E!u2

uA~s,E!u2
. ~7.4!

Conversely, ifs>0 is a solution of Eq.~7.4!, then

z~E!52
B~s,E!

A~s,E!
~7.5!

gives the unique fixed point ofV with izi25s.
Assuming that we have found a fixed pointz5z(E), we look for the linearization of the

vector fieldV at that point. By giving an infinitesimal incrementdz(E) to z(E), the correspond-
ing incrementdV to V is

dV ~z,E!5A~s,E!dz~E!1~^dzuz&1^dzuz̄&!@]sA~s,E!z~E!1]sB~s,E!#, ~7.6!

wheres5izi2 is the corresponding solution of Eq.~7.4! and^uuv& 5 *dE g(E)u(E)v(E). Hence,

dV ~z,E!5Ā~s,E!dz~E!1~^dzuz&1^dzuz̄&!@]sA~s,E!z̄~E!1]sB~s,E!#, ~7.7!

so withu(E)5dz(E) andv(E) 5 dz(E), we get the complexification of the linearization,

LS uv D 5SA 0

0 Ā
D S uv D 1S ~^uuz&1^vuz̄&!~]sAz1]sB!

~^uuz&1^vuz̄&!~]sAz̄1]sB!D . ~7.8!

The matrix in the first term of the rhs has a continuous spectrum contained in2G(s)/21 iR and
the second term appears as a rank one perturbation. IflPC is an eigenvalue ofL with a real part
different from2G(s)/2, we get

@A~s,E!2l#u1~^uuz&1^vuz̄&!@]sA~s,E!z1]sB~s,E!#50, ~7.9a!

@Ā~s,E!2l#v1~^uuz&1^vuz̄&!@]sA~s,E!z̄1]sB~s,E!#50. ~7.9b!

We must then have

u~E!5k
]sA~s,E!z1]sB~s,E!

A~s,E!2l
, ~7.10a!

v~E!5k
]sA~s,E!z̄1]sB~s,E!

Ā~s,E!2l
, ~7.10b!

wherek5^uuz&1^vuz̄&. In order to have a nontrivial solutionkÞ0, it is necessary and sufficient
that

11E dE g~E!
]s@~A2l!~Ā2l!#uBu22A~Ā2l!B̄]sB2Ā~A2l!B]sB̄

@~ReA2l!21~ Im A!2#uAu2
50.

~7.11!
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Here, the lhs is real for reall, and tends to 1, whenl→1`.
On the other hand, thes-derivative of the lhs minus the rhs of Eq.~7.4! is

11E dE g~E!
uB~s,E!u2]suA~s,E!u22uA~s,E!u2]suB~s,E!u2

uA~s,E!u4
, ~7.12!

which coincides with the lhs of Eq.~7.11! for l50. So if the expression~7.12! is ,0, we see that
Eq. ~7.11! must have a solutionl.0. Let us say that the fixed point is stable if the spectrum of the
linearizationL is contained in the open left half-plane and unstable otherwise. The discussion
above then gives the following.

Proposition VII.1: Let z be a fixed point ofV so that Eqs. (7.4) and (7.5) hold. If the
s-derivative of thelhs minus therhs of Eq. (7.4) is,0, then z is an unstable fixed point. More
precisely, the linearizationL then has an eigenvalue which is.0.

VIII. FIXED POINTS AND LINEARIZATIONS: THE SMALL- G LIMIT

In this section we assume that the driving termB(s,E) is a sufficiently smooth function ofE,
at least near the pointER(0)1hs, wheres solves Eq.~7.4!. When the barriers are very wide,G(s)
will be very small and

1

uA~s,E!u2
5

1

@G~s!/2#21@ER~0!1hs2E#2

is a function ofE which is sharply peaked atER(s)5ER(0)1hs. In Eq. ~7.4! it is therefore
justified to replaceg(E)uB(s,E)u2 by the constant valueg„ER(0)1hs…uB„s,ER(0)1hs…u2. Then
Eq. ~7.4! is well approximated by

s52p
g„ER~s!…uB„s,ER~s!…u2

G~s!
. ~8.1!

We shall next apply a similar argument to Eq.~7.11! for the eigenvalues of the linearization
L and, for more transparency, we start with a simplified case, in which

B and G are independent ofs. ~8.2!

In this case, Eq.~7.11! reduces to

122hE dE
@E2ER~0!2hs#g~E!uB~E!u2

$~G/21l!21@E2ER~0!2hs#2%$~G/2!21@E2ER~0!2hs#2%
50. ~8.3!

We shall use

E
2`

1`

dt
t2

~q21t2!~p21t2!
5H p

p1q
, Re p.0, Req.0

p

p2q
, Re p.0, Req,0

~8.4!

E
2`

1`

dt
1

~q21t2!~p21t2!
5H p

qp~p1q!
, Re p.0, Req.0

2p

qp~p2q!
, Re p.0, Req,0.

~8.5!
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If we replaceg(E)uB(E)u2 in the integral in Eq.~8.3! with its value atE5ER(0)1hs, that
integral vanishes since the integrand becomes an odd function ofE2ER(0)2hs. Instead, we get
an approximation of the integral in Eq.~8.3! by replacingg(E)uB(E)u2 with the linear term in its
Taylor expansion atE5ER(0)1hs. Using Eq.~8.4!, we then get from Eq.~8.3!

122h
~guBu2!8@ER~0!1hs#p

G1l
50 when G/21Rel.0, ~8.6!

112h
~guBu2!8@ER~0!1hs#p

l
50 when G/21Rel,0, ~8.7!

where~guB u2!85]E(guB u2!. The solution of Eq.~8.6! is

l52ph~guBu2!8@ER~0!1hs#2G, ~8.8!

and this is an eigenvalue of the linearizationL as long as

2ph~guBu2!8@ER~0!1hs#.
G

2
. ~8.9!

The solution of Eq.~8.7! is

l522ph~guBu2!8@ER~0!1hs# ~8.10!

and describes an eigenvalue ofL precisely when Eq.~8.9! is fulfilled. We then have the following
conclusion under the simplifying assumption~8.2! and in the small-G limit.

When2ph(guB u2!8@ER(0)1hs]<G/2: no eigenvalues ofL and hence an attractive fixed
point.

WhenG/2,2ph~guB u2!8@ER(0)1hs],G: two eigenvalues ofL and still an attractive fixed
point.

When2ph~guB u2!8@ER(0)1hs]>G: two eigenvalues and a nonattractive fixed point.
The main conclusion under the same assumptions is then the following.
Proposition VIII.1: We have an attractive fixed point precisely when the s-derivative of the

difference of thelhs and therhs in Eq. (8.1) is.0.
Now we drop the simplifying assumption~8.2! and see that the preceding proposition still

holds in the small-G limit. Let z be a fixed point, so thats5izi2 ~approximately! solves Eq.~8.1!.
In view of Eq. ~7.2!, Eq. ~7.11! can be written as

11E dE g~E!
]s@~A2l!~Ā2l!#uBu22A~Ā2l!]sBB̄2Ā~A2l!B]sB̄

$@G~s!/21l#21@E2ER~0!2hs#2%$@G~s!/2#21@E2ER~0!2hs#2%
50.

~8.11!

Here, the numerator of the integrand can be simplified to

@]sG~G/21l!uBu22~G/2!~G/21l!]suBu2#1$@E2ER~0!2hs#@22huBu2

1 il~]sBB̄2B]sB̄!#%2$@E2ER~0!2hs#2]suBu2%. ~8.12!

Accordingly, we split the integral into three pieces and apply the small-G approximation to each
one. If we assume, for simplicity, thatG/21Rel.0 ~which is necessarily the case if the eigen-
valuel is to ruin attractiveness!, we get
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11
@]sG~G/21l!uBu22~G/2!~G/21l!]suBu2#pg

~G/2!~G/21l!~G1l!

1
„]E$g@22huBu21 il~]sBB̄2B]sB̄!#%2g]suBu2…p

G1l
50 ~8.13!

at E5ER(0)1hs. This can be rewritten as

11
2p~]sG/G!guBu2

G1l
2
2p]s~guBu2!

G1l
2
2ph]E~guBu2!

G1l
1
ilp]E@g~]sBB̄2B]sB̄!#

G1l
50,

~8.14!

again atE5ER(0)1hs. Noticing that

d

ds
@~guBu2!~s,ER~0!1hs!#5~h]E1]s!~guBu2!„s,ER~0!1hs…,

and multiplying withG1l, we get the following approximation of Eq.~7.11!

l$11 ip]E@g~]sBB̄2B]sB̄!#%52G~s!22p
~guBu2!„s,ER~0!1hs…

G~s!
]sG~s!

12p
d

ds
@~guBu2!„s,ER~0!1hs…#. ~8.15!

We assume that 11 ip]E[g(]sBB̄2B]sB̄!#.0, so that the solutionl of Eq. ~8.15! is real and
has the same sign as the rhs of Eq.~8.15!.

On the other hand, thes-derivative of the lhs minus the rhs of Eq.~8.1! is

12
2p

G~s!

d

ds
@~guBu2!„s,ER~0!1hs…#12p~guBu2!„s,ER~0!1hs…

]sG~s!

G~s!2

52
1

G~s! S 2G~s!12p
d

ds
@~guBu2!„s,ER~0!1hs…#

22p
~guBu2!„s,ER~0!1hs…

G~s!
]sG~s! D ,

which is of the opposite sign to the rhs in Eq.~8.15!. We then have the following.
Proposition VIII.2: Under the weaker assumptions above and in the small-G limit, we still

have an attractive fixed point precisely when the s-derivative of thelhsminus therhsof Eq. (8.1)
is .0.

IX. A SIMPLIFIED DIFFERENTIAL EQUATION FOR THE SHEET DENSITY

Consider the differential equation~6.3!

] tz~ t,E!5„2G„s~ t !…/21 i $E2@ER~0!1hs~ t !#%…z~ t,E!1B„s~ t !,E…, ~9.1!

wheres(t)5iz(t,•)i2, and where we could also letB be a slowly varying function oft through
s(t). Assumings(t) to be a known function, the solution of Eq.~9.1! with a prescribed initial
value at timet0 is
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z~ t,E!5E
t0

t

dt8 expS i @E2ER~0!#~ t2t8!2E
t8

t

dt9G„s~ t9!…/22 ihE
t8

t

dt9s~ t9! DB„s~ t8!,E…

1expS i @E2ER~0!#~ t2t0!2E
t0

t

dt8G„s~ t8!…/22 ihE
t0

t

dt8s~ t8! D z~ t0 ,E!.

Assuming that the solution has existed as a bounded solution for a very long time, say from the
time 2`, we can lett0 tend to2` in the formula above and get

z~ t,E!5E
2`

t

dt8 expS i @E2ER~0!#~ t2t8!2E
t8

t

dt9G„s~ t9!…/22 ihE
t8

t

dt9s~ t9! DB„s~ t8!,E….

~9.2!

Taking the scalar product of Eq.~9.1! andz gives the following equation for the derivative of the
sheet density

d

dt
s~ t !52 Rê zu] tz&52G„s~ t !…s~ t !12 Rê zuB&, ~9.3!

where

2 Rê zuB&52 ReE dE g~E!E
2`

t

dt8 expS i @E2ER~0!#~ t2t8!2E
t8

t

dt9G„s~ t9!…/2

2 ihE
t8

t

dt9s~ t9! DB„s~ t8!,E…B„s~ t !,E…. ~9.4!

We now assume thats(t) varies slowly witht and replaceB„s(t8),E… in the above integral by
B„s(t),E…. Making theE-integration first, we get

2 Rê zuB&52 ReE
2`

t

dt8 expS 2 iER~0!~ t2t8!2E
t8

t

dt9G„s~ t9!…/22 ihE
t8

t

dt9s~ t9! D
3F ~guBu2!„s~ t !,t82t…, ~9.5!

whereF denotes the Fourier transform with respect toE. Assuming thatg(E) uB„s(t),E…u2 is
sufficiently smooth as a function ofE, we see thatF ~guB u2!„s(t),t82t… is sufficiently rapidly
decreasing as a function oft82t for the following approximations to be made:~i! sinceG(s) is
small, we may assume that exp$ 2 *t8

t dt9G(t9)/2% . 1 and~ii ! sinces(t9) varies slowly, we may
replace* t8

t dt9s(t9) by s(t)(t2t8). We then get

2 Rê zuB&.2 ReE
2`

t

dt8e2 i @ER~0!1hs~ t !#~ t2t8!F ~guBu2!„s~ t !,t82t…

52 ReE
2`

0

dt8ei @ER~0!1hs~ t !#t8F ~guBu2!„s~ t !,t8….

Using the propertyF (u)( 2 t) 5 F (u)(t), valid for any real valued functionu(E), we obtain

2 Rê suB&5E
2`

1`

dt8ei @ER~0!1hs~ t !#t8F ~guBu2!„s~ t !,t8…52p~guBu2!„s~ t !,ER~0!1hs~ t !….

~9.6!
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Inserting this in Eq.~9.3!, we get the approximate differential equation for the sheet density
s(t)5iz(t,•)i2

d

dt
s~ t !52G„s~ t !…Fs~ t !22p

~guBu2!„s~ t !,ER~0!1hs~ t !…

G„s~ t !… G . ~9.7!

This equation is valid for slowly varying solutions which have evolved for a time much longer
thanG21.

X. QUALITATIVE DISCUSSION AND NUMERICAL RESULTS

We start by examining the simplified fixed-point equation~8.1!. For 0<E&EF with EF!V0 ,
we haveV02E;V0 ~of the same order of magnitude!. By evaluating the integral in Eq.~6.4! with
e(s,x) approximated by Eq.~5.2! and the driving term given by Eq.~4.7!, we have

uB~s,E!u2;~C0
w!2V0

21E0
wE1/2e$~V02E!3/22@V01a~b2a!2E#3/2%4/3a.

Assuming for simplicity zero temperature, so thatg(E)5u(E)(EF2E)1/2p, we get

g„ER~s!…uB„s,ER~s!…u2;~C0
w!2V0

21E0
wER~s!1

1/2@EF2ER~s!#1

3e$@V02ER~s!#3/22@V02ER~s!1a~b2a!#3/2%4/3a.

Recalling thatER(s)5ER(0)1hs5E0
b1a(b2a)5E0

b2b(d2c)2DV, wherea andb are given
by Eqs.~4.3! and ~5.6!, respectively, from Eq.~5.24! we get

G~s!;~C0
w!2E0

bV0
23/2$@V02ER~s!#1/2ER~s!1

1/2e$@V02ER~s!#3/22@V02ER~s!1a~b2a!#3/2%4/3a

1@V02DV2ER~s!#1/2@ER~s!1DV#1/2e$@V02DV2ER~s!2b~d2c!#3/22@V02DV2ER~s!#3/2%4/3b%.

We will consider the following two cases:
~1! The barrier [c,d] is more opaque than [a,b] in the sense that the exponential factor in the

second term of the above expression forG(s) is much smaller than the exponential factor in the
first term.

~2! The barrier [a,b] is more opaque than [c,d].
In the intermediate case when the two barriers have opacity of the same order, the discussion

of case~1! will roughly apply. Notice that opacity depends not only on the relative sizes ofb2a
andd2c, but also ons andDV. Therefore, we may have transitions between the two cases when
these parameters vary. Interesting phenomena appear when case~1! is possible and we start with
that case, recalling thatER(s)5ER(0)1hs5E0

w2DV(b2a)/ l1hs. In this case@and neglecting,
to start with, the possibility of a transition to the case~2!# the first term in the expression forG(s)
dominates, except whenER(s) is negative or very small and positive. The function

f ~s!52p
g„ER~s!…uB„s,ER~s!…u2

G~s!
~10.1!

vanishes forER(s)<0 and rises very sharply@with a square root singularity atER(s)50# from 0
to

fmax;EF ~10.2!

whenER(s) is increased from 0 to a small positive value. WhenER(s) is further increased, the
function f (s) decreases roughly linearly and vanishes forER(s)>EF . The valuesER(s)50,
ER(s)5EF correspond to

4832 C. Presilla and J. Sjöstrand: Transport in resonant tunneling heterostructures

J. Math. Phys., Vol. 37, No. 10, October 1996



s5@DV~b2a!/ l2E0
w#/h, s5@DV~b2a!/ l2E0

w1EF#/h, ~10.3!

and describe the boundary points of the support of the function~10.1!. WhenDV is increased,
these two points move to the right with the same speed as shown in the example of Fig. 2. In Fig.
2 we also see the graphical solution of Eq.~8.1!, s5 f (s), for different values ofDV. It is clear
that Eq.~8.1! will first have only one solution whenDV(b2a)/ l2E0

w<0, then three solutions for
DV in some interval, untilDV(b2a)/ l2E0

w;h fmax, and again only one solution for even larger
values ofDV. According to the results of Sec. VIII, we see that in the case in which Eq.~8.1! has
only one solution, this solution corresponds to an attractive fixed point, and when there are three
solutions, the smallest and the largest of these correspond to attractive fixed points, while the
intermediate solution corresponds to an unstable fixed point.

For many experimentally relevant situations the resonance width is much smaller than the
other energy scales~essentiallyEF!. In this case we may expect the simplified fixed-point equation
~8.1! to be a very good approximation of the more correct equation~7.4!, except near the boundary
points of the support of the function~10.1!. This is confirmed by Fig. 3 where we show the
numerical solutions~stable and unstable! of both Eqs. ~7.4! and ~8.1! for a system having
G(0)/EF.0.01 atDV50.2 eV. In the case of Eq.~7.4!, the corresponding energy integral has
been evaluated on a uniform energy mesh having a density of points@G~0!21.

The solutions of the simplified differential equation~9.7! converge to one of the solutions of
Eq. ~8.1!, associated with an attractive fixed point. The phenomenon of hysteresis then becomes
clear. We letDV increase very slowly from some sufficiently small value up to some sufficiently
large positive value and subsequently decrease it very slowly, back to its initial value. Consider a

FIG. 2. Graphical solution of the equations5 f (s) for different values of the bias energyDV. Note that the support off (s)
has widthDs.EF/h ~equality strictly holds at zero temperature!. The example shown here corresponds to a typical
GaAs–AlGaAs heterostructure in which the parameters described in the text have the following values:nD5231017

cm23, T51 K, b2a540 Å, c2b556 Å, d2c570 Å, V050.34 eV,e511.44, andm*50.067m, wherem is the free
electron mass.
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corresponding solution of the time-dependent Schro¨dinger equation~2.3! so that we expect the
corresponding evolution of the sheet density to be well approximated by the solution of Eq.~9.7!,
whereB varies slowly with time. First, there is only one~attractive! fixed point and the time-
dependent solution has to stay close to that fixed point. Then we have creation of a pair of fixed
points ~one stable and one unstable! away from the solution, but the solution continues to stay
close to the old~stable! fixed point. WhenDV reaches a sufficiently large value, the unstable fixed
point runs into the old stable one and they both disappear. At this point, the time-dependent
solution has no other choice than to converge to the only remaining fixed point~which is stable!.
When decreasingDV back to its initial value, we have the same behavior, in the sense that the
solution stays close to the initially unique fixed point as long as it exists and converges to the new
unique fixed point after the old one has collapsed with the unstable one. The bias energyDV at
which this collapse happens depends on the value of the time-dependent solution and therefore is
different whenDV is increased or decreased.

The phenomenon of hysteresis is clearly seen in Fig. 3, where the collapse points forDV
decreased from large values andDV increased from small values have been marked withA andB,
respectively. We haveDVA,DVB . We can estimate the order of magnitude of the hysteresis
width DVB2DVA by considering thatDVA is determined by the conditionER(s50)50 andDVB

by the conditionER(s. fmax!.0. We have

DVB2DVA;h fmaxl ~b2a!21;aB
21EF~d2c!. ~10.4!

In Figs. 4 and 5 we show the time-dependent evolution of the sheet densitys(t) when we start
from a fixed point solution corresponding to the pointA or B and give an instantaneous small
decrement or incrementdV to DVA or DVB , respectively. In these figures, the thick lines are the
solutions of the full equations~6.3! and ~6.5! and the thin lines the solution of the simplified
differential equation~9.7!. In Fig. 4 the solutions corresponding to the small-G limit and the full
Schrödinger equation start, as shown in Fig. 3, from different fixed point values,s(0), and
converge to the same~approximatively! values. On the other hand, when the starting point isB
~Fig. 5! the small-G approximation is close to the solution of the full equation except for the value
which s(t) has to converge to, again in agreement with Fig. 3.

As a third example of time evolution of the sheet density of electrons in the well, in Fig. 6 we
show the behavior of thes(t) solution of the full equations~6.3! and~6.5! after an instantaneous

FIG. 3. Fixed point solutions of the sheet density of electrons in the wells as a function of the bias energyDV in the same
case of Fig. 2. The thick line is the exact case~7.4! and the thin line the small-G approximation~8.1!. Unstable solutions
are represented by dashed lines~both thick and thin!.
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changedV of the bias energy corresponding to the pointC of Fig. 3 well inside the hysteresis
region. If udVu is chosen sufficiently large, we observe oscillations ofs(t) on the picosecond time
scale. Contrary to the claim of Ref. 14, these oscillations are damped sinces(t) has to converge
to the fixed point solution corresponding the bias energyDVC1dV.

In case~2!, when the barrier [a,b] is more opaque than the barrier [c,d], the function~10.1!
is very small, and for solutions of Eq.~8.1! we can observe only a microscopical hysteresis effect,
due to the square root singularity atER(s)50, which is likely to be completely absent in the more
correct equation~7.4!. The absence of the hysteresis effect in this case is in agreement with the
experimental results of Ref. 18 and is discussed in Ref. 16.

FIG. 4. Sheet density of electrons in the wells(t) as a function of time after an instantaneous decreasedV of the bias
energy from the pointA of Fig. 3 ~thick lines!. The crosses are the fixed point solutions at biasDVA2dV wheres(t) is
expected to converge. The thin lines are the corresponding small-G approximation starting froms(0)50.

FIG. 5. Sheet density of electrons in the wells(t) as a function of time after an instantaneous increasedV of the bias
energy from the pointB of Fig. 3 ~thick lines!. The crosses are the fixed point solutions at biasDVB1dV wheres(t) is
expected to converge. The thin lines are the corresponding small-G approximation. FordV not too large a ghost fixed-point
solution is observed withs(t) decaying linearly fort<tg and tg defined by the conditionER„s(tg)…50.
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Let us finally consider the case of very wide barriers and see that a transition between
cases~1! and ~2! has to take place in the hysteresis region. Letc2b5const, (b2a)/(d2c)
5const,1, andb2a→`. In this limit, h;aB

21(b2a), and the values in Eq.~10.3! are the
end points of a short interval of length;EFaB/(b2a). Let us consider Eq.~8.1! whenDV is
increased from the initial value (E0

w2EF) l /(b2a) for which the right end point in Eq.~10.3! is
0. If the constant (b2a)/(d2c) is sufficiently small, we are in case~1!. For
(E0

w2EF) l /(b2a)<DV<E0
wl /(b2a), we remain in case~1!, provided that (b2a)/(d2c)

is sufficiently small, and Eq.~8.1! has a unique solution. AtDV5E0
wl /(b2a) we have the

creation of two new fixed points. If we follow the old fixed point, we cannot remain in case~1!
until it disappears. Indeed, if we did, the disappearance would take place whens; fmax and at a
bias energy DV;aB

21(d2c) fmax obtained by the condition ER(s. fmax!.0. Since
ER(s)5E0

b1a(b2a) is between 0 andEF , the inclinationa of the first barrier would have to be
very small, and we get a finite inclinationb;2aB

21fmax for the barrier [c,d]. Therefore, when
b2a→` only the opacity of the first barrier would diverge and, at some point, we would be no
longer in case~1!. What will actually happen is that whenDV reaches some value which is
bounded independently ofb2a, we have a transition from case~1! to case~2!, andfmax decreases
to some value which is much smaller than the rhs in Eq.~10.2!. This will cause the disappearance
of the fixed point for a much smaller value ofs. When a transition from case~1! to case~2!
happens, we still observe a hysteresis phenomenon, but this is now caused not only by the
translationof f (s) as a function ofDV but also by avariation of its height. This effect is already
apparent in Fig. 3 where we see a decreasing height off (s) when increasingDV.

XI. THE CASE OF SEVERAL RESONANCES

In this section we discuss very briefly the case with several shape resonances. Much of the
discussion is similar to the case of one resonance and we shall assume that we are in a parameter
range where all the WKB considerations apply.

First we review the approximation for the shape resonances. We start with the potentialVw

and consider its eigenstatesej
w(x), j50,1,...,N21 and the corresponding eigenvalues

0,E0
w,E1

w,•••,EN21
w ,V0 . Sinceej

w(x) is even as a function ofx2(b1c)/2 for evenj and
odd for oddj , we have

FIG. 6. Sheet density of electrons in the wells(t) as a function of time after an instantaneous changedV of the bias energy
from the pointC of Fig. 3. The crosses are the fixed-point solutions at biasDVC1dV wheres(t) is expected to converge.
For udVu not too small damped oscillations are seen at the picosecond scale.
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ej
w~x!5Cj

w3H sin@~ j11!p/22AEj
w~c2b!/2#e2~V02Ej

w
!1/2~b2x!, x,b

sin$~ j11!p/21AEj
w@x2~b1c!/2#%, b,x,c

sin@~ j11!p/21AEj
w~c2b!/2#e2~V02Ej

w
!1/2~x2c!, x.c.

TheC1 condition atx5b, or equivalently atx5c, gives the quantization condition

tan@~ j11!p/21AEj
w~c2b!/2#52~V0 /Ej

w21!21/2,

which can also be written as

tan@AEj
w~c2b!/22 jp/2#5~V0 /Ej

w21!1/2. ~11.1!

Representing this equation graphically, we see thatN21 is the largest integer>1 with AV0(c
2 b)/2. (N 2 1)p/2. The functionsej

w(x) are normalized, if we choose

Cj
w5S Ej

w

V0~V02Ej
w!1/2

1
~c2b!

2
1

~V02Ej
w!1/2

V0
D 21/2

. ~11.2!

The eigenvaluesEj
b associated with the potentialVb in Eq. ~5.5! can be studied as before, and

we get

Ej
b5Ej

w28paB
21s

~Cj
w!2Ej

w

4V0~V02Ej
w!

1O ~a21b2!. ~11.3!

In the following, we neglect the errorO ~a21b2!. The shape resonancesl j (s)5ER, j (s)2 iG j (s)/2
for the potentialV1W are then given by

ER, j~s!5ER, j~0!1h j s, ~11.4!

where

ER, j~0!5Ej
w2DV~b2a!/ l , h j5

8paB
21~b2a!~d2c!

b2a1d2c
2
8paB

21~Cj
w!2Ej

w

4V0~V02Ej
w!

, ~11.5!

and

G j~s!58~Cj
w!2Ej

b~V02Ej
b!1/2V0

22$@V01b~d2c!2Ej
b#1/2@Ej

b2b~d2c!#1/2

3e$~V02Ej
b
!3/22@V01b~d2c!2Ej

b
#3/2%4/3b1@V02a~b2a!2Ej

b#1/2

3@Ej
b1a~b2a!#1

1/2e$@V02a~b2a!2Ej
b
#3/22~V02Ej

b
!3/2%4/3a%. ~11.6!

The corresponding resonant stateej (s,x), satisfying Eq.~6.2!, can be described as in Sec. V.
We still try to solve Eq.~2.11! in two steps. Equation~2.12! is treated as before, while Eq.

~2.13! is now handled by lettingñ be a linear combination of theN resonant states
e0(s,x),...,eN21(s,x). More precisely, we writeñ(x,t,E)5exp(2 iEt)n(x,t,E) and m̃(x,t,E)
5exp(2 iEt)m(x,t,E), so that Eq.~2.13! becomes

@2 i ] t2]x
21V~x!1W~s,x!2E#n~x,t,E!5V01@b,c#~x!m~x,t,E!. ~11.7!

Assume,
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n~x,t,E!5 (
k50

N21

zk~ t,E!ek~s,x!, ~11.8!

where s is defined in Eq. ~2.7! and hence will be time dependent. The functions
e0(s,x),...,eN21(s,x) approximately form an orthonormal family inL2„[(a1b)/2,(c1d)/2]…,
and if we assume thatn dominates overm in [(a1b)/2,(c1d)/2] then, with a small error, we
have

s~ t !5 (
k50

N21

izk~ t,• !i25iz~ t,• !i2, ~11.9!

where the norms are inL2„g(E)dE… and inL2„g(E)dE…N, respectively.
Substituting Eq.~11.8! into Eq. ~11.7!, multiplying by ej (s,x), and integrating over the con-

tour g, we get

(
k50

N21 E
g
dx@2 i ] t1lk~s!2E#@zk~ t,E!ek~s,x!#ej~s,x!5V0E

b

c

dx m~x,t,E!ej~s,x!.

~11.10!

From the relations*gdx ek(s,x)ej (s,x)5dk, j , we conclude that*gdx[ ]sek(s,x)]ej (s,x) is an
antisymmetric matrix, and sinceek(s,x) are approximately real functions near [b,c], this matrix
is also very close to a real one. Equation~11.10! can be written as

@2 i ] t1l j~s!2E#zj~ t,E!2 i ] t„s~ t !…(
k50

N21 E
g
dx@]sek~s,x!#ej~s,x!

5V0E
b

c

dx m~x,t,E!ej~s,x!. ~11.11!

Due to the facts that~i! ] ts(t) can be expected to be very small and~ii ! ek(s,x) is roughly
independent ofs near [b,c] so that the integral*gdx[ ]sek(s,x)]ej (s,x) can be expected to be
very small, we will neglect the sum in the lhs of Eq.~11.11!. In this case, we have

] tzj~ t,E!5$2G j~s!/21 i @E2ER, j~s!#%zj~ t,E!1B j~ t,s,E!, ~11.12!

whereB j (t,s,E)5 iV0*b
cdx m(x,t,E)ej (s,x).

We assume thatB j vary slowly with t, so it is meaningful to look at instantaneous fixed
points of the vector field defined by the rhs of Eq.~11.12! in L2„g(E)dE…N. Assuming, for
simplicity, thatB j are independent oft we see thatz(E)5„z0(E),...,zN21(E)… is a fixed point
precisely when

zj~E!5
2B j~s,E!

2G j~s!/21 i @E2ER, j~s!#
, j50,...,N21 ~11.13!

from which we get the compatibility condition fors5izi2:

s2 (
j50

N21 E dE
g~E!uB j~s,E!u2

@G j~s!/2#21@E2ER, j~s!#2
50. ~11.14!

Conversely, ifs is a solution of Eq.~11.14!, then Eq.~11.13! defines the unique fixed point with
izi25s.
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In the small-G limit, as in Sec. VIII we get the simplified fixed-point equation

s2 (
j50

N21

2p
~guB j u2!„s,ER, j~s!…

G j~s!
50. ~11.15!

In view of Eq. ~11.4!, the term of indexj in Eq. ~11.15! is a function ofs with support in the
interval

@DV~b2a!/ l2Ej
w#/h j<s<@DV~b2a!/ l2Ej

w1EF#/h j , ~11.16!

and whenDV increases this interval moves to the right with speed (b2a)/( lh j ) as shown in the
example of Fig. 7.

In Fig. 8 we compare the corresponding fixed point solutions obtained by solving Eq.~11.14!
with those obtained in the small-G limit ~11.15! as a function of the bias energyDV. Between the
points marked asA andB we observe five fixed points. Below we give some results about the
nature of fixed points, which are more complicated than those in the case of a single resonance,
and it is not clear that those results are applicable in the situation of Fig. 8. If we assume that they
are applicable, then three fixed points are stable and two unstable. The existence of more than
three fixed points, i.e., the maximum number allowed forN51, is related to the possibility that the
intervals~11.16! are not disjoint, as clearly understood by Fig. 7.

It is interesting to study the evolution of the sheet densitys(t) away from a point likeB in
Fig. 8 where a~presumably! stable fixed point and an unstable one collapse while two other fixed
points survive. In Fig. 9 we show the behavior ofs(t) obtained by numerically integrating Eq.
~11.12! after an instantaneous increaseDV of the initial bias DVB . If the total bias
DVB1dV,DVC , whereC is the next point where a new couple of fixed points collapse,s(t)

FIG. 7. Graphical solution of the equations5 f (s) for different values of the bias energyDV in a multiple-resonance case.
We used the same parameters of Fig. 2 exceptb2a520 Å, c2b5360 Å, d2c550 Å.
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converges to the fixed point closest to its initial values(0). WhenDVB1dV.DVC , s(t) first
approaches the value corresponding to the collapse pointC but finally has to converge to the lower
unique fixed point corresponding to the chosen bias.

Next we study the linearization of the vector field defined by the rhs of Eq.~11.12! at a fixed
point under the following simplifying assumption:

G j is independent ofs, B j5B j~E! is independent oft and s,
~11.17!

h j5h is independent ofj .

Then Eq.~11.12! becomes,

FIG. 8. Fixed-point solutions of the sheet density of electrons in the wells as a function of the bias energyDV in the same
case of Fig. 7. The thick line is the solution of Eq.~11.14! and the thin line the small-G limit ~11.15!. Possibly unstable
solutions are represented by dashed lines~both thick and thin!.

FIG. 9. Sheet density of electrons in the wells(t) as a function of time after an instantaneous increasedV of the bias
energy from the pointB of Fig. 8. The crosses are the fixed-point solutions at biasDVB1dV wheres(t) is expected to
converge.
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] tzj~ t,E!5@2G j /21 i @E2ER, j~0!2hs##zj~ t,E!1B j~E!. ~11.18!

The same calculations as in Sec. VIII show that the complexificationL of the linearization of the
vector field defined by the rhs of Eq.~11.18! at a fixed point is given by

LS u0
A

uN21

v0
A

vN21

D 5S $2G0/21 i @E2ER,0~0!2hs#%u02 ih~^uuz&1^vuz̄&!z0
A

$2GN21/21 i @E2ER,N21~0!2hs#%uN212 ih~^uuz&1^vuz̄&!zN21

$2G0/22 i @E2ER,0~0!2hs#%v01 ih~^uuz&1^vuz̄&!z̄0
A

$2GN21/22 i @E2ER,N21~0!2hs#%vN211 ih~^uuz&1^vuz̄&!z̄N21

D .

~11.19!

Here,^uuz& 5 ( j50
N21^uj uzj&L2(g(E)dE) . The operatorL is a rank one perturbation of an operator

with essential spectrum contained inø j50
N21(2G j /21 iR!. We look for eigenvalueslPC with

RelÞ2G j /2 for all j . If (u0 ,...,uN21,v0 ,...,vN21) is a corresponding eigenvector, we get as in
Sec. VIII

uj5
kzj~E!

2G j /21 i @E2ER, j~0!2hs#2l
, v j5

2k z̄j~E!

2G j /22 i @E2ER, j~0!2hs#2l
,

~11.20!

where

k5 ih~^uuz&1^vuz̄&!. ~11.21!

Using Eqs.~11.13! and ~11.20! in Eq. ~11.21!, we see thatl is an eigenvector precisely when

122h (
k50

N21 E dE
@E2ER,k~0!2hs#g~E!uBk~E!u2

$~Gk/21l!21@E2ER,k~0!2hs#2%$~Gk/2!21@E2ER,k~0!2hs#2%
50.

~11.22!

As in the caseN51, we observe that the lhs of Eq.~11.22! for l50 is equal to the
s-derivative of the lhs of Eq.~11.14!. Moreover, whenl→1`, the lhs of Eq.~11.22! converges to
1, so if it is,0 for l50, it has to vanish for somel.0. Hence, as in the caseN51, we get the
following:

Proposition XI.1: Let z be a fixed point of Eq. (11.18), so that s5izi2 solves Eq. (11.14). If the
s-derivative of thelhs of Eq. (11.14) is,0, then z is not an attractive fixed point.

We now pass to the small-G limit, where Eq.~11.14! is replaced by Eq.~11.15! and we keep
the simplifying assumption~11.17!.

Proposition XI.2 (small-G limit): Assume that the intervals (11.16) are disjoint and let z be a
fixed point of Eq. (11.18). Then z is attractive precisely when the s-derivative of the lhs of Eq.
(11.15) is.0.

Proof: The s-derivative of the lhs of Eq.~11.15! is

12 (
j50

N21
2ph~guB j u2!8@ER, j~0!1hs#

G j
, ~11.23!

where~guB j u
2)85]E(guB j u

2!. On the other hand, in the small-G limit, Eq. ~11.22! for the eigen-
values of the linearization becomes as in Sec. VIII
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122h (
k;Gk/21Rel.0

p~guBku2!8~ER,k~0!1hs!

Gk1l

12h (
k;Gk/21Rel,0

p~guBku2!8~ER,k~0!1hs!

l
50. ~11.24!

We are only interested in the possible existence of solutions to this equation with Rel>0, and for
suchl Eq. ~11.24! reduces to

122h (
k50

N21
p~guBku2!8@ER,k~0!1hs#

Gk1l
50. ~11.25!

If l is a solution, then by the condition that the intervals~11.16! are disjoint, only one term in the
last sum, say fork5m, is Þ0, so that Eq.~11.25! becomes

122h
p~guBmu2!8@ER,m~0!1hs#

Gm1l
50, ~11.26!

while expression~11.23! becomes

122h
p~guBmu2!8@ER,m~0!1hs#

Gm
. ~11.27!

It is then easy to see that the solution of Eq.~11.26! has a negative real part precisely when
expression~11.27! is positive, and this concludes the proof of the last proposition.

When the intervals~11.16! have nonempty intersections, the situation is more complicated,
and the following example is an indication that the last proposition may be false.

Example: There exist G1,G2.0, a1 ,a2PR, such that 12(a1/G11a2/G2).0, while
12[a1/(G11l)1a2/(G21l)]50 for some positivel. Indeed, chooseG151, a152, G25d.0
very small,a2522d. Then 12a1/G12a2/G251.0. If d!l0!1, we have

12
a1

G11l0
2

a2
G21l0

'21.

Hence 12[a1/(G11l)1a2/(G21l)] must vanish for somel between 0 andl0.
As in Sec. IX, we can derive a simplified differential equation for„s0(t),...,sN21(t)…, where

sj (t)5izj (t,•)i
2, so thats(t)5( j50

N21sj (t). We drop the simplifying assumption~11.17!, but keep,
for simplicity, the assumption thatB j are independent of t. Assume that
z(t,E)5„z0(t,E),...,zN21(t,E)… is a solution of Eq.~11.12! which has existed for a long time
with a uniformly bounded norm. As in Sec. IX, we take the scalar product of Eq.~11.12! with zj
and get

d

dt
sj~ t !52G j~s!12 Rê zj uB j&. ~11.28!

Using

zj~ t,E!5E
2`

t

dt8ei @E2ER, j ~0!#~ t2t8!2*
t8
t
dt9G j „s~ t9!…/22 ih j* t8

t
dt9s~ t9!B j„s~ t8!,E…, ~11.29!

and, under the assumption thats(t8) is slowly varying, we get as in Sec. IX
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2 Rê zj uB j&.2p~guB j u2!„s~ t !,ER, j~0!1h j s~ t !…, ~11.30!

and the simplified equations

d

dt
sj~ t !52G j„s~ t !…Fsj~ t !22p

~guB j u2!„s~ t !,ER, j~0!1h j s~ t !…

G j~s~ t !! G , ~11.31!

for j50,1,...,N21, ands5( j50
N21sj . We notice that the region defined bysj>0 for 0< j<N21

is stable under the forward flow associated with the system~11.31!. Moreover, if (s0 ,...,sN21) is
a fixed point of this system, then we get precisely Eq.~11.15!. Conversely, ifs is a solution of Eq.
~11.15!, then

sj52p
~guB j u2!„s,ER, j~0!1h j s…

G j~s!
~11.32!

defines the corresponding unique fixed point solution withs5( j50
N21sj .

We end this section by investigating the linearization of Eq.~11.31! at a fixed-point solution,
under the simplifying assumption~11.17!. An easy calculation shows that the linearization is given
by

MS v0
A

vN21

D 5S 2G0v012phs~guB0u2!8@ER,0~0!1hs#(k50
N21vk

A
2GN21vN2112phs~guBN21u2!8@ER,N21~0!1hs#(k50

N21vk
D . ~11.33!

If l is an eigenvalue ofM with G j1lÞ0 for every j , and t(v0 ,...,vN21) a corresponding
nontrivial eigenvector, we have

v j52ph
~g~ uB j u2!8@ER, j~0!1hs#

G j1l (
k50

N21

vk .

Then necessarily the sum isÞ0, and by summing theseN relations, we see thatl is an eigenvalue
precisely when Eq.~11.25! holds. We finally get:

Proposition XI.3: Under the simplifying assumption (11.17) and in the small-G limit, let z be
a fixed point of Eq. (11.18) and let(s0 ,...,sN21) be the corresponding fixed-point solution of Eq.
(11.31). Then the linearizations of Eqs. (11.18) and (11.31) at the corresponding fixed points have
the same eigenvalues in the right half planeRel>0 [given by Eq. (11.25)]. In particular, z is an
attractive fixed point for Eq. (11.18) precisely when(s0 ,...,sN21) is an attractive fixed point for
Eq. (11.31).
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