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Abstract. Vle propose a model to describe a gas of pyramidal molecules 
interacting via dipole-dipole interactions. A cooperative effect induced 
by the interaction modifies the tunneling properties between the classical 
equilibrium configurations of the single molecule. The model suggests 
that, for sufficiently high gas density, the molecules become localized in 
these classical configurations. On this basis it is possible to explain the 
shift and the disappearance of the inversion line observed upon increase 
of the pressure in a gas of ammonia or deuterated ammonia. The same 
mechanism also accounts for the presence of stable optical activity of 
certain pyramidal molecules. We discuss the concept of environment 
induced superselection rule which has been invoked in connection with 
this problem. 
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1 Introduction 

In this work we consider the behavior of gases of pyramidal molecules, i.e. 
molecules of the kind XY3 like for example ammonia N H 3 , deuterated ammonia 
N D3 , phosphine P H3 and arsine AsH3. We begin by presenting an outline of the 
physical problem and of its history that dates back to the early developments of 
quantum mechanics. 

For the single pyramidal molecule, owing to the great differences of charac­
teristic energies and times, we can perform some adiabatic approximations. The 
electronic motion can be separated from the nuclear one (Born-Oppenheimer ap­
proximation). We can further separate the one-dimensional motion of inversion of 
the nucleus X across the plane containing the three nuclei Y. The form of the 
effective potential for this motion is a double well which is symmetric with respect 
to the inversion plane [1, 2]. The corresponding non degenerate eigenstates must be 
symmetric or anti-symmetric with respect to the inversion plane. Due to tunneling 
across the finite potential barrier, these eigenstates are delocalized in the two min­
ima and, for energies below the barrier height, are grouped in doublets, i.e. couples 
of states with a relative splitting in energy small in comparison with the distance 
from the rest of the spectrum. For the pyramidal molecules under consideration, 
the thermal energy ksT at room temperature is much smaller than the distance 
between the first and the second doublet so that we can reduce the problem to the 
study of a two-level system corresponding to the symmetric and anti-symmetric 
states of the first doublet. 

The existence of delocalized stationary states is clearly in disagreement with the 
usual chemical view which, relying upon classical theory, considers the molecules 
as objects with a well defined spatial structure. In particular, for the molecules 
under consideration the classical view predicts one of the two pyramidal configura­
tions corresponding to the nucleus X localized in one of the wells of the inversion 
potential. 

The quantum prediction of stationary delocalized states implies the presence 
of a line in the absorption spectrum, the so called inversion line, at a frequency 
iJ = h- 1 ~E, where ~E is the energy splitting of the first doublet. The experi­
mental results are strongly dependent on the different kind of atoms that form the 
pyramidal molecule. Experiments performed with N H3 and N D3 reveal the exis­
tence of an inversion line, while this line is not found in the case of AsH3 and P H3. 
These results cannot be considered a demonstration of the existence of degenerate 
classical states for arsine and phosphine. The values of the energy splitting for these 
molecules is so small, see Table 1, that the inversion line, even if it existed, would 
not be detectable. However, there is a stronger evidence suggesting the existence 
of stationary localized states, at least for arsine (similar experiments are, as far 
as we know, not available in the case of phosphine). It has been found that some 
molecules of the kind AsYW Z, i.e. molecules obtained by substituting hydrogens 
with different atoms, show stable optical activity [3]. This means that the station­
ary states of the A.o;HW Z molecule arc chiral, i.e. they cannot be superimposed on 
their mirror image by a rotation, in agreement with the classical prediction of lo­
calized pyramidal states. The discrepancy between the presence of optical activity 
for some kind of molecules and the quantum prediction of delocalized stationary 
states wa.'l pointed out for t.he first time in [4] and is usually referred to as Hund 
paradox or chirality problem. 
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Table 1 Energy splitting of the first doublet D.E and electric dipole moment 
J.L for the molecules NH3, ND3, PH3, AsH3 [2] . We remind that 1 cm- 1 = 
1.984 x 10- 23 J and 1 Debye = 3.33 x 10-3° Cm. 

NH3 ND3 PH3 AsH3 
t1E (em 1

) 0.81 0.53 X 10 .1 3.34 X 10 14 2.65 X 10 Hi 

J.L (Debye) 1.47 1.47 0.58 0.20 

209 

The frequency D of the inversion line measured in N H3 and N D3 gases shows 
a dependence on the gas pressure P [5, 6, 7]. Starting from the expected value 
h- 1 t1E at P ~ 0, D(P) decreases by increasing P and vanishes at a critical pressure 
Per ~ 2 atm for N H 3 and Per ~ 0.1 atm for N D3. No quantitative theory has 
been proposed so far for this phenomenon. 

As early as 1949, in a short qualitative paper [8] Anderson made the hypothesis 
that dipole-dipole interaction may induce a localization of the molecular states. In 
this way the important idea was introduced that inter-molecular interactions may 
be responsible for the observed phenomena. Thirty years later Pfeifer studied a 
two-level system modeling a molecule which has an almost degenerate ground state 
and is coupled to the quantized electromagnetic field [9]. He argued that the cou­
pling of the molecule to the radiation field yields two symmetry-breaking effective 
ground states belonging to two different sectors of the Hilbert space separated by 
a superselection rule. These states are localized and one is the mirror image of 
the other. Later it was argued that this localization cannot take place at finite 
temperature [10, 11, 12]. 

A quantitative discussion of the effects induced by coupling a single molecule to 
the environment constituted by the other molecules of the gas was made in [13, 14]. 
In this work it was shown that, due to the instability of tunneling under weak 
perturbations [15, 16], the order of magnitude of the molecular dipole-dipole inter­
action may account for localized ground states in the case of arsine and phosphine 
while delocalized states were predicted for ammonia. Therefore, the appearance 
of chirality was interpreted as a collective effect in a system of infinitely many de­
grees of freedom. This suggests that a phase transition may be invoked to explain 
the behavior of different pyramidal molecules or the behavior of the same kind of 
molecule under variation of thermodynamic parameters like pressure. 

We have implemented this idea by constructing a simplified model of a gas 
of pyramidal molecules which exhibits the desired properties and allows a direct 
comparison with experimental data. Our model predicts, for sufficiently high inter­
molecular interactions, the presence of two degenerate ground states corresponding 
to the different localizations of the molecules. This means that there is a quantum 
phase transition for a critical value of density (or pressure in the case of constant 
temperature) . A study at non zero temperature shows that this transition affects 
the behaviour of the gas at room temperature and gives a reasonable explanation of 
the experimental results [5, 6, 7]. In particular, it provides a correct description of 
the disappearance of the inversion line of N H3 and N D3 on increasing the pressure. 

In the present paper, after a description of the model, we discuss its mean field 
approximation and the appearance of a degeneracy for the ground state. We then 
analyze the linear response to an external field to obtain the low energy spectrum 
and its dependence on the inter-molecular interaction. This shows that the fre­
quency of the inversion line decreases upon increasing density and vanishes at the 
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critical density for which the ground state becomes degenerate. For a treatment 
at finite temperature and a detailed comparison with experiments we refer to our 
paper [17] . 

In the last section we discuss the interpretation of the chirality problem in 
terms of a superselection rule. 

2 Description of the model 

As we mentioned in the introduction , for an isolated molecule XY3 we can 
adiabatically separate the electronic motions from the nuclear ones. The latter es­
sentially reduce to the rotational motion of the molecule, the vibrations of the nuclei 
around their equilibrium positions and the inversion motion of the nucleus X across 
the plane of the nuclei Y . At room temperature the rotational and vibrational de­
grees of freedom are much faster then the inversion motion and can be taken into 
account through a renormalization of the potential barrier for the inversion motion. 
We can further reduce the inversion dynamics to that of a two-level system corre­
sponding to the ground and first excited eigenstates of the corresponding symmetric 
double well potential. For a general reference see [1]. 

Consider now a gas of interacting molecules. If the motion of the centers of 
mass of the molecules is slow in comparison with the two-level dynamics of each 
isolated molecule , the translational degrees of freedom can be considered frozen. In 
this case we can reduce our model to a lattice of unit length£= (!- 113 , where(! is the 
gas density, with a two-state system at each site. By evaluating the inversion time 
nt::.E- 1 with the data of Table 1, we see that the lattice approximation is reasonable 
in the case of N H 3 and N D 3 up to room temperature. This approximation has been 
discussed in general [18] and we refer to this paper also for references to previous 
related works. 

In order to define a suitable Hamiltonian for our lattice model, let us begin 
with the isolated two-level system. We choose the Hamiltonian operator on the 
two-state Hilbert space to be 

where ax is the Pauli matrix 

t::.E X ---a 
2 ' 

The corresponding eigenvectors are 

II) = 1 ( 1 ) 
.;21 

12) = ~ ( -1 ) . 

(2 .1) 

(2.2) 

(2 .3) 

(2.4) 

with eigenvalues -f:::.E/2 and +f:::.E/2 , respectively. For N independent two-state 
systems, the Hamiltonian ifi 

N 
"""' t::.E . , Ho=L--

2
-l! ® l2 ® ... ® ai ® ... lN, (2.5) 

i=l 

where the subscript indicates the single particle space to which the operators are 
applied. 
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In order to modeling the interaction among the molecules we briefly recall the 
discussion made in [13]. If we consider the whole gas it is possible that, owing to 
some fluctuation in the state of the system, a single molecule becomes localized. 
This molecule consequently acquires an electric dipole moment 11 that polarizes the 
surrounding gas. The latter, in its turn, produces an electric reaction field ER, 
collinear with /1, so that the interaction -11 · E R tends to stabilize the localized 
state of the initial molecule. In other words, there appears a cooperative effect 
which tends to stabilize the localization. To mimic this effect in the Hilbert space 
where H0 acts, we choose the interaction Hamiltonian 

N N 

Hint=L L g(i,j)ll0 ... 0af0 ... 0aj0 ... 01N , 
i=l j=i+l 

where g(i,j) = g(j, i) < 0 and az is the Pauli matrix 

0 ) 
-1 

whose eigenvectors are the localized states 

IL) 

IR) 

( ~ ) = ~ (11) + 12)) 

( ~) = ~(1 1 ) -12)), 
with eigenvalues +1 and -1, respectively. The total Hamiltonian 

H = Ho + H;nt 

(2.6) 

(2. 7) 

(2.8) 

(2.9) 

(2.10) 

contains two competing terms with Hint which tends to favor stationary localized 
states while H0 favors delocalization. According to the classical dipole-dipole in­
teraction formula, we expect g( i , j) to be proportional to the square of the electric 
dipole moment J1 of the molecules and to decrease with the cube of the distance 

(2.11) 

In the context of a mean field approximation, it is useful to introduce the 
parameter 

N, 

G =- Lg(i,j) , (2 .12) 
j=l 

where Nc is a cut-off. By neglecting border effects and using (2.11), we writP 

,,2 
G=Cp:1 , (2.13) 

where C is a positive coustant. which will be considered as a phenonu•nolugical 
parameter to he deduced, in the case of N H 3 and N D;1, from comparison with the 
experimental dat.a on the inversion line. 
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3 Ground state in the mean field approximation 

The mean field approximation for the ground state corresponds to minimizing 
the energy functional ('1/J I H I '1/J) within the class of states of the form 

1'1/J) = I.\) · ·.I.\), 
where 

I.\) == ail) + bl2) 

and 

I a 1
2 + I b 1

2 == 1. 

This problem reduces to the solution of the non linear eigenvalue equation 

h(.\)1.\) == ry(.\)1.\), 

where h(,\) is the self-consistent single particle Hamiltonian 

h(,\) == - ~2E ax - Gaz (,\ I az I ,\). 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

The non linear term in (3.5) accounts for the interaction of a single molecule with 
the reaction field and represents the polarization energy of the gas. 

We find I.\) by solving Eq. (3.4) and evaluate the energy functional ('1/J I H I '1/J) 
with the corresponding product states (3.1) . For the states which minimize ('1/J I 
H I 'ljJ) we obtain the following results. If G < ~E /2 there is only one mean-field 
ground state 

with energy 

1'1/Jo) == ll) ... 11), 

~E 
Eo == ( '1/Jo I H I '1/Jo) == - N 2 · 

If G ~ ~E /2 there are two degenerate mean-field ground states 

where 

with energy 

1'1/Jt) I.\L) ... 1.\L) 
1'1/J~) I.\R) ... 1.\R), 

~~E 
ll) + -- -12) 

2 4G 

Eo== -N~E- !!..._ (~E- c) 2 

2 2G 2 

By defining the critical value 

~E 
Gcr == 2' 

(3.6) 

(3.7) 

(3 .8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

we distinguish the following two cases. For G E (0, G c•·) the ground state of the 
system is approximated by a condensate of dclocalized symmetric single particle 
states corresponding to the ground state of an isolated molecule. ForGE (Ger. oo) 
we have two different condensates which approximate the ground state of the sys­
tem. The corresponding single particle states transform one into the other under 
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t he action of the inversion operator a x , as shown by Eq. (3.11), and, for G » Gcr, 
they become localized 

JL) 

IR). 

(3.14) 

(3.15) 

The above results suggest the existence of a quantum phase transition at G = 
Ger. According to Eq. (2.13) , this phase transition can be obt ained by increasing 
the density {} of the gas above the critical value 

l:!.E 1 
{}cr = 2 p,2C" (3.16) 

In the next Section we will discuss the behavior of the inversion line obtained in 
the range 0 < {} < {}cr when t he gas, still being in the region characterized by 
delocalization, approaches the phase transition. 

4 Absorption spectrum 

When the gas is exposed to an electro-magnetic radiation of frequency vo = 
wo/27r, we add to the Hamiltonian (2.10) the perturbation 

Hem(t) = Ej(t)S ( 4.1) 

where E isa small parameter, 

f(t ) = B(t) cos(wot), (4.2) 

B(t) being the Heaviside function, and S is a time independent operator. In the 
long-wavelength approximation, >.0 » d, where dis the molecule size, we have 

N 

S = L) 1 l8l .. . l8l af 0 .. . ® 1 N. (4.3) 
i=1 

At zero temperature the absorption spectrum induced by the electro-magnetic 
perturbation consists in a series of lines of frequency 1/n = (En- E0 )h-1 correspond­
ing to transitions of the system from the ground state of H to the n-th excited level. 
The corresponding t ransition probability is proportional to the square of the matrix 
element 

Mon = (1/Jo I S 11/Jn) · ( 4.4) 

Since we are not able to determine exactly the eigenvalue problem H'¢n = En1./Jn for 
the N part icle Hamiltonian (2.10), we will find an approximate mean-field solution 
in the framework of the linear response theory. 

Let us define the function 

S(t) = (1/J( t ) Is 11./J(t )), (4.5) 

where 11/J(t)) = exp[-i(H + Hem)t / n]l'¢0 ). By expanding S (t) in powers of t:, for 
the first order term 5 1 (t) we find [19] 

sl (w) = ] (w)'R(w), (4.6) 

where S1 (w) and ](w) arc the Fourier transforms of S 1 (t) and f(t) and 

'R(w) = L !Monl
2 

[,I.W - (En~ Eo )+ ic5 - !I.W +(En~ Eo)+ i6] (4.'l) 
1l 



214 Giovanni Jona-Lasinio, Carlo Presilla, and Cristina Tonine lli 

with o ___, o+. The frequencies of the spect roscopic lines and the associated tran­
sition probabilities are therefore given by t he poles and the residues of R (w) . In 
order to determine R(w) , we evaluate S1(w) in a mean-field approximation and 
then use (4.6). 

The mean-field approximation for the time-dependent st at e 11/l(t)) is obtained 
by extremizing the action functional 

1T(1jl (t) 1- ifii)t + H +Hem 11/l (t ))dt (4.8) 

in the class of states of the form 

11/l(t)) = 1>-(t)) ... 1>-(t) ). (4.9) 

The single-part icle state I.A (t)) is thus determined by the nonlinear Schrodinger 
equation 

iii dl~~t) ) = [h(-\(t)) + Ej(t)az]I.A(t)), (4.10) 

where h(.A) is given by (3.5). Let us assume that the gas is in the quantum region 
G E (0, Ccr) , so that the mean-field ground state is 11/lo) = 11 ) ... 11). Since 11/1(0) ) = 
11/10 ), Eq. (4.10) has to be solved with the initial condition 

I.A(O)) = 11 ). (4.11) 

The calculation shows that R(w) has a single pole corresponding to a line in the 
absorption spect rum with frequency 

D = ~E )1-
20 

(4.12) 
h ~E · 

T he residue of R(w) at this pole is 

N 

/1 _ 2G 
V tlE 

(4.13) 

Equation (4.12) shows a dependence of D on the coupling constant G. For 
G = 0 we have D = ~Eh- 1 , namely t he inversion line frequency expected from the 
quantum theory of an isolated molecule. In the region 0 < G < Ger. D decreases by 
increasing G and vanishes for G = Gcr · In figure 1 we show the described behavior 
of the inversion line frequency as a function of the gas density(! = GjCp? . 

The residue ( 4 .13) multiplied by t he photon energy hD provides, up to a con­
stant, the intensity I of the inversion line 

N 
1 ex hD = N~E. 

/1 _ 2G y .C::. E 

(4 .14) 

Note that. the divergence at G = Gc,· shown by t he residue is cancelled by the factor 
h f1 which vanishes in the same limit. 

5 Optica l activity and superse lection rules 

Our model do<:s not distinguish molecules of the type XY:l from the substituted 
derivatives XYW Z. ln fact., we believe that. t his distinction should not. matter for 
the di~:mppearauce of t.he inversion line. However, aJJ important difference between 
the two cases is t hat. for XY:1 the localized states can he obtained one from t.lw 
other either by a rotation or by space inversion. while for XYW Z t.hey can lw 
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s 
,;:,_ -<;; 
~0.5 

0.5 1.5 

Figure 1 Inversion-line frequency D as a function of the gas density {J. 

connected only by space inversion. This implies that XYtV Z molecules , whenever 
become localized, i.e. at a density greater than the critical value, are chiral and 
must show stable optical activity. Stable optical activity is commonly observed for 
some substituted derivatives of AsH3 for which the critical density is exceedingly 
small. For the theory of optical activity we refer , for example, to [20]. 

To explain the stability of the optical activity, i.e. why the localized states are 
stable, although they are not eigem;tates of the single-molecule Hamiltonian, an 
environment induced superselection rule has been invoked [9, 10, 11, 12]. 

Following [11 , 12] we say that in a system with infinitely many degrees of 
freedom there is a superselection rule between two different sectors of a Hilbert 
space if there are neither spontaneous transitions between their state vectors, nor 
any measurable quantity with matrix clement different from zero between them. 
This implies that any cohenmt superposition of states among the two sectors is 
physically meaningless and that we can construct a classical observable (i.e. an 
observable with zero dispersion on all the states) which acquires the same value 
on all the vectors of each sector. Examples are t.he charge and the Boson-Fermion 
:;upersdect.ion rnl<~s. The first. refers to the impossibi lity of coherent superpositions 
of states with dift'ercnt. charge, the secoud to the impossibility of superposing states 
with integer and half-integer angular rnomenturn. 

Wit.h respect t.o this definition, in t.he limit of an infinite number of moh~cnlcs 
(thermodyuami<: limit) our model ha.'i a superselcction rule similar to t.hat found by 
Pfeifer :umlyzing a single rnolecule int.eracting with t he radiation fi<'ld [9] . A hove 
t. lw critical dcusit.y, the Hilbert space separates int.o two sectors I!;CIIerated by 
t.hc ground st.a.t.c vcct.ors given in mean lidd approximation by (:3.H). Tlwse sec­
tors, which WI' call 1-li~ ami 1-lR. ca.ttnot. be connected by any operator iuvolviug 
a fiuit.e tllllllher of dcgn~es of fn:edom (local operat.or) . Let. us define chirality 

X = limN~<X * L~ I ] I (X:, ..• e· a.t c ... c;9 1 N . Ill t.he limit. N ---+ 00 we haw 
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x'I/J = ±'1/J for 'ljJ in 'HL and 'HR, respectively. Optical activity is expected when 
X# 0. 

From the above definition the concept of superselection rule is applicable only 
to pure states. A superselection rule, however , puts some restrictions in the con­
struction of ensembles (density matrices) because these cannot contain mixed terms 
corresponding to vectors belonging to different sectors of the Hilbert space. Indeed, 
at finite temperature, we find that in the mean field approximation the free energy 
of our model is minimized by two density matrices which have vanishing matrix el­
ements between the two sectors ri£ and HR. Any other admissible density matrix 
will be a convex combination of these two. 

A different point of view consists in considering, instead of the whole gas, a 
subsystem composed by a single molecule or a finite number of them still interacting 
with the rest of the gas. In this case a superselection rule in the Hilbert space of the 
subsystem can emerge dynamically. By this we mean that there exist projection 
operators such that the off-diagonal contributions of the subsystem density matrix 
vanish when time t - oo [21]. This alternative point of view, usually referred to 
as environment induced superselection rule [22], can be presumably implemented 
in our model if we describe the interaction of a molecule with the rest of the gas 
by means of a Lindblad equation [23]. 

It is a pleasure to dedicate this paper to Sergio Doplicher on the occasion of his 
60th birthday and we thank him for a very interesting discussion on superselection 
rules. 
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