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Interaction Induced Localization in a Gas of Pyramidal Molecules
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We propose a model to describe a gas of pyramidal molecules interacting via dipole-dipole interactions.
The interaction modifies the tunneling properties between the classical equilibrium configurations of the
single molecule and, for sufficiently high pressure, the molecules become localized in these classical
configurations. We explain quantitatively, without free parameters, the shift to zero frequency of the
inversion line observed upon increase of the pressure in a gas of ammonia or deuterated ammonia. For
sufficiently high pressures, our model suggests the existence of a superselection rule for states of different
chirality in substituted derivatives.
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The behavior of gases of pyramidal molecules, i.e.,
molecules of the kind XY3 such as ammonia NH3, has been
the object of investigations since the early developments of
quantum mechanics [1]. However, the behavior of these
systems is still debated and some experimental facts re-
main essentially unexplained [2].

For the single pyramidal molecule, owing to the great
differences of characteristic energies and times, some
adiabatic approximations hold. In particular, the one-
dimensional inversion motion of the nucleus X across the
plane containing the three nuclei Y can be separated from
the rotational and vibrational nuclear degrees of freedom.
The form of the effective potential for this motion is
a double well which is symmetric with respect to the
inversion plane [3]. Because of tunneling across the finite
potential barrier, the eigenstates are delocalized in the two
minima of the potential and, for energies below the barrier
height, are grouped in doublets, i.e., couples of states
with a relative splitting in energy small in comparison
with the distance from the rest of the spectrum. For the
pyramidal molecules under consideration, the thermal
energy kBT at room temperature is much smaller than the
distance between the first and the second doublet so that
the problem can be reduced to the study of a two-level
system corresponding to the symmetric and antisymmetric
states of the first doublet.

The existence of delocalized stationary states is clearly
in disagreement with the usual chemical view which, rely-
ing upon classical theory, considers the molecules as ob-
jects with a well defined spatial structure. In particular, for
the molecules under consideration the classical view pre-
dicts one of the two pyramidal configurations correspond-
ing to the nucleus X localized in one of the wells of the
inversion potential.

The quantum prediction of stationary delocalized states
implies the presence of a line in the absorption spectrum,
the so called inversion line, at a frequency n̄ � DE�h,
where DE is the energy splitting of the first doublet.
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Experiments performed with NH3 [4], ND3 [5], and NT3

[6] reveal the existence of this inversion line in various
rotational and vibrational bands. The frequency n̄ of the
inversion line has been measured as a function of the gas
pressure P for NH3 [7,8] and ND3 [9]. Starting from the
expected value DE�h at P � 0, n̄�P� decreases by
increasing P and vanishes at a critical pressure Pcr �
1.7 atm for NH3 and Pcr � 0.1 atm for ND3. No quantita-
tive theory has been proposed so far for this phenomenon.

As early as 1949, in a short qualitative paper [10] An-
derson made the hypothesis that dipole-dipole interaction
may induce a localization of the molecular states. In this
way the important idea was introduced that intermolecular
interactions may be responsible for the observed phenom-
ena. By considering a system of two or three interacting
molecules, Margenau was able to predict a decrease of the
inversion frequency on reducing the distance between the
molecules [11]. A quantitative discussion of the collec-
tive effects induced by coupling a single molecule to the
environment constituted by the other molecules of the gas
was made in [12]. In this work it was shown that, due
to the instability of tunneling under weak perturbations,
the order of magnitude of the molecular dipole-dipole in-
teraction may account for localized ground states. This
suggests that a kind of phase transition may be invoked to
explain the behavior of NH3 and ND3 under variation of
pressure.

We have implemented this idea by constructing a simpli-
fied model of a gas of pyramidal molecules which exhibits
the desired properties and allows a direct comparison with
experimental data. Our model predicts, for sufficiently
high intermolecular interactions, the presence of two de-
generate ground states corresponding to the different local-
izations of the molecules. This transition to localized states
gives a reasonable explanation of the experimental results
[7–9]. In particular, it describes quantitatively, without
free parameters, the shift to zero frequency of the inver-
sion line of NH3 and ND3 on increasing the pressure.
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We model the gas as a system of molecules nearly inde-
pendent in the following sense: each molecule is subjected
to an external field representing the interaction with the rest
of the gas to be determined self-consistently. We then ana-
lyze the linear response of this model to an electromagnetic
perturbation to obtain the low energy excitation spectrum
and its dependence on the intermolecular interaction. Fi-
nally, we compare our theoretical results with the available
experimental data.

We mimic the inversion degree of freedom of an isolated
molecule with the Hamiltonian

h0 � 2
DE

2
sx , (1)

where sx is the Pauli matrix in the standard representation
with delocalized tunneling eigenstates

j1� �
1
p

2

µ
1
1

∂
j2� �

1
p

2

µ
1

21

∂
. (2)

Since the rotational degrees of freedom of the single pyra-
midal molecule are faster than the inversion ones, on the
time scales of the inversion dynamics the molecules feel
an effective attraction arising from the angle averaging of
the dipole-dipole interaction at the temperature of the ex-
periment [13]. In the representation chosen for the Pauli
matrices, the localizing effect of the dipole-dipole interac-
tion between two molecules i and j can be represented by
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an interaction term of the form s
z
i s

z
j , where sz has local-

ized eigenstates
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∂
jR� �
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0
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∂
. (3)

In a mean-field approximation we obtain the total Hamil-
tonian

h�l� � 2
DE

2
sx 2 Gsz�ljsz jl� , (4)

where jl� is the single-molecule state to be determined
self-consistently by solving the nonlinear eigenvalue prob-
lem associated to (4). The parameter G represents the
dipole interaction energy of a single molecule with the rest
of the gas. This must be identified with a sum over all pos-
sible molecular distances and all possible dipole orienta-
tions calculated with the Boltzmann factor at temperature
T . If � is the density of the gas, we have

G �
Z `

d

m4

3�4p´0´r�2kBTr6
�4pr2 dr , (5)

where ´r is the relative dielectric constant, d is the molecu-
lar collision diameter, and the fraction in the integrand rep-
resents the Keesom energy between two classical dipoles
of moment m at distance r [13]. Equation (5) is valid in the
high temperature limit which is appropriate for room tem-
perature experiments. The exact expression, we assume �
is constant, is
G �
�m2

4p´0´r
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3
p
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dx 4px2 ln
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1 2 z2 x23�

∏
, (6)
where T0 � m2��4p´0´rd3kB� and In�u� is the modified
Bessel function of the first kind. Expression (6) can be
evaluated numerically and the result differs very little from
(5) even for T ø T0. For densities not too high, we set
� � P�kBT so that, at fixed temperature, the mean-field
interaction constant G increases linearly with the gas pres-
sure P. By evaluating (5) we have

G �
4p

9

µ
T0

T

∂2

Pd3. (7)

The solution of the eigenvalue problem associated to the
Hamiltonian (4) gives the following results. If G , DE�2,
there is only one ground state jl0� � j1�, with energy

E0 � 2
DE
2

. (8)

If G $ DE�2, there are two degenerate ground states

jlL
0 � �

s
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2

1
DE
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j1� 1
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2
DE
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j2� , (9)

jlR
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0 � , (10)
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EL
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2

2
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2G
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2
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∂2

. (11)

By defining the critical value Gcr � DE�2, we distin-
guish the following two cases. For G , Gcr, the ground
state of the system is approximated by a product of de-
localized symmetric single-molecule states corresponding
to the ground state of an isolated molecule. For G $

Gcr, we have two different product states which approxi-
mate the ground state of the system. The corresponding
single-molecule states transform one into the other under
the action of the inversion operator sx , see Eq. (10), and,
for G ¿ Gcr, they become localized

lim
DE�G!0

jlL
0 � � jL� lim

DE�G!0
jlR

0 � � jR� . (12)

The above results imply a bifurcation of the ground state
at a critical interaction G � Gcr. According to Eq. (7)
and using � � P�kBT , this transition can be obtained by
increasing the gas pressure above the critical value

Pcr �
9

8p
P0

µ
T

T0

∂2

, (13)

where P0 � DE�d3.
123001-2



VOLUME 88, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 25 MARCH 2002
When the gas is exposed to an electromagnetic radiation
of angular frequency v0, we add to the Hamiltonian (4) the
perturbation

hem�t� � ef�t�sz , (14)

where e is a small parameter and f�t� � u�t� cos�v0t�,
u�t� being the Heaviside function. The choice of a dipole
coupling approximation, hem ~ sz , is justified for a
radiation of wavelength long with respect to the molecular
size. Under the effect of the perturbation (14) the single-
molecule state jl�t�� evolves according to the time-
dependent nonlinear Schrödinger equation

ih̄
djl�t��

dt
� �h���l�t���� 1 ef�t�sz� jl�t�� , (15)

with h�l� given by (4). The linear response to the pertur-
bation (14) is expressed by the generalized susceptibility
[14] R�v� � S̃1�v��f̃�v�, where f̃�v� and S̃1�v� are the
Fourier transforms of f�t� and S1�t�, with S1�t� defined by

S �t� 	 �l�t�jszjl�t�� � S0�t� 1 eS1�t� 1 . . . . (16)

Let us assume that at time t � 0 each molecule is in
the delocalized ground state jl0� � j1�. The solution of
Eq. (15) with the initial condition jl�0�� � j1� gives

R�v� �
2DE

�h̄v�2 2 �DE2 2 2GDE�
. (17)

The generalized susceptibility has a unique pole at posi-
tive frequency which corresponds to the inversion line fre-
quency

n̄ �
DE
h

µ
1 2

2G
DE

∂1�2

. (18)

The residue of R�v� at this pole, namely, �1 2
2G�DE�21�2, represents the corresponding transition
probability.

Now we compare our theoretical analysis of the inver-
sion line with the spectroscopic data available for ammonia
[7,8] and deuterated ammonia [9]. In these experiments the
absorption coefficient of a cell containing NH3 or ND3 gas
at room temperature was measured at different pressures.
The resulting data are reported in Fig. 1. The frequency
n̄ of the inversion line decreases by increasing P and van-
ishes for pressures greater than a critical value. There is
a factor of about 15 between the critical pressures of NH3
and ND3.

By using Eq. (7), the theoretical expression (18) for the
inversion line frequency becomes

n̄ �
DE
h

s
1 2

P
Pcr

, (19)

where Pcr is given by (13). Note that this expression
does not contain free parameters. We used the follow-
ing values taken from [3,15]: m � 1.47 D, d � 4.32 Å,
DENH3 � 0.81 cm21, DEND3 � 0.053 cm21. Assuming
´r � 1 and T � 300 K, we obtain Pcr � 1.695 atm for
NH3 and Pcr � 0.111 atm for ND3. The agreement of the
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FIG. 1. Measured inversion-line frequency n̄ as a function of
the gas pressure P for NH3 (dots, left and bottom scales, data
from [7,8]) and ND3 (squares, right and top scales, data from
[9]). The solid line is the theoretical formula (19) with Pcr �
1.695 atm for NH3 and Pcr � 0.111 atm for ND3 calculated
according to (13).

theoretical n̄�P�, also shown in Fig. 1, with the experi-
mental data is impressive considering the simplicity of the
model.

Equation (19) predicts that, up to a pressure rescaling,
the same behavior of n̄�P� is obtained for different pyra-
midal molecules

n̄XY3�P�
n̄XY3�0�

�
n̄X0Y 0

3
�gP�

n̄X 0Y 0
3
�0�

, (20)

where g � PcrX 0Y 0
3
�PcrXY3 . In the case of ND3 and NH3, at

the same temperature T we have g � DENH3�DEND3 �
15.28. This factor has been used to fix the scales of Fig. 1.
We see that in this way the NH3 and ND3 data fall on the
same curve.

The intensity I of the inversion line predicted by our
theoretical analysis is given, up to a constant, by the prod-
uct of the photon energy hn̄ and the residue of (17). The
divergence of the transition probability is canceled by the
vanishing photon energy and we obtain for a gas of N
molecules I ~ NDE. By writing N � PV�kBT , V being
the volume of the absorption cell containing the gas, we
have that at fixed temperature the line intensity increases
linearly with pressure. This behavior is confirmed by the
experimental data [7–9].

It is interesting at this point to compare our approach
with a previous study [16] where the experimental data
are successfully reproduced by a formula with three free
parameters for the shape factor of the inversion line. In
[16] these parameters are determined by trial and error. In
our work we propose a simplified theory for the shift of the
inversion line based on the dipole-dipole interaction and
there are no free parameters. The specific prediction of our
model for the critical pressure Pcr in terms of the electric
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dipole m of the molecule, its size d, the splitting DE, and
the temperature T of the gas, successfully verified in the
case of ammonia, should be experimentally tested also for
other pyramidal gases. We emphasize that the study of the
inversion spectra of pyramidal molecules, such as NH3 and
ND3, in recent years has acquired a considerable interest
in geophysical [17] and astrophysical research [18].

It is not easy to assess the region of validity of the model
starting from first principles, i.e., considering all the de-
grees of freedom of the molecules. It is reasonable to as-
sume that the mean-field calculation is meaningful as long
as the interactions among the molecules are small com-
pared to the inversion line frequency (18). If we take the
model seriously, at least for the qualitative aspects, at pres-
sures greater than the critical one we have the following
situation. In the limit of an infinite number of molecules,
the Hilbert space separates into two sectors generated by
the ground state vectors given in mean-field approximation
by

jcL
0 � � jlL

0 � · · · jlL
0 � , (21)

jcR
0 � � jlR

0 � · · · jlR
0 � . (22)

These sectors, which we call HL and HR, cannot be
connected by any operator involving a finite number of
degrees of freedom (local operator). According to [2] this
means that a superselection rule operates between the two
sectors distinguished by the eigenvalues of an observable.
It is natural [19] to define the chirality operator

x � lim
N!`

1
N

NX
i�1

'1 ≠ · · · ≠ sz
i ≠ · · · ≠ 'N . (23)

It is immediately verified that

�cjxjc� � 6

s
1 2

µ
DE

2G

∂2

(24)

for c in HL and HR , respectively. This mean value dis-
tinguishes the two sectors but is a property weaker than
c being an eigenstate of x. According to (12) only in
the limit DE�G ! 0, the states c become completely lo-
calized and therefore eigenstates of x. The fact that the
c are not eigenstates of x for DE�G fi 0 is connected
to the nonorthogonality of the mean-field one-molecule
states jl

L
0 � and jl

R
0 � and is presumably an artifact of the

approximation.
This analysis has an interesting implication. Our model

applies not only to molecules XY3 but also to their substi-
tuted derivatives XYWZ. In fact, the difference should not
matter as far as the shift of the inversion line is concerned.
However, an important difference between the two cases is
123001-4
that for XY3 the localized states can be obtained one from
the other either by rotation or by space inversion, while
for XYWZ they can be connected only by space inversion.
This implies that XYWZ molecules at a pressure greater
than the critical value are chiral and therefore optically
active. Recent ultrasensitive experimental methods have
been developed which allow the quantitative measurement
of optical rotation in gaseous compounds [20]. It would
be interesting to measure the optical activity of pyramidal
gases for P . Pcr.
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