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States without a linear counterpart in Bose-Einstein condensates
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We show the existence of stationary solutions of a one-dimensional Gross-Pitaevskii equation in the pres-
ence of a multiwell external potential that do not reduce to any of the eigenfunctions of the associated
Schrödinger problem. These solutions, which in the limit of strong nonlinearity have the form of chains of dark
or bright solitons located near the extrema of the potential, represent macroscopically excited states of a
Bose-Einstein condensate and are in principle experimentally observable.
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I. INTRODUCTION

Bose-Einstein condensation~BEC! of weakly interacting
atomic gases@1# strongly motivates the study of the Gros
Pitaevskii equation~GPE!,

F2 i\
]

]t
2

\2

2m
¹21U0uC~x,t !u21V~x!GC~x,t !50, ~1!

a mean-field Schro¨dinger equation with local cubic non
linearity. Of particular interest are the nonground-state s
tionary solutions of the GPE@2,3# which represent macro
scopically excited states of the condensate. Vortices h
been recently observed in two-@4# or one-component@5#
condensates and are also invoked as a superfluidity brea
mechanism@6#. Phase engineering optical techniques ha
allowed us to generate dark solitons in atomic gases w
positive scattering length@7,8#.

Vortices and solitons observed in recent experiments
examples of excited states with a linear counterpart, i.e.,
tionary solutions of the GPE which can be obtained a
deformation of eigenstates of the corresponding linear Sc¨-
dinger equation@9,10#. However, the GPE may also adm
stationary solutions without a linear counterpart. In a d
cretized version of the GPE, also known as a discrete s
trapping equation, the existence and stability of solutio
without a linear counterpart has been studied at various
cretization orders@13#. In particular, the appearance of se
trapping stationary states in the dimer case, i.e., a two-le
system approximating a double well, has been widely inv
tigated in connection with the evolution of wave packe
@14–16#. Recently, a set of stationary solutions without
linear counterpart has been discovered also in the continu
case, namely, the exactly solvable one-dimensional~1D!
GPE with periodic boundary conditions and zero exter
potential@10#. These states break the rotational invariance
the associated linear problem.

*Electronic address: dagosta@fis.uniroma3.it
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In this paper, we show the existence of stationary so
tions without a linear counterpart of a 1D GPE in the pre
ence of a multiwell external potential. In the limit of stron
nonlinearity, these solutions assume the form of chains
dark or bright solitons located near the extrema of the pot
tial and in general break the symmetry of the external pot
tial.

Our analysis is of direct interest for BEC experimen
where atomic gases can be confined in almost arbitrarily
lored magnetic and optic traps@11,12#. As a case study, we
investigate a GPE representing a quasi-1D Bose-Eins
condensate confined in a double-well trap described by
potential

V~x!5m2g4x42mv2x21
v4

4g4
. ~2!

In Sec. III, we describe all the zero-, one-, and two-solit
solutions of this model in an analytical way valid in the lim
of strong nonlinearity. In Sec. IV, by means of numeric
simulations we find the exact shape of these states and s
their evolution in the linear limit reached when the numb
of particles in the condensateN vanishes. We consider bot
the cases of condensates with positive or negative scatte
length. Shape and energy of the corresponding stationary
lutions are shown in Figs. 1 and 3 and 2 and 4, respectiv
Their stability properties are discussed in Sec. V.

II. STATIONARY SOLUTIONS

Let us first review some general properties of the stati
ary solutions of the GPE that reduce, in the limit of vanis
ing nonlinearity, to the eigenfunctions of the associa
Schrödinger equation

F2
\2

2m
¹21V~x!2EnGfn~x!50, n50,1, . . . . ~3!

In @9# we have shown that for any finite value of the chem
cal potentialm there exists a set of stationary solutions of t
GPE, Cmn(x,t)5exp(2i/\mt)cmn(x), which have limit
©2002 The American Physical Society09-1
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FIG. 1. Zero-, one-, and two-soliton stationary solutions of the repulsive GPE with the symmetric double-well potential~2! for different
values of the normalizationN. For comparison, the functions are shown scaled byAN. The vertical solid and dashed lines indicate t
double-well maximum and minima, respectively. The degenerate states obtained by changingc(x)→c(2x) are not reported. The result
have been obtained with the following parameters:m53.818310226 kg, v512.75 s21, g5109 kg21/4 m21/2 s21/2, U051.1087
310241 J m, which correspond to sodium atoms confined in two quasiharmonic wells of angular frequency;2v at distanceA2v2/mg4

;92 mm.
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cmn(x) icmni21→fn(x) when m→En . The parameterm
ranges in the interval@En ,1`) for U0.0 and in the interval
(2`,En# for U0,0. In both cases, the number of particl
in the statecmn , Nn(m)5icmni2, vanishes form→En . In
other words, the linear limit is reached for a vanishing nu
ber of particles in the condensate.

In the 1D case, asymptotically exact expressions for
GPE stationary solutions with linear counterpart are kno
also in the opposite limit of strong nonlinearity. Form→
6`, depending on the sign ofU0, these solutions assume th
form of chains of dark or bright solitons@9#. More specifi-
cally, in the repulsive caseU0.0 the solution withn50
nodes assumes the zero-soliton shape

cm0~x!→HA@m2V~x!#/U0, m.V~x!,

0, m,V~x!,
~4!
04360
-

e
n

while for n>1 nodes we obtain asymptotic solutions withn
dark solitons

cmn~x!→cm0~x!)
k51

n

tanhSAmm

\
~x2xk! D . ~5!

In the attractive caseU0,0, for m→2` the solutions with
n>0 nodes give rise ton11 bright solitons

cmn~x!→A2m

U0
(
k50

n

~21!k sechSA22mm

\
~x2xk! D .

~6!

In the functions~5! and ~6! with two or more solitons, the
solitons do not overlap, i.e., the distance between their c
tersxk is much larger than the dark-soliton width\/Amm or
the bright-soliton width\/A22mm @9#. Note that any sta-
FIG. 2. As in Fig. 1 for the one- and two-soliton solutions in the attractive caseU0521.1087310241 J m.
9-2



an

r-
s
in
Th
es
-

se

u
r
r

o

t-
f

t

n

d

ex-
in

ed
he
n
ve

nts

e
th

e

.
ig

nd
ing

STATES WITHOUT A LINEAR COUNTERPART IN . . . PHYSICAL REVIEW A65 043609
tionary solution is invariant under a global phase change
we do not consider this trivial degeneracy.

The stationary solutions of the GPE, form fixed, are the
critical points of the grand-potential functional

V@c#5E F \2

2m
u“c~x!u21

U0

2
uc~x!u41@V~x!2m#

3uc~x!u2Gdx. ~7!

Since forumu large the GPE solutions with a linear counte
part assume the forms~4!–~6! with some specified center
$xk%, we look for more general multisoliton solutions
which the soliton centers may assume different values.
allowed $xk% can be determined by substituting the expr
sions~4!–~6! in Eq. ~7! and extremizing the resulting func
tion V($xk%).

III. ZERO-, ONE-, AND TWO-SOLITON SOLUTIONS
IN A DOUBLE WELL

Zero-soliton solutions exist only in the repulsive ca
U0.0 and are given by Eq.~4!. For m sufficiently large, we
have a nodeless state which extends over the entire do
well ~column 1 of Fig. 1!. If m is smaller than the barrie
heightv4/4g4, this state vanishes in the barrier region whe
V(x).m. In this case, sincec50 is a trivial solution of the
GPE, we could expect also two other stationary solutions
the formc(x)5A@m2V(x)#/U0 in one of the two wells and
c(x)50 elsewhere@column 2 of Fig. 1 and symmetric par
ner c(2x)#. These latter solutions break the symmetry oV
and must disappear in the linear limit. They correspond
the self-trapped states studied in@13–16#.

One-soliton solutions are described by Eq.~5! with n
51 in the repulsive case and Eq.~6! with n50 in the attrac-
tive one. The corresponding grand potential becomes a fu
tion of the soliton centersx1 or x0, respectively. Forumu

FIG. 3. Single-particle energiesE/N for the states shown in Fig
1 as a function ofN. The numbers correspond to the columns of F
1. The curve 8 corresponds to the antisymmetric partner of 5.
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sufficiently large, the width of the solitons is very small an
the dependence of the integral~7! on x1 or x0 is due only to
the termVucu2. The dark soliton densityucm1u2 is constant
with a hole inx1 so thatV(x1);const.2V(x1). The bright
soliton densityucm0u2 is different from zero only in proxim-
ity of x0 andV(x0);const.1V(x0). In both cases we have
three one-soliton solutions corresponding to the three
trema of the external potential. The soliton may be found
the maximum~column 3 of Fig. 1 and column 1 of Fig. 2! or
in one of the two minima@column 4 of Fig. 1 and column 2
of Fig. 2 and symmetric partnersc(2x)# of the double well.
The two solutions with the soliton centers in6xm , where
xm5Av2/2mg4, break the symmetry ofV(x) and do not
have a linear counterpart.

In the repulsive case, two-soliton solutions are describ
by Eq. ~5! with n52 and the grand potential becomes t
two-variable functionV(x1 ,x2). When the distance betwee
the soliton centers is much larger than their width, we ha
V(x1 ,x2).V(x1)1V(x2). In the regionx1,x2 , V has a
maximum in (2xm ,xm) and two saddle points in (0,xm) and
(2xm,0). We assume thatxm@\/Amm. The stationary solu-
tion corresponding to the maximum ofV is shown in column
5 of Fig. 1. Those corresponding to the two saddle poi
@column 6 of Fig. 1 and symmetric partnerc(2x)# break the
symmetry ofV and must disappear in the linear limit.

Other extrema ofV can be found when the centers of th
two dark solitons are into the same well. In fact, when bo
x1 and x2 tend to xm , or 2xm , the value ofV(x1 ,x2)
;const.2V(x1)2V(x2) increases untilux12x2u@\/Amm.
When the distanceux12x2u becomes comparable with th
soliton width, the two density holes inucm2u2 begin to merge
and the norm ofcm2 increases. This implies thatV decreases
for ux12x2u→0 since, at least form sufficiently large,V;
2micm2i2. As a consequence,V has two maxima in (xm

2d,xm1d) and (2xm2d,2xm1d) with 2d*\/Amm. The
corresponding solutions@column 7 of Fig. 1 and symmetric

.

FIG. 4. As in Fig. 3 for the states shown in Fig. 2. Curves 8 a
9 correspond to the stationary solutions, not shown in Fig. 2, hav
as a linear counterpart the Schro¨dinger eigenfunctions with 2 and 3
nodes, respectively.
9-3
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ROBERTO D’AGOSTA AND CARLO PRESILLA PHYSICAL REVIEW A65 043609
partnerc(2x)#, break the symmetry ofV(x) and do not
have a linear counterpart.

In the attractive case the situation is more complicat
The bright solitons in the stationary solutions with line
counterpart given by Eq.~6! are multiplied by a phase facto
which is alternatively11 and21. In general, we can expec
bright solitons with arbitrary relative phases since each s
function is, for m→2`, a solution of the GPE and thi
equation is invariant under a global phase change. Rest
ing to real solutions, in the two-soliton case we have to c
sider the following possibilities:

cm1
6 ~x!5A2m

U0
FsechSA22mm

\
~x2x0! D

6sechSA22mm

\
~x2x1! D G . ~8!

The functionsV6(x0 ,x1) obtained by inserting these expre
sions in Eq.~7! present, in analogy with the repulsive case
minimum in (2xm ,xm) and two saddle points in (0,xm) and
(2xm,0). The stationary states corresponding to the m
mum ofV6(x0 ,x1) are shown in columns 3 and 5 of Fig.
Those corresponding to the two saddle points@columns 4 and
6 of Fig. 2 and symmetric partnersc6(2x)# break the sym-
metry of V and do not have a linear counterpart.

On the other hand, due to the gradient term in Eq.~7!, we
have a different behavior ofV1 and V2 when both the
soliton centersx0 andx1 move toward the minimum of the
same well. In fact,V1 does not present extrema whileV2

has two minima in (xm2d,xm1d) and (2xm2d,2xm1d)
with 2d*\/A22mm. The corresponding solutions@column
7 of Fig. 2 and symmetric partnerc2(2x)#, break the sym-
metry of V(x) and do not have a linear counterpart.

IV. NUMERICAL SOLUTIONS WITH AN ARBITRARY
NUMBER OF PARTICLES

Now we compare the zero-, one-, and two-soliton so
tions discussed above with the results of numerical sim
tions. We use a numerical algorithm based on a stand
relaxation method for partial differential equations@17#. The
success of this method is crucially based on the quality of
trial functions used to start the relaxation. Forumu very large,
good trial functions are represented by the multisoliton fu
tions with the soliton centers determined as above. The
laxed solutions can be then used as trial functions for a si
lation with a smaller value ofumu. By changing m
sufficiently slowly, one can follow the evolution of the st
tionary states until they reach the linear limit, if it exists,
the point where they disappear. Figures 1 and 2 show in
repulsive and attractive cases, respectively, the states
tained in this way for different values of their normN. For
any node indexn, the linear limit is reached whenN
5Nn(m)→0. All the solutions that break the symmetry
the external potential disappear forN smaller than a critical
value. However, there also exist solutions without a lin
counterpart that preserve this symmetry. An example
shown in the first column of Fig. 2 which corresponds to
04360
.
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bright soliton at the center of the barrier.
In Figs. 3 and 4 we show the single-particle energies

the same states of Figs. 1 and 2 as a function ofN. From
these figures it is evident the generation of solutions with
a linear counterpart asN is increased. In the case of th
attractive GPE, the stationary solution which forN large is
fully localized into one of the two wells~second column of
Fig. 2! is, when it exists, the state of minimal energy. The
fore, the nature of the mean-field ground-state changes
function of N and this suggests the existence of a quant
phase transition in the corresponding exact many-b
system.

The generation of stationary states without a linear co
terpart can be understood in terms of bifurcations of sup
positions of Schro¨dinger eigenstates. In the following we dis
cuss an analytical example valid when the zero point ene
of each isolated well,12 \2v, is much smaller than the barrie
height,v4/4g4, i.e., forv3/\g4@1. Let us consider station
ary solutions of the GPE of the form

c~x!5AN@a0x0~x2xm!1b0x0~x1xm!#, ~9!

wherexn(x) are the eigenfunctions of the Schro¨dinger prob-
lem with harmonic potential12 m(2v)2x2 and a0

21b0
251.

Since the state~9! is normalized toN, for it to be a stationary
solution of the GPE we have to extremize the energy fu
tional E@c#5V@c#1mN. Up to exponentially small terms
we get

E~b0!;b0A12b0
21sgn~U0!

N

N0
~112b0

422b0
2!, ~10!

where

N0;
v3

\g4
expS 2

v3

\g4DA\3v/mU0
2. ~11!

For N!N0 , E(b0) has a minimum forb05221/2 and a
maximum forb052221/2. These extrema correspond to th
lowest-energy symmetric and antisymmetric linear sta
~columns 1 and 3 of Fig. 1 and columns 3 and 5 of Fig. 2!. If
U0.0, for N.N0 the maximum atb052221/2 bifurcates in
a minimum and a maximum which, increasingN, moves to
b050. This describes the birth of the state in the seco
column of Fig. 1 and its subsequent localization in the rig
well (a051). If U0,0 a similar result is obtained with
maxima and minima exchanged~see column 2 of Fig. 2!.
Generation of other states can be obtained by conside
superpositions more complicated than Eq.~9!.

V. STABILITY OF STATIONARY SOLUTIONS

In this section we discuss the stability of the stationa
states described above. We start with a linear stability an
sis. Consider the linearization of Eq.~1! for a small change
dC of its solution
9-4
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i\
]

]t
dC5F2

\2

2m
¹21V~x!12U0uCu2G

3dC1U0C2dC* . ~12!

We are interested to evaluate the evolution of the varia
dC of a stationary solutionCmn . By writing

C1dC5Cmn~x,t !1dC~x,t !

5e2 i /\mt@cmn~x!1df~x,t !#, ~13!

according to Eq.~12! the variationdf and its complex con-
jugateddf* are determined by

i\
]

]t S df

df* D 5S Dmn U0cmn
2

2U0cmn* 2 2Dmn
D S df

df* D , ~14!

where

Dmn52
\2

2m
¹21V~x!12U0ucmnu22m. ~15!

The solution of Eq.~14! can be written as

S df~x,t !

df~x,t !* D 5(
k

cke
2 ilkt/\S f k~x!

gk~x!
D , ~16!

wherelk and (f k ,gk) are the eigenvalues and the eigenve
tors of the linearization operator

S Dmn U0cmn
2

2U0cmn* 2 2Dmn
D S f k

gk
D 5lkS f k

gk
D ~17!

and the coefficientsck are fixed by the initial condition
df(x,0). Multiplying Eq.~17! by ( f k* ,2gk* ) and integrating
over space, we get

E @ f k* Dmnf k1gk* Dmngk1U0~ f k* gk1 f kgk* !#dx

5lkE ~ u f ku22ugku2!dx. ~18!

If i f kiÞigki for any k, Eq. ~18! implies that all the linear-
ization eigenvalues are real so that Eq.~14! admits only qua-
siperiodic solutions. Ifi f k̄i5igk̄i for some k̄, the corre-
sponding linearization eigenvaluel k̄ may be complex. In
this case, the corresponding stationary statecmn can show
exponential instability whenever the initial variationdf(x,0)
has a superposition coefficientck̄Þ0 @18#. To check the ex-
istence of complex linearization eigenvalues, we have sol
numerically the eigenvalue problem~17! by representing the
linearization operator with a finite difference scheme. W
find that the stationary statescmn shown in Fig. 1 have only
real lk . This suggests linear stability of all stationary sol
tions with U0.0. On the other hand, exponential instabili
is possible in the case ofU0,0. For instance, we find a
04360
n

-

d

e

couple of complex conjugated linearization eigenvalues
the symmetry-breaking two-soliton solution shown in t
fourth column of Fig. 2.

Lyapunov stability of all the statesC in the neighborhood
of a stationary solutionCmn is a mathematically stronge
concept of stability and certainly more relevant from an e
perimental point of view. This kind of stability was prev
ously studied in the case of a lattice model which reduce
the GPE in the continuum limit@19#. In that paper it was
shown numerically that the maximum Lyapunov expone
associated to a discretized version of Eq.~12! vanishes when
the initial stateC(x,0) is sufficiently close to one of the
stationary states. A similar analysis can be pursued in
case of the GPE by simulating a huge finite-dimensional s
tem, namely, that obtained by applying a finite differen
scheme to the partial differential equation~1!. Of course, the
large but finite number of degrees of freedom used in
simulation sets a limit to the maximum time at which th
properties of the infinite-dimensional system correspond
to the GPE are correctly represented. We will report on t
elsewhere. Here we note that the gained scenario is con
tent with Kuksin theory@20# which asserts that Eq.~12! ad-
mits N-dimensional invariant tori, deformation of Eq.~16!, in
a finite neighborhood of any stationary state whose linear
tion spectrum satisfy nondegeneracy and nonresona
conditions.

The spectrum of the linearization operator is useful a
for discussing the stability of the stationary states under
effect of a dissipative perturbation. The grand-potential~7!
evaluated for a state of the form~13!, up to the second orde
in the variationdf gives

V@C1dC#5V@cmn#1d2V, ~19!

where

d2V5
1

2E df* @Dmndf1U0cmn
2 df* #dx

1
1

2E df@Dmndf* 1U0cmn* 2df#dx. ~20!

By using Eqs.~14! and ~16! and the sum rule

(
k

cke
2 ilkt/\ f k5(

k
ck* eilkt/\gk* , ~21!

we get

d2V5
1

2 (
k

ucku2lk~ i f ki22igki2!. ~22!

Therefore, a stationary solutioncmn is a local minimum of
the grand-potential functional if and only if for anyk we
have@21#

lk~ i f ki22igki2!>0. ~23!

To verify the disequalities~23!, we resort again to the
numerical solution of the eigenvalue problem~17!. In the
9-5
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ROBERTO D’AGOSTA AND CARLO PRESILLA PHYSICAL REVIEW A65 043609
repulsive caseU0.0, the condition~23! is fulfilled only by
the state in the first column of Fig. 1. In the attractive ca
U0,0, no one of the states shown in Fig. 2 satisfies Eq.~23!.
This can be explained observing that the grand poten
evaluated at a stationary state is

V@cmn#52
1

2
U0E ucmnu4dx. ~24!

Thus, if U0,0, V assumes the minimal value for the trivi
solution c50. These results have a certain interest on
stability of a physical condensate in which a dissipative
namic is introduced by the coupling with the environme
degrees of freedom. Eventually the system will converge
local minimum ofV. For attractive interaction, this implie
the disappearance of the condensate. An estimate of the
acteristic lifetimes has been given in the case of a vor
state@22#.

We conclude our stability analysis by considering t
short-time behavior of the stationary states under the ac
of an initial finite deformation. A similar analysis has be
considered in@23# to check the stability of the solution
found in @10#. The authors of@23# studied the evolution of
stationary states initially perturbed with a stochastic noise
our case, the stationary solutions corresponding to solit
located near the extrema of the double-well potential sho
have great sensitivity, especially in the case of unstable
trema, to symmetry-breaking perturbations. Here, we c
sider the evolution of shifted stationary states, i.e., we so
Eq. ~1! with the initial conditionC(x,0)5cmn(x2Dx). The
numerical simulations have been performed with the
proved Crank-Nicholson scheme introduced in@19# which
provides an accurate conservation of the constants of mo
of Eq. ~1!, namely, norm and energy. As an example,
describe the evolution of the states of column 4 of Figs
and 2. Note that these are states without linear counterp

The state with one dark soliton has a rather simple evo
tion. The qualitative shape of the state does not change
the soliton oscillates around the minimumx5xm of the right
well. The position of the soliton center,x1, as a function of
time is shown in the upper panel of Fig. 5 forDx
50.3 mm. The amplitude of the oscillations is very small
the case considered and increases by increasingDx. For a
shift Dx sufficiently large the soliton can jump between t
two wells.

The dynamics of the state with two bright solitons is mo
complicated, see lower panel of Fig. 5. Initially the soliton
the center of the barrier moves toward that located inside
right well, the latter being essentially at rest. When the d
tance between the two solitons becomes comparable to
width the oscillations of the solitons inside the same w
turn out to be correlated. The solitons do not cross e
other. When the potential energy of the barrier,VuCu2, is
sufficiently reduced by the negative interaction ener
1
2 U0uCu4, the soliton which was originally at the center
the barrier can jump into the left well. This interwell dy
namic is obtained also for values of the initial shift smal
04360
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than Dx50.3 mm which is the case shown in Fig. 5. B
decreasingDx, the initial falling of the soliton at the cente
of the barrier into the right well~left well for Dx,0) is
slowed down.

The results shown in Fig. 5 can be generalized to differ
kinds of perturbations, e.g., stochastic noise, modification
the parameters of the external potential. Details will be
ported elsewhere.

VI. CONCLUSIONS

We have shown that in presence of an external potenti
1D GPE can admit stationary solutions without a line
counterpart. Their existence is strictly connected to the m
tiwell nature of the potential. In the double-well examp
discussed here, these solutions disappear in the limitv→0
when the potential assumes the shape of a single qu
well. For a piece-wise constant double well, the station
states here discussed analytically only in the limit of stro
nonlinearity can be obtained in terms of Jacobi elliptic fun
tions for any number of particles in the condensate.

We have also discussed the stability of the station
states under different points of view. The results indicate t
the solitonlike states, with and without a linear counterpa
are sufficiently stable for times shorter than few tenths
seconds. This is the time scale explored in the BEC exp
ments @11,12#. By voluntarily introducing perturbations o
proper intensity, a soliton dynamics could also be observ
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FIG. 5. Time evolution of the soliton centers for initially pe
turbed stationary statesC(x,0)5cmn(x2Dx) with Dx50.3 mm.
In the upper panelcmn is one of the states in column 4 of Fig.
while in the lower panel one of those in column 4 of Fig. 2.
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