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1. INTRODUCTION

Bose–Einstein condensates of gases of alkali atoms
confined in magnetic or optic traps are effectively
described by the Gross–Pitaevskii equation (GPE), a
Schrödinger equation with a local cubic nonlinear term
which takes into account the interaction among the
bosons in a mean field approximation [1]. The station-
ary solutions of the GPE represent macroscopically
excited states of the condensate and have attracted great
theoretical interest [2, 3]. The existence of some of
these states have been also demonstrated in recent
experiments. Vortices have been observed in two- [4] or
one-component [5] condensates. Phase engineering
optical techniques have allowed to generate dark soli-
tons in atomic gases with positive scattering length
[6, 7].

The excited states observed in [4–7] have linear
counterpart, i.e., they are stationary solutions of the
GPE which reduce, in the limit of vanishing nonlinear-
ity, to the eigenfunctions of the associated Schrödinger
equation [8]. However, the GPE can admit also a class
of stationary states without linear counterpart. These
solutions appear for a sufficiently large value of the
nonlinearity whenever the system is confined in an
external multiwell potential [9].

In this paper we review the general properties of the
stationary solutions of the GPE. In Section 2 we discuss
an existence condition for the solutions with linear
counterpart in terms of the ratio between their proper
frequency and the corresponding linear eigenvalue. We
also show that in the limit of strong nonlinearity these

solutions assume the shape of chains of dark or bright
solitons depending on the repulsive or attractive nature
of the interaction. In Section 3, we generalize the
asymptotic shape of the states with linear counterpart to
find a new kind of solutions of the GPE. These corre-
spond to solitons located near the extrema of the exter-
nal potential in a way which generally breaks the sym-
metry of the system. We consider the particular case of
a symmetric double-well in Section 4 and describe all
the zero-, one-, and two-soliton solutions of this sys-
tem. In Section 5 we show an example of how the solu-
tions without linear counterpart are generated by
increasing the nonlinearity. The stability properties of
the stationary solutions in view of a possible experi-
mental observation are pointed out in Section 6.

2. SOLUTIONS WITH LINEAR COUNTERPART

The stationary solutions of the GPE are defined as

(2.1)

where 

 

μ

 

 is called chemical potential, and determined by
the equation

(2.2)
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with the normalization condition 
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 = 
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]. For
later use we note that the stationary solutions are also
critical points of the grand-potential functional

(2.3)

Let us consider stationary solutions 
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n

 

 which
reduce for 
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  0 to the eigenfunctions 
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n

 

 of the
Schrödinger equation

(2.4)

This is the linear limit of the GPE which can be
obtained, for 

 

U

 

0

 

 fixed, by varying the norm of the solu-
tions, i.e., the chemical potential 
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. In fact, by substitut-
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) small, the nonlinear term can be neglected
and 
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. Moreover, we have
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. This
conjecture can be i) proved by a theorem in the case 

 

n

 

= 0, ii) explicitly verified in the solvable case of a one-
dimensional system confined in a box, and iii) sup-
ported by numerical results for multidimensional sys-
tems with different potentials [8].

Here, we illustrate point ii) whose results are useful
also for the subsequent discussion on general external
potentials. Let us consider the case of a one-dimen-
sional system confined in a box extending from –

 

L

 

/2 to

 

L

 

/2. For 

 

U

 

0

 

 > 0, the Jacobi elliptic functions
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is the complete elliptic integral of the first kind with
modulus p ∈ [0, 1], and n = 0, 1, 2, …, solve the GPE
under the conditions
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Since K( p) increases monotonously from K(0) = π/2,
for a given n Eq. (2.10) has solution only if
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This complies with the conjecture formulated above.
For U0 < 0, the solutions of the GPE in the box are

of the form
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Since (1 – 2p)K( p) decreases monotonously for p ∈
[0, 1], the n-node solution exists only if μ ≤ �n in agree-
ment with the conjecture.

For both U0 > 0 and U0 < 0, the stationary solutions
of the GPE in the box reduce in the linear limit to the
well known Schrödinger eigenfunctions
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In the opposite limit of strong nonlinearity, we obtain
chains of solitons. For U0 > 0 and μ � �n , we get dark
soliton solutions
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with solitons located in xk =  +  + L.

3. SOLUTIONS WITHOUT LINEAR 
COUNTERPART

The soliton chains obtained in Section 2 as station-
ary solutions of the GPE in a box can be generalized in
the case of a potential V of arbitrary shape. Let us con-
sider first the case U0 > 0. For μ  ∞, the repulsive
interaction tends to delocalize the solutions so that a
Thomas–Fermi approximation holds, i.e., we can
neglect the gradient term in the GPE

(3.1)

Therefore, the GPE has always the solution

and, in the one-dimensional case, also n-node solutions
of the form

(3.2)

provided that the solitons do not overlap, i.e., |xk + 1 – xk| �
�/ .

In the attractive case U0 < 0, for μ  –∞ the mean
field density tends to be localized and the linear poten-
tial in the GPE can be neglected with respect to the
cubic one

(3.3)

In the one-dimensional case, this equation has solutions
of the form

(3.4)

provided that |xk + 1 – xk | � �/ . Note that for the
corresponding solutions with linear counterpart we
must have sk = (–1)k. However, all sign combinations
sk = ±1 are possible in general.

In order the dark- and bright-soliton chains (3.2) and
(3.4) to be asymptotic (for μ  ∞ or μ  –∞,
respectively) solutions of the GPE, the soliton centers
must be extremal points of the corresponding grand-
potential Ω({xk}). Depending on the shape of the exter-
nal potential, stationary solutions without linear coun-
terpart may arise. Consider, for instance, the one-soli-
ton solutions. In the strongly nonlinear limit, the soliton
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ishes and Ω(x1) ~ const – V(x1) (Ω(x0) ~ const + V(x0)
for U0 < 0). If the external potential V(x) is single-well,
Ω(x1) or Ω(x0) will have only one extremum. The cor-
responding solution necessarily reduces in the linear
limit to the 1-node, for U0 > 0, or 0-node, for U0 < 0,
Schrödinger eigenfunction. However, if the external
potential is multiwell, several one-soliton solutions are
possible. Some of them will not have linear counterpart,
i.e., they disappear when the linear limit is approached.

The approximate dark- or bright-soliton solutions
now introduced make possible a numerical search for
the GPE stationary solutions for any value of the non-
linearity. In fact, stationary solutions of a PDE can be
found numerically by using a relaxation algorithm
which converges to the solution “closest” to a given
input function. Thus, only solutions of which a good
approximation is known can be found. In practice, the
numerical search of stationary solutions can be orga-
nized in the following way:

—choose a sufficiently large |μ| and consider an
asymptotic solution of the form of a dark- or bright-
soliton chain;

—determine the soliton centers xk by extremizing
the corresponding grand-potential Ω({xk});

—use this approximate solution as input function in
the relaxation algorithm;

—use the obtained output solution as input function
in a new relaxation with a smaller value of |μ|;

—repeat the last step until the linear region is
reached.

4. SYMMETRIC DOUBLE-WELL SYSTEM

As an example of the general approach outlined in
the previous section, now we determine all the zero-,
one-, and two-solitons solutions for a system confined
in a symmetric double-well potential. We choose

(4.1)

which has two minima in x = ±xm , where xm ≡

, and a maximum at x = 0.
Zero-soliton solutions exist only for the repulsive

GPE. For μ sufficiently large, just one node-less state is
possible. This state extends over the entire double well

and is given by ψμ0(x) =  for x such
that V(x) < μ and ψμ0(x) = 0 otherwise. If μ is smaller
than the barrier height ω4/4γ4, the above solution still
exists and eventually approaches the ground state of the
Schrödinger equation for the double-well. However,
two other possibilities appear. We can have a state
localized in the left well that joins with the identically
vanishing solution in the right well and vice-versa.
These states break the symmetry of V(x) and do not
have linear counterpart.
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One-soliton solutions are described by Eq. (3.2)
with n = 1 in the repulsive case and Eq. (3.4) with n = 0
in the attractive one. The corresponding grand-potential
becomes a function of the soliton centers x1 or x0,
respectively. As shown in Fig. 1, for |μ| sufficiently
large we have Ω(x1) ~ const – V(x1) and Ω(x0) ~ const +
V(x0). In both cases we have three one-soliton solutions
corresponding to the three extrema of the external
potential. The soliton may be found in the maximum or
in one of the two minima of the double-well. For U0 >
0, the solution of the first kind reduces in the linear limit
to the anti-symmetric Schrödinger eigenstate with a
single node. For U0 < 0, the solution with a bright soli-
ton in the maximum of the double-well, even respecting
the symmetry of the potential, disappears in the linear
limit. The two solutions with the soliton, dark or bright,
in one of the minima ±xm of the double-well break the
symmetry of V(x) and do not have linear counterpart.

In the repulsive case, two-soliton solutions are
described by Eq. (3.2) with n = 2 and the grand-poten-
tial becomes the two-variable function Ω(x1, x2) whose
contour plot is shown in Fig. 2. When the distance
between the soliton centers is much larger than their
width, we have Ω(x1, x2) � Ω(x1) + Ω(x2). In the region
x1 < x2, Ω has a maximum in (–xm , xm) and two saddle
points in (0, xm) and (–xm , 0). We assume that xm �

�/ . The stationary solution corresponding to the
maximum of Ω has linear counterpart, namely the sym-
metric Schrödinger eigenstate with two nodes in the
double-well minima. Those corresponding to the two

mμ

saddle points break the symmetry of V(x) and must dis-
appear in the linear limit.

Other extrema of Ω can be found when the centers
of the two dark solitons are into the same well. As
shown in Fig. 2, Ω has two maxima in (xm – δ, xm + δ)

and (–xm – δ, –xm + δ) with 2δ � �/ . The corre-
sponding solutions break the symmetry of V(x) and do
not have linear counterpart.

In the attractive case, the bright solitons solutions
are given by Eq. (3.4). Since the GPE is invariant under
a global phase change, if we restrict to real solutions for
n = 1 (two solitons) we have the following two possibil-
ities

(4.2)

The contour plots of the functions Ω±(x0, x1)
obtained by inserting these expressions in Ω[ψ] are
shown in Fig. 3. In analogy with the repulsive case, for
both Ω+ and Ω– we have a minimum in (–xm , xm) and
two saddle points in (0, xm) and (–xm , 0). The stationary
states corresponding to the minimum of Ω±(x0, x1) have
as linear counterpart the lowest-energy symmetric and
anti-symmetric Schrödinger eigenstates of the double
well. Those corresponding to the two saddle points
break the symmetry of V(x) and do not have linear
counterpart.

The functions Ω+ and Ω– have different behavior
when both the soliton centers are inside the same well,
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Fig. 1. Grand potential Ω as a function of the dark soliton
center x1 (left panel) and the bright soliton center x0 (right
panel) for the one-soliton solutions.
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Fig. 2. Contour plot of Ω(x1, x2) for the two-soliton solution
in the repulsive case.
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i.e., for x0 ~ x1 ~ ±1. In fact, Ω+ does not present new
extrema while Ω–, in analogy with the repulsive case,
has two minima in (xm – δ, xm + δ) and (–xm – δ, –xm + δ)

with 2δ � �/ . The corresponding solutions
break the symmetry of V(x) and do not have linear
counterpart.

An example of stationary states without linear coun-
terpart is shown in Fig. 4. These states have been calcu-
lated numerically with the procedure outlined in Sec-
tion 3. The parameters used are those of a realistic con-
densate: m = 3.818 × 10–26 kg, ω = 12.75 Hz, γ =

109   , U0 = 1.1087 × 10–41 Jm. With these

2m– μ

kg
1
4
---–

m
1
2
---–

s
1
2
---–

values, the distance between the double-well minima is
2xm � 92 μm.

5. BIRTH OF STATIONARY SOLUTIONS

To understand how the GPE solutions without linear
counterpart arise by departing from the linear limit,
consider the following example. We assume a low tun-
neling regime between the two wells of the potential of
Section 4, i.e., ω3/�γ4 � 1 and set

(5.1)

where φn(x) is the nth eigenfunction of the Schrödinger

problem with harmonic potential (2ω)2x2. Since ψ

is already normalized to N, for it to be a stationary solu-
tion of the GPE we have to extremize the energy func-
tional E[ψ] = Ω[ψ] + μN[ψ]. Up to exponentially small
terms, we have

(5.2)

ψ x( ) N a0φ0 x xm+( ) b0φ0 x xm–( )+[ ],=

a0
2

b0
2

+ 1,=

1
2
---m

E b0( ) N�ω 1
3
16
------�γ 4

ω3
--------+⎝ ⎠

⎛ ⎞=

+ e

ω3

�γ 4
--------–

1
3
8
---�γ 4

ω3
-------- 3

2
--- ω3

�γ 4
--------–+⎝ ⎠

⎛ ⎞ b0 1 b0
2

–

+
NU0

2 π
----------- m

�
3ω

---------- 1 2b0
4

2b0
2

–+( ) .

–2

–1

0

1

2

x0/xm

–2

–2 –1 0 1 2
x1/xm

–1

0

1

2

–2 –1 0 1 2
x/xm

|ψμn(x)|2

Fig. 3. Contour plot of Ω+(x0, x1) (left) and Ω–(x0, x1)
(right) for the two-soliton solution in the attractive case. The
grand potential Ω± is evaluated for the two possible real
states (4.2).

Fig. 4. Density of the stationary states ψμ1(x) repulsive and

(x) attractive. For comparison, we show also the dou-

ble-well potential V(x).

ψμ1
+
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This can be rewritten, up to a constant, as

(5.3)

where

(5.4)

The behavior of E(b0) for different values of the
ratio N/N0 is shown in Fig. 5. For N � N0, E(b0) has a

minimum for b0 =  and a maximum for b0 = – .
These extrema correspond to the lowest energy sym-
metric and anti-symmetric linear states. If U0 > 0, for

N � N0 the maximum at b0 = –  bifurcates in a min-
imum and a maximum. Further increasing N, the latter
moves toward b0 = 0. This describes the birth of the
state without linear counterpart with 0 dark solitons and
its localization into the left well. If U0 < 0, the behavior
of E(b0) is similar with maxima and minima exchanged.

In this case, the bifurcation of the minimum at b0 = 
and its move to b0 = 0 describes the birth of the state
with 1 bright soliton which localizes into the left well.

6. CONCLUSIONS

We have shown that in presence of an external
potential a 1-D GPE can admit stationary solutions
without linear counterpart. Their existence is strictly

connected to the multi-well nature of the potential. In
the double well example illustrated here, these solu-
tions disappear in the limit ω  0 when the potential
assumes the shape of a single quartic well. For a piece-
wise constant double-well, the stationary states here
discussed analytically only in the limit of strong nonlin-
earity can be obtained in terms of Jacobi elliptic func-
tions for any number of particles in the condensate.

In [9] we have also investigated the stability of the
stationary states of the GPE under different points of
view. The results indicate that the soliton-like states,
with and without linear counterpart, are sufficiently sta-
ble on the typical time scales of a BEC experiment.

By introducing proper perturbations of the station-
ary states, a soliton dynamics could also be observed.
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