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Nonlinear resonant tunneling in systems coupled to quantum reservoirs
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An adiabatic approximation in terms of instantaneous resonances is developed to study the steady-state and
time-dependent transport of interacting electrons in biased resonant-tunneling heterostructures. The resulting
model consists of quantum reservoirs coupled to regions where the system is described by nonlinear ordinary
differential equations and has a general conceptual interest.@S0163-1829~97!04311-7#
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The mathematical method recently proposed in Ref
provides a significant advance in the solution of tim
dependent scattering problems for Schro¨dinger equations
with nonlinearities concentrated near the resonances of
corresponding potential. The method consists in the sep
tion of the original system in two coupled subsyste
through the splitting of the wave function in two comp
nents. In this way, we can separately study the simple p
lem of a reservoirlike subsystem having only extended st
and couple its solution to the other subsystem having re
nance states. The solution of this second problem is t
simplified by an adiabatic approximation in terms of insta
taneous resonances.

The situation investigated in Ref. 1 depicts ballistic tran
port in a double-barrier heterostructure, i.e., the scatterin
a wave-packet on a double-barrier potential. The nonline
ity, concentrated in the well between the barriers, is due
the interaction of the electrons represented by the w
packet~mean field!. Here, we generalize the approach1 to the
case of biased heterostructures where a band of scatt
states are to be considered. For these systems, hystere
the current-voltage characteristics has been observed2 and
recognized as a consequence of the mutual interaction o
electrons trapped in the resonance.2,3 We show that the
approach1 allows us to quantitatively reproduce experimen
results like4 and predict new time-dependent properties. A
though illustrated in the case of heterostructures, these
sults are very general and have applications in fields like
theory of electric systems5 and nonlinear optics.6,7

Let us consider a heterostructure whose conduction b
edge profile consists of two barriers of heightV0 located in
@a,b# and @c,d# with a,b,c,d along the growth direc-
tion x. Translational invariance is assumed in the plane p
allel to the junctions. Suppose that a bias energyDV is ap-
plied between the emitter (x,a) and collector (x.d)
regions uniformly doped with net donor concentrationnD .
At thermal equilibrium with temperatureT, transport is due
to a band of scattering states with Fermi ener
EF5(3p2nD)

2/3 @we use everywhere effective atomic un
\52m*51 ande2/«52aB

21, wherem* is the electron ef-
fective mass, « the dielectric constant, an
aB5\2«/(m* e2) the effective Bohr radius#. Due to the
550163-1829/97/55~15!/9310~4!/$10.00
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translational invariance in the plane parallel to the junctio
the single-electron scattering state at energyE along thex
direction is described by the one-dimensional Schro¨dinger
equation,

@2 i ] t2]x
21Vcb~x!1U~f,x!#f~x,t,E!50, ~1!

whereVcb(x) is the steplike conduction band edge profi
andU(f,x) takes into account the applied bias and, at
Hartree level, the electron-electron interaction. Assum
ideal metallic behavior in the emitter and collector region
i.e., neglecting the formation of accumulation and deplet
layers,U(f,x) can be obtained as a solution of the Poiss
equation,

]x
2U~f,x!528paB

21E dE g~E!uf~x,t,E!u2, ~2!

with boundary conditionsU(f,a)50, U(f,d)52DV.
The parallel degrees of freedom are considered through

g~E!5
Q~E!

2p
@kBTln~11e~E2EF!/kBT!1EF2E#, ~3!

where the Heaviside functionQ(E) limits the integration in
~2! to energies above the bottom of the emitter conduct
band,E50, as correct forEF!DV.

In general, the solution of~2! cannot be handled analyti
cally. We will suppose that, due to the accumulation of el
trons in the well with sheet density

s~f!5E dE g~E!E
~a1b!/2

~c1d!/2
dx uf~x,t,E!u2, ~4!

ideal metallic behavior in the well@b,c# and ideal insulating
behavior in the barriers@a,b# and@c,d# hold. Then the total
potentialVcb1U in ~1! is better rewritten asV1W, where
9310 © 1997 The American Physical Society
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55 9311BRIEF REPORTS
V~x!5@V02DV~x2a!/l # 1[a,b]~x!

2DV~b2a!/l 1[b,c]~x!

1@V02DV~b2a1x2c!/l #1[c,d]~x!

2DV 1[d,1`[~x! ~5!

gives the band profile modified by the external bias and

W~s,x!58paB
21 s~f!$~x2a!~d2c!/l 1[a,b]~x!

1~b2a!~d2c!/l 1[b,c]~x!

1~b2a!~d2x!/l 1[c,d]~x!% ~6!

depends on the wave functionf through the sheet density o
electrons in the wells(f). Here l 5b2a1d2c and
1[x0 ,x1] (x) is 1 if xP@x0 ,x1# and 0 otherwise.

Following Ref. 1, we will solve~1! with the potential~5!
and ~6! in two steps. LetVfill (x)5V(x)1V01[b,c] (x) be the
potential obtained by filling the well@b,c#. First we solve

@2 i ] t2]x
21Vfill ~x!1W~s,x!#m̃~x,t,E!50 ~7!

and then we look forf in the form f5m̃1 ñ where
ñ(x,t,E) should solve

@2 i ] t2]x
21V~x!1W~s,x!#ñ5V0 1[b,c]~x!m̃. ~8!

Substituting~1! with ~7! and~8! corresponds to decomposin
the original system in quantum reservoirs coherently coup
to a small subsystem. The wave functionm̃ describes an
electron at energyE which is delocalized in the emitter an
collector regions~reservoirs! and has an exponentially sma
probability to be found in the forbidden region@a,d#. The
wave functionñ describes the same electron in the doub
barrier region and is driven by the value ofm̃ in the well
@b,c#. Due to the quasilocalization ofñ in @b,c#, we have
f.m̃ in the reservoirs andf. ñ in the well, with an error
which is exponentially small in the limit of wide barriers.1

Equation ~7! can be solved by evaluating the instan
neous eigenstates of the potentialVfill1W. We put
m̃(x,t,E)5exp(2iEt)m(x,t,E) and suppose thatDV ands are
slowly varying functions of time so that alsom(x,t,E) is
slowly varying in time. In the emitter regionx,a we take
m(x,t,E)5m(x,E) as the sum of a left- and right-goin
plane wave at energyE and propagate this expression to t
adjacent regions by requiringm to be of classC1. For wide
barriers we can use a WKB expansion for the poten
Vfill1W and explicitly evaluatem in the region@b,c# which
is of interest for solving~8!.

Equation~8! can be simplified by developingñ into the
instantaneous eigenstates of the potentialV1W and keeping
only the contributions from the discrete resonant states.1 In
the case of a single resonant state we putñ(x,t,E)
5exp(2iEt)z(t,E)e(s,x) where e(s,x) is the ~ground! reso-
nant state of the potentialV1W with complex eigenvalue
l(s)5ER(s)2 iG(s)/2

@2l~s!2]x
21V~x!1W~s,x!#e~s,x!50. ~9!

The eigenfunctione(s,x) is of class L2 on the contour
g[(eiu#2`,0]1a)ø@a,d#ø(d1eiu@0,1`@) for u conve-
d

-

-

l

niently chosen8 and satisfies *g dx e(s,x)251,
*g dx e(s,x) ]se(s,x)50. Multiplying ~8! with e and inte-
grating overg, we get

] tz~ t,E!5 i @E2l~s!#z~ t,E!1B~s,E!, ~10!

with the driving term given by B(s,E)
5 iV0*b

cdx m(x,t,E)e(s,x) and the sheet density~4! re-
duced, with small error, to

s5E dE g~E!uz~ t,E!u2[iz~ t !i2. ~11!

Explicit expressions ofl(s) ande(s,x) can be found within
the same WKB approximation used for evaluatingm.9 For
later use we note thatER(s)5ER

01hs, where ER
05E0

2DV(b2a)/l , E0 being the ~ground! eigenstate of the
potential V0@1]2`,b] (x)11[c,1`[ (x)] and h58paB

21(b
2a)(d2c)/l 5e2/(Ce1Cc), Ce andCc being the emitter
and collector capacitance per unit area, respectively. Mo
over, G(s)5Ge(s)1Gc(s), Ge and Gc being the contribu-
tions to the resonance width given by the emitter and coll
tor barriers, respectively.

The original problem~1! is reduced to solving the system
~10! with the condition~11!. Let us first consider the station
ary solutions

z~E!5
B~s,E!

2G~s!/21 i @E2ER~s!#
. ~12!

Equation ~11! gives a self-consistency condition fo
s5izi2. Assuming thatuB(s,E)u2 is a smooth function of
E andG(s)!EF , a Diracd approximation can be used t
get

s5 f ~s![2pg„ER~s!…uB„s,ER~s!…u2G~s!21. ~13!

The function f (s) vanishes everywhere except fo
0<ER(s)&EF where, for EF!V0 we have
2puB„s,ER(s)…u2.Ge(s). Equation~13! is then equivalent to
sG(s)5g„ER(s)…Ge(s) which has a simple interpretation i
terms of charge conservation. In the steady state, the cu
of electrons injected from the emitter into the we
g„ER(s)…Ge(s), equilibrates the escaping current,sG(s).
The latter current increases with increasing the sheet den
of electrons in the well,s, while the former vanishes at bot
ER(s)50 ~square root singularity! andER(s).EF . There-
fore, Eq.~13! has only one solution forER

0>0 and may have
three forER

0,0. For ER
0*EF the unique solution vanishe

and forER
0,0 the couple of nonvanishing solutions is to b

searched in the interval2ER
0/h<s&(2ER

01EF)/h.
In terms of applied bias, multiple solutions of~13! can be

obtained forDV.E0l /(b2a). The range ofDV values for
which three solutions exist depends on the amplitude of
function f . If the emitter barrier is more opaque than th
collector one,f is suppressed by the factorGe /Gc!1 and we
always have only one solution.

The solutions of~13! can be characterized in terms o
stability. This is particularly important in view of a compar
son with steady-state experiments where only stable s
tions are measured. By studying the eigenvalues of the
earization of the vector field defined by the r.h.s. of~10! one
can demonstrate that a solution of~13! is stable~unstable!
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when ]sf (s),1 (.1).9 The trivial solutions50, when it
exists, is, therefore, a stable one. When three solutions e
two of them, the largest and the smallest one, are st
while the intermediate one is unstable.

Considerations analogous to those made fors hold for the
steady-state collector currentI /e5As Gc(s), proportional to
the number of electrons in the well,As, A being the trans-
verse area of the heterostructure, and to collector escape
Gc(s). In Fig. 1 we showI (DV) evaluated for the asymme
ric double-barrier heterostructure experimentally inve
gated in Ref. 4. In agreement with the above discussion
with the experimental findings, no multiple solutions are o
tained in the left-most curve~reverse bias case! of Fig. 1
when the emitter barrier is wider than the collector one.
the other hand, a bistability region extending between po
A andB is observed in the forward bias case.

The above results can be generalized to include the e
of inelastic processes if we changeG→G1G i in Eq. ~12!,
whereG i5G ie1G ic is the total width representing collecto
and emitter inelastic decay channels.11 The collector current
becomesI /e5As@Gc(s)1G ic#. However, if G1G i!EF ,
Eq. ~13! still holds so that forGc.G (G ic.G i), as in the
case of Fig. 1, the value ofI is independent of the ratio
G i /G.

Now we turn to the time-dependent transport propert
According to~10! and ~11!, we have

] ts~ t !52G„s~ t !…s~ t !12Rê zuB&, ~14!

where ^uuv&[* dE g(E)u(E)v(E). The last term in~14!
can be expressed in terms ofs(t) by using the formal solu-
tion of ~10!

FIG. 1. Theoretical steady-state current-voltage character
for the GaAs-AlxGa12xAs heterostructure experimentally inves
gated in4 under forward~right-most curve! and reverse~left-most
curve! bias. In the reverse bias case we permuted the barriers
stead of makingDV ~and I ) negative. In the forward bias case th
dashed line is an unstable steady-state solution and arrows ind
the transition expected at the bistability thresholdsA and B by
decreasing or increasing the bias, respectively. The relevant pa
eters are nD5231017 cm23, T51 K, A5231025 cm2,
m*50.067m, where m is the free electron mass,«511.44,
V050.34 eV,b2a59.0 nm,c2b55.6 nm, andd2c510.7 nm
Ref. 10.
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z~ t,E!5e*0
t dt8$2~1/2! G„s~ t8!…1 i [E2ER„s~ t8!…] %z~0,E!

1E
0

t

dt8e*
t8
t
dt9$2~1/2! G„s~ t9!…1 i [E2ER„s~ t9!…] %

3B„s~ t8!,E…. ~15!

The first term in~15! vanishes exponentially and can be n
glected after a timet@2/G. In the second term, an analogou
exponential factor selects the contributions fort2t8&2/G as
the dominant ones so that the lower integration bound can
safely changed into2` for t@2/G. In this case, 2RêzuB&
can be approximated with

2ReE
2`

t

dt8e*
t8
t
dt9[2~1/2!G„s~ t9!…1 iER„s~ t9!…]F~guBu2!~ t2t8!

.2ReE
2`

t

dt8eiER„s~ t !…~ t2t8!F~guBu2!~ t2t8!

52pg~ER„s~ t !…!uB~s~ t !,ER„s~ t !…!u2, ~16!

whereF(guBu2) is the Fourier transform obtained by pe
forming the energy integral in the scalar product and
approximation in the third line is valid forG and ] ts(t)
small. With this result Eq.~14! becomes

] ts~ t !52G„s~ t !…@s~ t !2 f „s~ t !…#. ~17!

As Eq.~13!, this is a conservation law for the charge trapp
in the well. The steady-state solutions,] ts50, of ~17! coin-
cide with those defined by~13! and also their attractive na
ture agrees with the stability condition discussed above.

Close to a bistability threshold, the dynamics of certa
nonliner optical systems has been shown to be character
by a quasistationary transient followed by a fast evolution6,7

As we will discuss in a moment, this behavior is typical
any rate equation of the form] ts5h(s,dV) wheredV is the
control parameter of a bistability threshold. An example
our heterostructure is shown in Fig. 2. At timet50 the sys-
tem is in the threshold stable steady-stateB of Fig. 1 when
the bias is instantaneously increased by an amountdV. For
dV smaller than a critical value, we observe a quasistation

ic

n-

ate

m-

FIG. 2. Sheet density of electrons in the wells(t) after an in-
stantaneous increasedV of the bias from pointB of Fig. 1.
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s(t) which decreases linearly at small times and, after a t
t, vanishes in a nearly exponential way. The border betw
these two regimes is given by the conditionER„s(t)…50.
Indeed, when the resonant energyER(s) becomes smalle
than the emitter band edge the filling current,G(s) f (s), van-
ishes and~17! has the solutions(t)}exp@2*tdt8G„s(t8)…#.
The nearly exponential decay is established from the be
ning if dV*ER„s(0)…. For dV,ER„s(0)… and t<t, s(t) is
in a quasi-stationary regime which is characterized only
the fact that the starting point,s(0), is a threshold stable
steady state. Indeed, fors(t)2s(0) anddV small in this case
we must have h(s,dV).2q@s(t)2s(0)#22pdV with
q,p.0, independently ofh(s,dV). Integrating, we get
s(t)5s(0)2AdVp/qtan(AqpdVt) which has linear behav
ior for small t. In the case of Eq.~17!, the condition
ER„s(t)…50 and the approximate evaluation ofq and p at
T50 K give

t.
4ER„s~0!…

hs~0!Gc
AER„s~0!…

dV
arctanSAER„s~0!…

4dV D ,
~18!

where ER„s(0)….EFGc /(2G)@112pG/(hGe)#
21 and

s(0).@EF2ER„s(0))]Ge /(2pG). When dV!ER„s(0)…,
we havet;dV21/2 as shown in Fig. 3 where we compa
~18! with t obtained by numerically integrating~17!.12 For
ER„s(0)…!EF , the temperature dependence of~18! is easily
obtained by substituting the Fermi energy with the effect
valueẼF5EF1kBTln@11exp(2EF /kBT)#. The survival time
increases by increasingT and for dV!ER„s(0)… we have

t;ẼF
1/2.
ev

m

e
n

n-

y

e

The phenomenon discussed above may be exploited
device applications like those suggested for optical system6

More complex time-dependent features are expected in
erostructures with many resonances9 or in superlattices.13

It is a pleasure to thank G. Jona-Lasinio for stimulati
discussions, as well as G. Perelman, who independently
served how to get~17! from ~14!. We are indebted to F
Capasso for suggesting the connection with optical nonlin
phenomena and to L. A. Lugiato for pointing out to us R
7.

FIG. 3. Survival time of the quasistationary solutions of Fig.
versusdV ~solid line!. The dashed line is Eq.~18!. Arrows indicate
the relevant energy scales.
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