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Nonlinear resonant tunneling in systems coupled to quantum reservoirs
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An adiabatic approximation in terms of instantaneous resonances is developed to study the steady-state and
time-dependent transport of interacting electrons in biased resonant-tunneling heterostructures. The resulting
model consists of quantum reservoirs coupled to regions where the system is described by nonlinear ordinary
differential equations and has a general conceptual int¢®8163-182807)04311-7

The mathematical method recently proposed in Ref. lranslational invariance in the plane parallel to the junctions,
provides a significant advance in the solution of time-the single-electron scattering state at eneEgglong thex
dependent scattering problems for Salinger equations direction is described by the one-dimensional Sdiwger
with nonlinearities concentrated near the resonances of thequation,
corresponding potential. The method consists in the separa-
tion of the original system in two coupled subsystems . 5
through the splitting of the wave function in two compo- [—i10= 0+ V(X)) +U (&, X)](X,1,E)=0, (1)
nents. In this way, we can separately study the simple prob-
lem of a reservoirlike Subsystem haVing Only extended Stataﬁlhere Vcb(x) is the Step”ke conduction band edge prof"e
and COUp|e its solution to the other Subsystem haVing reSCHnd U(d)’x) takes into account the app"ed bias and, at the
nance states. The solution of this second problem is thepjartree level, the electron-electron interaction. Assuming
simplified by an adiabatic approximation in terms of instan-jgeal metallic behavior in the emitter and collector regions,
taneous resonances. i.e., neglecting the formation of accumulation and depletion

The situation inVeStigated in Ref. 1 depiCtS ballistic tranS'|ayerS,U(¢,X) can be obtained as a solution of the Poisson
port in a double-barrier heterostructure, i.e., the scattering ofquation,

a wave-packet on a double-barrier potential. The nonlinear-

ity, concentrated in the well between the barriers, is due to

the interaction of the electrons represented by the wave 5 1

packet(mean field. Here, we generalize the approast the %U(.x)=—8mag f dE g(B)|(xLE)% ()

case of biased heterostructures where a band of scattering

states are to be considered. I_:o_r these systems, hysteresisv\}lr%h boundary conditions U(¢,a)=0, U(¢,d)=—AV.

the current—voltage characteristics has beef‘ obsé(aad The parallel degrees of freedom are considered through

recognized as a consequence of the mutual interaction of the

electrons trapped in the resonaideWe show that the

approachallows us to quantitatively reproduce experimental O(E)

results liké and predict new time-dependent properties. Al- g(E)= ?[kBTm(lJre(E*EF)/kBTH Er—E], 3

though illustrated in the case of heterostructures, these re-

sults are very general and have applications in fields like the

theory of electric systerﬁand nonlinear opti(;%_7 where the Heaviside functio® (E) limits the integration in
Let us consider a heterostructure whose conduction ban@) to energies above the bottom of the emitter conduction

edge profile consists of two barriers of height located in  band,E=0, as correct foEF<AV.

[a,b] and[c,d] with a<b<c<d along the growth direc- In general, the solution of2) cannot be handled analyti-

tion x. Translational invariance is assumed in the plane parcally. We will suppose that, due to the accumulation of elec-

allel to the junctions. Suppose that a bias enekyyis ap-  trons in the well with sheet density

plied between the emitterxa) and collector x>d)

regions uniformly doped with net donor concentratiog. (c+d)2

At thermal equilibrium with temperaturg, transport is due S(d)):f dE g(E)f dx|é(x,t,E)|?, (4)

to a band of scattering states with Fermi energy (a+b)/2

Er=(37?np)?° [we use everywhere effective atomic units

h=2m*=1 ande?/s=2ag", wherem* is the electron ef- ideal metallic behavior in the welb,c] and ideal insulating

fective mass, ¢ the dielectric constant, and behavior in the barriersa,b] and[c,d] hold. Then the total

ag="h2e/(m*e?) the effective Bohr radids Due to the potentialV+ U in (1) is better rewritten a¥ + W, where
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VOO ZIVom AV dian®) o b, Mumine o o o
—AV(b—a)// 1 ¢(X) grating o,very,swe get
+[Vo—AV(b=a+x=c)//11cq(X) 32(t,E)=i[E—\(s)]z(t,E) + B(S,E), (10)
—AV g +(X) (5 with the driving term given by B(s,E)

=iV gdx u(x,t,E)e(s,x) and the sheet densityd) re-

ives the band profile modified by the external bias and
g P y duced, with small error, to

W(s,x)=8mag" s(¢){(x—a)(d—c)// 1jap(X)
— 2_ 2
+(b—a)(d—c)// Ljp¢(X) S—J dE g(B)[z(t.B)[*=[z(v)[*. (1)

+(b—a)(d—x)//1(cq(X)} (6)  Explicit expressions ok (s) ande(s,x) can be found within
the same WKB approximation used for evaluatiag For
depends on the wave functi@ghthrough the sheet density of |ater use we note thaER(s)=E%+ 7S, Where E(F)EEO
electrons in the wells(¢). Here /=b—a+d-c and _Av(b—a)//, E, being the(ground eigenstate of the
1[XO‘X1](X) is 1 if xe[Xg,X;] and O otherwise. potential Vo[1)_.. pj(X) +1[c+(X)] and nzgwaB—l(b
Following Ref. 1, we will solve(1) with the potential5)  —a)(d—c)//'=e?/(Co+C.), Ce andC, being the emitter
and(6) in two steps. LeVg (x) =V(X)+ Vol (X) be the and collector capacitance per unit area, respectively. More-
potential obtained by filling the wellb,c]. First we solve over,I'(s)=T'g(s)+T'.(s), I'c andT' being the contribu-
_ tions to the resonance width given by the emitter and collec-
[—id— a5+ Ve (X) +W(s,x) [z (x,t,E)=0 (7)  tor barriers, respectively.
The original problen(l) is reduced to solving the system
(10) with the condition(11). Let us first consider the station-
ary solutions

and then we look for¢ in the form ¢=u-+7v where
P(x,t,E) should solve

[—i0= 5+ V) +W(sX)[v=Vg 1jpq(X)u. (8) B(s,E)
Z(E)= - .

Substituting(1) with (7) and(8) corresponds to decomposing —I(s)/2+i[E-ERr(9)]
the original system in quantum reservoirs coherently couple¢quation (11) gives a self-consistency condition for
to a small subsystem. The wave functipn describes an s=||z||2. Assuming that|3(s,E)|? is a smooth function of

electron at energ§ which is delocalized in the emitter and g and I'(s)<Eg, a Dirac 6 approximation can be used to
collector regiongreservoirg and has an exponentially small get

probability to be found in the forbidden regidma,d]. The
wave functionv describes the same electron in the double- s=f(s)=2nwg(Er(8))|B(s,Er(s)|’T'(s)"L. (13
barrier region and is driven by the value af in the well
[b,c]. Due to the quasilocalization &f in [b,c], we have
¢=nu in the reservoirs ang="7 in the well, with an error
which is exponentially small in the limit of wide barriets.
Equation(7) can be solved by evaluating the instanta-
neous eigenstates of the potentisdy+W. We put
n(x,t,E)=exp(—iEt)u(xt,E) and suppose thatV ands are
slowly varying functions of time so that alse(x,t,E) is
slowly varying in time. In the emitter regior<a we take
u(X,t,E)=u(Xx,E) as the sum of a left- and right-going
plane wave at energy and propagate this expression to the
adjacent regions by requiring to be of clasC!. For wide

(12

The function f(s) vanishes everywhere except for
O<Eg(s)<Er where, for Eg<Vy, we have

27| B(s,Er(8))|?=T«(s). Equation(13) is then equivalent to
sI'(s) =g(Eg(s))I'<(s) which has a simple interpretation in
terms of charge conservation. In the steady state, the current
of electrons injected from the emitter into the well,
g(Egr(s))I's(s), equilibrates the escaping currerd]’(s).

The latter current increases with increasing the sheet density
of electrons in the wells, while the former vanishes at both
Er(s)=0 (square root singularijyand Egx(s)=Eg. There-
fore, Eq.(13) has only one solution foE3=0 and may have

barriers we can use a WKB expansion for the potential €€ for(l)Eg<0. For ER=Er the unique solution vanishes
Vi + W and explicitly evaluate: in the regior b,c] which and forER<<0 the couple of nonvanishing solutions is to be
is of interest for solving8). searched in the intervat E%/ p<s=<(—EX+Eg)/ 7.

Equation(8) can be simplified by developirig into the In terms of applied bias, multiple solutions @f3) can be
instantaneous eigenstates of the potentialW and keeping  Obtained forAV>Ey//(b—a). The range oAV values for
only the contributions from the discrete resonant sthtes. which three solutions exist depends on the amplitude of the
the case of a single resonant state we pik,t,E) function f. If the emitter barrier is more opaque than the
=exp(—iEt)z(t,E)e(sx) where e(s,x) is the (ground reso- collector onef is suppresseq by the factbg/I" ;<1 and we
nant state of the potentiaf+W with complex eigenvalue &lways have only one solution.

N(S)=ERr(S)—iT(s)/2 The solutions of(13) can be characterized in terms of
stability. This is particularly important in view of a compari-
[—\(S)— 2+ V(X) +W(s,x)]e(s,x)=0. (99  son with steady-state experiments where only stable solu-

tions are measured. By studying the eigenvalues of the lin-
The eigenfunctione(s,x) is of class L? on the contour earization of the vector field defined by the r.h.s(1ff) one
y=(e'""]—»,0]+a)U[a,d]U(d+e'[0,+=[) for # conve- can demonstrate that a solution @f3) is stable(unstable
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FIG. 1. Theoretical steady-state current-voltage characteristic FIG. 2. Sheet density of electrons in the we(t) after an in-
for the GaAs-ALGa; _,As heterostructure experimentally investi-
gated it under forward(right-most curvg and reverseleft-most
curve bias. In the reverse bias case we permuted the barriers in-

stantaneous increag®/ of the bias from poinB of Fig. 1.

t ’ : !
stead of making\V (and!) negative. In the forward bias case the Z(t,E) =/ @t {- (WD TGO HIE-ERE Dz 0 E)
dashed line is an unstable steady-state solution and arrows indicate
the transition expected at the bistability threshollsand B by i ftdt’efi,dt”{f(lIZ)F(s(t”))+i[EfER(s(t”))]}
decreasing or increasing the bias, respectively. The relevant param- 0
eters are np=2x107 cm 3, T=1 K, A=2x10°% cm?
m*=0.067n, where m is the free electron mass;=11.44, XB(s(t'),E). (19
V,=0.34 eV,b—a=9.0 nm,c—b=5.6 nm, andd—c=10.7 nm . . . .
R?ef 10 The first term in(15) vanishes exponentially and can be ne-

glected after a timé&>2/T". In the second term, an analogous
9 . o . exponential factor selects the contributionstfert’ <2/" as
when 55f(s)<1 (>1).” The trivial solutions=0, when it Stthe dominant ones so that the lower integration bound can be

exists, is, therefore, a stable one. When three solutions exi . ;
two of them, the largest and the smallest one, are stabl%afe'y changed inte-co for t>21T. In this case, 2Re|5)

while the intermediate one is unstable. can be approximated with
Considerations analogous to those madesfhold for the t .
steady-state collector curreie=As I'.(s), proportional to 2Ref dt’ e/ A= (WAL ERCT) 7 g| B|2) (t—t)
the number of electrons in the welAs, A being the trans- -
verse area of the heterostructure, and to collector escape rate

t i ’
I',(s). In Fig. 1 we show (AV) evaluated for the asymmet- =2Re| dt'eEREMI) F(g|B|2)(t—t")
ric double-barrier heterostructure experimentally investi- -
gated in Ref. 4. In agreement with the above discussion and = 27g(Er(s(1)))| B(s(1),Er(s(t)) |2, (16)

with the experimental findings, no multiple solutions are ob-

tained in the left-most curvéreverse bias casef Fig. 1  where F(g|B|?) is the Fourier transform obtained by per-
when the emitter barrier is wider than the collector one. Orforming the energy integral in the scalar product and the
the other hand, a bistability region extending between pointapproximation in the third line is valid foF' and 4,s(t)

A andB is observed in the forward bias case. small. With this result Eq(14) becomes
The above results can be generalized to include the effect
of inelastic processes if we chanffe~I'+T; in Eq. (12), ds(t)=—T'(s(t))[s(t) — f(s(t))]. (17

wherel’;=T";.+T'j. is the total width representing collector As Ea.(13). this i tion law for the ch ¢ q
and emitter inelastic decay channtisThe collector current s Eq.(13), this is a conservation law for the charge trappe

_ _ ; < in the well. The steady-state solutiorigs=0, of (17) coin-
kéecomesl(e—As[Fc(s)+F,c]. Hi)wever,wlf LHTi<Ee, cide with those defined bgl3) and also their attractive na-
g. (13 still holds so that forl'.=I" (I'j.=T";), as in the . ol e .
case of Fig. 1, the value df is independent of the ratio ture agrees W'th the_s_tablllty condition dlscuss_ed above. .
T, C_Iose toa bistability threshold, the dynamics of certain
: nonliner optical systems has been shown to be characterized
by a quasistationary transient followed by a fast evolufién.
As we will discuss in a moment, this behavior is typical of
any rate equation of the for#s=h(s, V) wheresV is the
as(t)=—T(s(1))s(t) + 2Rgz| B), (14 control parameter of a bistability threshold. An example for
L our heterostructure is shown in Fig. 2. At tirtre O the sys-
where (ulv)=J dE g(E)u(E)v(E). The last term in(14)  tem is in the threshold stable steady-stBtef Fig. 1 when
can be expressed in terms fft) by using the formal solu- the bias is instantaneously increased by an améyhtFor
tion of (10) 6V smaller than a critical value, we observe a quasistationary

Now we turn to the time-dependent transport properties
According to(10) and(11), we have
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s(t) which decreases linearly at small times and, after a time
7, vanishes in a nearly exponential way. The border between
these two regimes is given by the conditi@g(s(7))=0.

Indeed, when the resonant enerBy(s) becomes smaller i l l 1
than the emitter band edge the filling currdngs) f(s), van- 1077 & Ep(s(0)) 2~ 3
ishes and(17) has the solutiors(t) <exd —['dt'T'(s(t"))]. i ]

10~6 = Ep 7s(0)

The nearly exponential decay is established from the begin- 0 10-8 L .
ning if V=ER(s(0)). For SV<ER(s(0)) andt<r, s(t) is + ]
in a quasi-stationary regime which is characterized only by o [
the fact that the starting poing(0), is athreshold stable R T’“
steady state. Indeed, feft) —s(0) andsV small in this case o 1
we must have h(s,8V)=—q[s(t)—s(0)]>—psV with 10710 £ r—
g,p>0, independently ofh(s,éV). Integrating, we get U Y I TN TN PP PP P
s(t)=s(0)— VéVp/qtan(ygpsVt) which has linear behav- 1072 1079 107* 1075 1076 1077
ior for small t. In the case of Eq.(17), the condition SV (eV)
Er(s(7))=0 and the approximate evaluation @fand p at
T=0 K give FIG. 3. Survival time of the quasistationary solutions of Fig. 2
versuséV (solid ling). The dashed line is Eq18). Arrows indicate
4ER(s(0)) [Egr(s(0)) Er(s(0)) the relevant energy scales.
T= 7S(0)T EY; arcta \/—45\/ , . .
(18) The phenomenon discussed above may be exploited for

device applications like those suggested for optical sysfems.
More complex time-dependent features are expected in het-
erostructures with many resonantes in superlattice$?

where Eg(s(0))=Efl./(2I)[1+2#T/(5I'x)]"! and
s(0)=[Er—ERr(S(0O))T'c/(27). When 6S6V<ERg(s(0)),
we haver~ 8V~Y2 as shown in Fig. 3 where we compare
(18) with 7 obtained by numerically integrating.7).12 For It is a pleasure to thank G. Jona-Lasinio for stimulating
Er(s(0))<Eg, the temperature dependence(D8) is easily  discussions, as well as G. Perelman, who independently ob-
obtained by substituting the Fermi energy with the effectiveserved how to get17) from (14). We are indebted to F.
valueEr=Eg+kgTIn[1+exp(—Er/kgT)]. The survival time  Capasso for suggesting the connection with optical nonlinear

increases by increasing and for SV<Eg(s(0)) we have phenomena and to L. A. Lugiato for pointing out to us Ref.
TNE'1:/2. 7.
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