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Summary. In a previous paper we proposed a model to describe a gas of pyra-
midal molecules interacting via dipole-dipole interactions. The interaction modifies 
the tunneling properties between the classical equilibrium configurations of the sin-
gle molecule and, for sufficiently high pressure, the molecules become localized in 
these classical configurations. The model explains quantitatively the shift to zero-
frequency of the inversion line observed upon increase of the pressure in a gas of 
ammonia or deuterated ammonia. Here we analyze further the model especially with 
respect to stability questions. 

10.1 Introduction 

The behavior of gases of pyramidal molecules, i.e., molecules of the kind XY3 

like ammonia N H 3 , has been the object of investigations since the early de-
velopments of quantum mechanics [11]. In recent times the problem has been 
discussed again in several papers [4, 12, 17, 7, 13, 14] from a stationary point 
of view while in [8, 9, 10] a dynamical approach has been attempted. For a 
short historical sketch of the issues involved we refer to [4, 17, 13]. 

In [13] we have constructed a simplified mean-field model of a gas of pyra-
midal molecules which allows a direct comparison with experimental data. Our 
model predicts, for sufficiently high inter-molecular interactions, the presence 
of two degenerate ground states corresponding to the different localizations 
of the molecules. This transition to localized states gives a reasonable expla-
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nation of the experimental results [1, 2, 3]. In particular, it describes quanti-

tatively, without free parameters, the shift to zero-frequency of the inversion 

line of N H3 and N D3 on increasing the pressure. 

In the present paper we first reconsider our model from the standpoint of 

stationary many-body theory, clarifying the meaning of the mean-field energy 

levels. We then analyze the mean field states with respect to the energetic sta-

bility. The conclusions agree with those found in [10] via a dynamical analysis 

of the same type of model to which dissipation is added. 

10.2 The model 

We model the gas as a set of two-level quantum systems, that mImIC the 

inversion degree of freedom of an isolated molecule, mutually interacting via 

the dipole-dipole electric force. 

The Hamiltonian for the single isolated molecule is assumed of the form 

- LJ.2E O"x, where O"X is the Pauli matrix with symmetric and antisymmetric 

delocalized tunneling eigenstates 'P+ and 'P-, 

x = (01) 
0" 10 (10.1) 

Since the rotational degrees of freedom of the single pyramidal molecule are 

faster than the inversion ones, on the time scales of the inversion dynamics set 

by L1E the molecules feel an effective attraction arising from the angle averag-

ing of the dipole-dipole interaction at the temperature of the experiment [15]. 

The localizing effect of the dipole-dipole interaction between two molecules i 
and j can be represented by an interaction term of the form -gijO"iO"J, with 

gij > 0, where O"Z is the Pauli matrix with left and right localized eigenstates 

'PL and 'PR, 

Z = (1 0) 
0" ° -1 

The Hamiltonian for N interacting molecules then reads 

dE N 
H = -2 L 11 Q9 12 Q9 ..• Q9 O"i Q9 ... Q9 IN 

i=1 

N N 
- L L gij 11 Q9 .•• Q9 O"i Q9 •.• Q9 O"J Q9 ..• Q91N· 

i=l j=i+l 

(10.2) 

(10.3) 

For a gas of moderate density, we approximate the behavior of the N » 1 

molecules with the mean-field Hamiltonian 

(10.4) 
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where 'ljJ is the single-molecule state (('ljJ, 'ljJ) = 1) to be determined self-
consistently by solving the nonlinear eigenvalue problem associated to (10.4). 
The parameter G represents the dipole interaction energy of a single molecule 
with the rest of the gas. This must be identified with a sum over all possible 
molecular distances and all possible dipole orientations calculated with the 
Boltzmann factor at temperature T. Assuming that the equation of state for 
an ideal gas applies, we find [13] 

G= 47f (To)2 Pd3 
9 T ' 

(10.5) 

where To = /-L2/(47fcocrd3kB) , co and Cr being the vacuum and relative dielec-
tric constants, d the molecular collision diameter and /-L the molecular electric 
dipole moment. Note that, at fixed temperature, the mean-field interaction 
constant G increases linearly with the gas pressure P. 

10.3 Molecular states 

The nonlinear eigenvalue problem associated to (10.4), namely 

(10.6) 

has different solutions depending on the value of the ratio G / L1E. If G / L1E < 
we have only two solutions corresponding to the delocalized eigenstates of 

an isolated molecule 

/-Ll = -L1E/2, 

/-L2 = +L1E /2. 

If G /..1E > there appear also two new solutions, 

J1 L1E J1..1E 
'ljJM3 = "2 + 4G 'P+ + "2 - 4G 'P- /-L3 = -G, 

J1 L1E J1..1E 
'ljJM4 = "2 + 4G 'P+ - "2 - 4G 'P- /-L4 = -G, 

(10.7) 
(10.8) 

(10.9) 

(10.10) 

which in the limit G dE approach the localized states 'PL and 'PR, re-
spectively. Solutions (10.9) and (10.10) are termed chiral in the sense that 
'ljJM4 = iJx 'ljJM3· 

The states 'ljJM determined above, are the stationary solutions 'ljJ(t) = 
exp(i/-Lt/fi)'ljJM of the time-dependent nonlinear Schrodinger equation 

(10.11) 
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The generic state 'IjJ(t) solution of this equation has an associated conserved 

energy given by 

(10.12) 

The value of this functional calculated at the stationary solutions (10.7-10.10) 

provides the corresponding single-molecule energies ei = £ ['IjJ JLJ, 

el = -i1E/2, 

e2 = +i1E/2, 

e3 = e4 = - i12E - (i12E _ G) 2 

(10.13) 

These energies are plotted in Fig. 10.1 as a function of the ratio G/i1E. The 

state effectively assumed by the molecules in the gas will be that with the 

minimal energy, namely the symmetric delocalized state 'IjJ{tl for G / i1E < 
or one of the two degenerate chiral states for G / i1E > 

2 

o 
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o 0.5 1.5 
GiLlE 

Fig. 10.1. Single-molecule energies ei (solid lines) of the four stationary states 'l/JJ.'il 

i = 1,2,3,4, as a function of the ratio G I.:1.E. The dashed lines are the eigenvalues, 

divided by N, of the Hamiltonian (10.3) with 9ij = GIN and N = 12. 

The above results imply a bifurcation of the mean-field ground state at a 

critical interaction strength G = i1E /2. According to Eq. (10.5), this tran-

sition can be obtained for a given molecular species by increasing the gas 

pressure above the critical value 

9 (T)2 
Pcr = 87T PO To ' 

(10.14) 

where Po = i1E / d3 . In Table 10.1 we report the values of To and Po calculated 

for different pyramidal molecules. 
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NH3 

ND3 

PH3 

AsH3 

0.81 
0.053 

3.34 x 10-14 

2.65 X 10-18 

jL (Debye) d (A) To (Kelvin) 
1.47 4.32 193.4 
1.47 4.32 193.4 
0.57 29.1 
0.22 4.3 

Po (atm) 
1.97 
0.13 

8.llx 10-14 

6.44x 10-18 

Table 10.1. Measured energy splitting LY:.E, collision diameter d, and electric dipole 
moment jL, for different pyramidal molecules as taken from [16, 5]. In the fourth 
and fifth columns we report the temperature To and the pressure Po evaluated as 

described in the text. In the case of PH3 and AsH3 the collision diameter, not 
available, is assumed equal to that measured for N H3 and N D3 . We used Cr = 1. 

10.4 Inversion line 

When a gas of pyramidal molecules which are in the delocalized ground state 
is exposed to an electromagnetic radiation of angular frequency Wo rv t1E In, 

some molecules can be excited from the state 'P+ to the state 'P-. For a non-
interacting gas this would imply the presence in the absorption or emission 
spectrum of an inversion line of frequency iJ = t1E / h. Due to the attractive 
dipole-dipole interaction, the value of hiJ evaluated as the energy gap between 
the many-body first excited level and the ground state is decreased with re-
spect to the noninteracting case by an amount of the order of G. As shown 
in Fig. (10.2), the value of the inversion line frequency is actually a function 
of the number N of molecules and in the limit N » 1 approaches the mean 
field value [13] 

(10.15) 

According to (10.15), the inversion line is obtained only in the range 0 :s: G :s: 
t1E /2 and its frequency vanishes at G = t1E /2. 

In [13J we have compared the mean field theoretical prediction for the 
inversion line with the spectroscopic data available for ammonia [1, 2] and 
deuterated ammonia [3]. In these experiments the absorption coefficient of 
a cell containing NH3 or ND3 gas at room temperature was measured at 
different pressures, i.e., according to (10.5) at different values of the interaction 
strength G. The measured frequency iJ decreases by increasing P and vanishes 
for pressures greater than a critical value. This behavior is very well accounted 
for by the the mean field prediction (10.15). In particular, the critical pressure 
evaluated according to Eq. (10.14) with no free parameters, at T = 300 K 
is Per = 1.695 atm for NH3 and Per = 0.111 atm for ND3 in very good 
agreement with the experimental data. 
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Fig. 10.2. Inversion line frequency as a function of the ratio GIL1E in the mean 

field model (solid line) and obtained from the Hamiltonian (10.3) with gij = GIN 
and N = 4, 8, and 12. 

10.5 Energetic stability of the molecular states 

In order to discuss the energetic stability of the mean field molecular states 

found in Section 10.3 we introduce the free energy F['l,b] = E['l,b]- /1('l,b, 'l,b). The 

stationary solutions of Eq. (10.11) then can be viewed as the critical points 

of the Hamiltonian dynamical system 

. {} ('l,b) (0 1) zfi at 'l,b* = -10 
(10.16) 

Under the effect of a perturbation which dissipates energy, a stationary state 

'l,b" will remain stable only if F['l,b,,] is a minimum. Therefore we are inter-

ested in exploring the nature of the extremal values F['l,b,,] of the free energy 

functional. In general, this can be done in terms of the eigenvalues and the 

eigenvectors of the linearization matrix associated to the dynamical system 

(10.16) as explained in [6] for a Gross-Pitaevskii equation. Here, due to the 

simplicity of the model, we can provide a more direct analysis. 

For a variation of the stationary solution 'l,b" ---+ 'l,b" + Jcp, up to the second 

order in Jcp, we have 

(10.17) 

where 

J2 F['l,b", Jcp] = - Ll2E (Jcp, aXJcp) - /1 (Jcp, Jcp) 

-G C'l,b",az'l,b,,)(JCP,azJCP) + ('l,b",azJcp)(J¢,az'l,b,,) 

aZJcp) 2 + aZ'l,b,,) 2 
) . (10.18) 
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The variation Jep can be taken in the most general form 

Jep = aeiIJa'P+ + beiIJb'P_, (10.19) 

where 'P± are the delocalized tunneling eigenstates (10.1) and a, b, ea , and 
(h arbitrary real parameters with the constraint that ('l/JJL + Jep, 'l/JJL + Jep) = 

1 + O(Jep2). By writing 

(10.20) 

with the real coefficients a" and bIJ deduced by Eqs. (10.7-10.10), the above 
constraint implies 

(10.21) 

The second variation of the free energy evaluated at the four stationary solu-
tions 'l/JIJi' i = 1,2,3,4, with the condition (10.21) gives 

(10.22) 

(10.23) 

(10.24) 

where k = 3,4 and the signs =F refer respectively to k = 3 and k = 4. We 
see that, for the state 'l/J"l' the variation J2:F is always positive for G < 6.2E 

and can be negative for G > 6.2E. The variation J2 F is always negative in the 
case of 'l/J"2' For the states 'l/J"3 and 'l/J"4' which exist only for G > 6.2E, the 
variation J2:F is always positive. We conclude that the free energy has a single 
minimum in correspondence of the delocalized state 'l/J"l when G < 6.2E, and 
two degenerate minima in correspondence of the chiral states 'l/J"3 and 'l/JJL4 
when G > 6.2E. The energetic stability analysis is summarized in Table 10.2. 
Note that our results coincide with those reported in [10] where a standard 
linear stability analysis is performed for the same model considered here to 
which an explicit norm-conserving dissipation is added. 

10.6 Conclusions 

The specific prediction of our model for the critical pressure Per in terms of 
the electric dipole JL of the molecule, its size d, the splitting L1E and the 
temperature T of the gas, successfully verified in the case of ammonia, could 
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'l/JJ.Ll 'l/JJ1.2 'l/JJ1.3 'l/JJ1.4 

F['l/JJ1.J -i1E +i1E [1 _ 

G < Ll2E 82 F> 0 82F < 0 
minimum maximum 

G > Ll2E 82 F 0 82 F < 0 82 F > 0 82 F > 0 
saddle point maximum minimum minimum 

Table 10.2. Value of the free energy F['l/JJ1.J and sign of its second variation at the 
four extrema 'l/JJ1.i' i = 1,2,3,4. 

be experimentally tested also for other pyramidal gases for which Eqs. (10.14) 
and (10.15) predict the scaling law 

i/xY3(P) _ iJX'y;C1'P) 

iJXY3 (0) - iJx'y; (0) , 

where 'Y = Per X'Y; / Per XY3· 

(10.25) 

Our model applies not only to molecules XY3 but also to their substituted 
derivatives XYWZ. An important difference between the two cases is that for 
XY3 the localized states can be obtained one from the other either by rotation 
or by space inversion, while for XYW Z they can be connected only by space 
inversion. This implies that XYW Z molecules at a pressure greater than the 
critical value are chiral and therefore optically active. The measurement of the 
optical activity of pyramidal gases for P > Per would allow a direct verification 
of this prediction. 
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