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Abstract. We present a large deviation analysis of a recently proposed
probabilistic approach to the study of the ground-state properties of lattice
quantum systems. The ground-state energy as well as the correlation functions
in the ground state are exactly determined as series expansions in the cumulants
of the multiplicities of the potential and hopping energies assumed by the system
during its long-time evolution. Once these cumulants are known, even at a
finite order, our approach provides the ground state analytically as a function of
the Hamiltonian parameters. A scenario of possible applications of the analytic
character of the present approach is discussed.
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1. Introduction

The real- or imaginary-time dynamics of systems described by a finite Hamiltonian matrix,
representing bosonic or fermionic degrees of freedom, admits an exact probabilistic repre-
sentation in terms of a proper collection of independent Poisson processes [1]–[3]. For a lat-
tice system, the Poisson processes are associated with the links of the lattice and the prob-
abilistic representation leads to an optimal algorithm [3] which coincides with the Green
function quantum Monte Carlo method in the limit when the latter becomes exact [4].

Recently, in [5] we have exploited the above probabilistic representation to derive
analytical estimations for the matrix elements of the evolution operator in the long-
time limit. In this way, approximations for the ground-state energy, as well as for
the expectation of a generic operator in the ground state of a lattice system without
a sign problem, have been obtained as the solution of a simple scalar equation. The
results presented in [5] were based on the application of a central limit theorem to the
rescaled multiplicities of the values assumed by the potential and hopping energies in
the configurations dynamically visited by the system (see also [6] for details on the
corresponding probability density).

The approximated scalar equation for the ground-state energy obtained by using the
central limit theorem contains only the first two statistical moments of the multiplicities
mentioned above and, as anticipated in [5], suggests that it is a second-order truncation
of an exact cumulant expansion. In this paper, after reviewing in detail the approach
developed in [5], we perform a large deviation analysis of the relevant probability density
and obtain this exact cumulant expansion. In principle, if all the cumulants are known,
we provide a scalar equation whose straightforward solution is the exact ground-state
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energy of the system. In practice, we measure the cumulants via a statistical sampling
and only a finite number of them are available. The corresponding truncated equation
provides ground-state energies whose level of approximation depends on the values of the
Hamiltonian parameters and on the size of the system. However, the convergence as a
function of the number of cumulants is rather fast and, as shown in some example cases,
the use of the first few cumulants provides results indistinguishable from those obtained
from exact numerical simulations.

The spirit of our approach is different from that of Monte Carlo simulations. In the
latter case, the accumulated statistical data provide information on the specific system
under investigation and new simulations must be performed each time the value of a single
parameter of the model is changed. On the other hand, our approach is semi-analytical
in the sense that we have an exact expression for the ground-state energy, in which some
statistical data, namely the cumulants of the multiplicities mentioned above, must be
provided as an input. However, these multiplicities, and so the corresponding cumulants,
do not depend on the values of the parameters of the model, only on the structure of the
Hamiltonian operator (form of the hopping and interaction terms, size of the system and
so on). For instance, in the case of N spin-up and N spin-down particles with on-site
interaction of strength γ the multiplicities depend on the spectrum of the possible on-
site pairs, 0, 1, 2, . . . , N , not on γ which represents, therefore, a parameter with respect
to which we have analytical results. The analyticity with respect to the parameters of
the Hamiltonian allows the determination of the expectation of a generic operator in
the ground state of the system via the Hellmann–Feynman theorem and suggests other
potential applications that we will discuss at the end.

The paper is organized as follows. In section 2 we briefly review the probabilistic
representation of quantum dynamics for generic lattice systems. In this way, the ground-
state energy is obtained as the expectation of a suitable stochastic functional. In section 3
we summarize our main result, namely an exact formula for the ground-state energy, and
provide an outline of its proof. In the four subsections of the core section 4, we develop
in full detail this proof via the analytical determination, in the limit of an infinitely long
time, of the expectation of the stochastic functional providing the ground-state energy.
In section 4.1, we decompose the expectation in a series of canonical averages of weights,
which are calculated in section 4.2. The canonical averages are evaluated via a cumulant
expansion theorem in section 4.3 and are finally resummed in section 4.4, where the
exact scalar equation for the ground-state energy is presented. In section 5 we discuss
the numerical evaluation of the cumulants which appear in our formula for the ground-
state energy. In the same section, we also study some example cases and compare the
results from using our formula with those from exact numerical calculations. Finally,
general features of our approach and future applications are summarized and discussed in
section 6.

Up to section 4.2, we carry on the development both for hard-core bosons and
fermions, whereas subsequently we limit the method to hard-core bosons, postponing
consideration of the fermion case to a later work.

2. Exact probabilistic representation of lattice dynamics

In this section we review the exact probabilistic representation of the imaginary- or real-
time dynamics of a system of bosons or fermions on a lattice; see [3] for a detailed
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description. This representation is the basis of our approach to studying the ground-state
properties of the system in a semi-analytical way [5]. We concentrate on a simple exclusion
dynamics, in which multiple occupancies of the lattice sites are forbidden, i.e. fermions or
hard-core bosons are considered.

Let Λ be any finite lattice with cardinality |Λ| and 1, 2, . . . , |Λ| be some total ordering
of the lattice sites. The dynamics of a system of hard-core bosons or fermions on this lattice
is effectively described in terms of commuting or anticommuting destruction operators ĉiσ

with the property (ĉiσ)2 = 0. Here, i = 1, 2, . . . , |Λ| is the site index and σ =↑↓ the spin,
or an arbitrary internal index. The system can be represented in terms of Fock states,
n ∈ F, n = (n1↑, n1↓, . . . , n|Λ|↑, n|Λ|↓), where niσ is the lattice occupation number of the
site i with spin σ taking the value 0 or 1. The number of Fock states is

|F| =

(
|Λ|
N↑

)(
|Λ|
N↓

)
, (1)

where Nσ is the number of particles with spin σ.
We assume the system to be described by the Hamiltonian

Ĥ = K̂ + V̂ , (2)

where K̂ and V̂ are the kinetic and potential operators, respectively. The potential
operator V̂ is arbitrary, e.g. for the Hubbard model V̂ =

∑
i∈Λ γiĉ

†
i↑ĉi↑ĉ

†
i↓ĉi↓. For the

kinetic operator we assume the quadratic form

K̂ = −
∑

i�=j∈Λ

∑
σ=↑↓

ηijσeiθijσ ĉ†iσ ĉjσ, (3)

with ηijσ, θijσ ∈ R and ηijσ ≥ 0. The case θijσ �= 0 is obtained in the presence of a magnetic
field. In principle, our approach can be extended to more general kinetic operators. The
essential feature to be noted is that in the Fock representation V̂ is diagonal whereas K̂
is off-diagonal.

In order to study the ground-state properties of the Hamiltonian Ĥ , it is sufficient to

evaluate the long-time behaviour of
∑

n〈n|e−Ĥt|n0〉. In fact, the ground-state energy is
given by

E0 = lim
t→∞

−∂t log
∑

n

〈n|e−Ĥt|n0〉. (4)

The quantum expectation of a generic operator Ô in the ground state of Ĥ can be obtained
by evaluating the ground-state energy E0(ξ) of the modified Hamiltonian Ĥ+ξÔ and using
the Hellmann–Feynman identity

〈E0(ξ)|∂ξĤ(ξ)|E0(ξ)〉
〈E0(ξ)|E0(ξ)〉

= ∂ξE0(ξ). (5)

Let Γσ be the set of system links with spin σ, i.e. the pairs (i, j) with i �= j and
i, j ∈ Λ such that ηijσ �= 0. With each link (i, j) with spin σ we associate the value

λijσ(n) = 〈n ⊕ 1iσ ⊕ 1jσ|eiθijσ ĉ†iσ ĉjσ + eiθjiσ ĉ†jσĉiσ|n〉, (6)

where 1iσ = (0, . . . , 0, 1iσ, 0, . . . , 0) and n⊕ n′ = (n + n′)mod 2. We may have |λijσ| = 0, 1
only. A link (i, j) with spin σ is called active if λijσ �= 0. For θijσ ≡ 0, in the case of
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hard-core bosons an active link can take only the positive value λijσ = 1, whereas in the
case of fermions an active link is either 1 or −1, depending on whether the number of
particles present between the sites i and j,

∑j−1
k=i+1 nkσ, is even or odd.

Let {N t
ijσ} be a family of |Γ| = |Γ↑ ∪Γ↓| independent Poisson process with jump rate

ρ. These processes are in a one-to-one correspondence with the links of the lattice. At
each jump of a Poisson process relating sites i and j with spin σ and taking place at a given
configuration n, a particle of spin σ moves from site i to site j or vice versa if |λijσ(n)| = 1,
whereas the lattice configuration n remains unchanged if λijσ(n) = 0. By arranging the
jumps according to the times sk, k = 1, . . . , Nt, at which they take place in the interval
[0, t), we define a trajectory as the sequence of configurations n1, n2, . . . , nNt generated
from a chosen initial configuration n0 by exchanging, at each jump of the Poisson process
N t

ijσ, the occupations of the sites niσ and njσ. The number of jumps Nt is, of course,
a random integer associated with each trajectory. Let (ik, jk) with spin σk be the link
jumping at the time sk. By putting for brevity

λk = λikjkσk
(nk−1), (7)

ηk = ηikjkσk
, (8)

we define with λ1, λ2, . . . , λNt , and η1, η2, . . . , ηNt, the sequences of the corresponding link
values and hopping parameters. With each trajectory, we also associate the sequences
A0, A1, . . . , ANt and V0, V1 . . . , VNt , representing the number of active links and the
potential energy of the configurations visited:

Ak =
∑
σ=↑↓

∑
(i,j)∈Γσ

|λijσ(nk)| (9)

Vk = 〈nk|V̂ |nk〉. (10)

For later use, we also define

Tk = Akηk+1/ε, (11)

where ε is an arbitrary reference energy.
At any finite time t, the following exact probabilistic representation holds [3]:

〈n|e−Ht|n0〉 = E(δn,nNt
Mt

n0
), (12)

where the stochastic functional Mt
n0

is defined as

Mt
n0

= e|Γ|ρt

( Nt∏
k=1

ηk

ρ
λke

−Vk−1(sk−sk−1)

)
e−VNt (t−sNt ) (13)

if Nt > 0 and Mt
n0

= e|Γ|ρte−V0t if Nt = 0 and the symbol E(·) means the expectation over
the |Γ| independent Poisson processes. In equation (13), we put s0 = 0. According to this
representation, we have∑

n

〈n|e−Ht|n0〉 = E(Mt
n0

), (14)

so that we can evaluate the ground-state energy as

E0 = lim
t→∞

−∂t log E(Mt
n0

). (15)
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In the following, we will be able to reduce the study of the expectation of the
stochastic functional (13) to the study of simpler canonical averages over the stochastic
trajectories n0, n1, n2, . . . in which nk �= nk−1 for any k > 1, i.e. trajectories in which
only jumps corresponding to active links are considered, and the jumping times are
disregarded (integrated out). These sequences of configurations n0, n1, n2, . . . constitute
a homogeneous Markov chain in a finite state space, F, with the transition matrix P
defined by

Pn,n′ =




A(n)−1 if ∃ σ ∈ {↑, ↓} and (i, j) ∈ Γσ:

n′ = n ⊕ 1iσ ⊕ 1jσ and λijσ(n) �= 0

0 otherwise,

(16)

where A(n) =
∑

σ=↑↓
∑

(i,j)∈Γσ
|λijσ(n)| is the number of active links of the configuration

n. Note that
∑

n′ Pn,n′ = 1 according to the fact that Pn,n′ is the probability for the
transition n → n′. Finally, the canonical averages mentioned above are introduced for
trajectories with a finite number of jumps in the following way. Given an initial state n0

and an application f : F
N+1 → C, a function of n0 and of the consecutive N configurations

n1, n2 . . . , nN , we will indicate as 〈f〉N , called the canonical average, the average of f
sampled with respect to the measure induced by the transition probability (16) iterated
N times. Similarly, we can consider canonical averages in which the initial state is not a
single Fock state, n0, but an ensemble with distribution π0. An ensemble of particular
interest is the invariant measure π, defined as the left eigenvector of the transition matrix,
πTP = πT. It is simple to verify that

π(n) =
A(n)∑
n′ A(n′)

. (17)

3. Main result and outline of the proof

Evaluating the expectation E(Mt
n0

) over the detailed realizations of the stochastic
processes specified above can be done numerically by a Monte Carlo method [3]. The
efficiency of the corresponding numerical algorithm is discussed in detail in [7]. In
this paper, we are interested in obtaining analytical expressions of E(Mt

n0
), which are

asymptotically exact in the limit t → ∞, and providing an exact formula for the ground-
state energy by using equation (15).

Let us call L , V and T the sets of all the possible different values λ, V and T assumed
by equations (7), (10) and (11), respectively, along a trajectory n0, n1, n2, . . . formed by
infinitely many jumps. Let mL , mV and mT be the corresponding cardinalities. Since
any configuration can be obtained from any other one by a finite number of jumps, i.e. the
Markov chain of the trajectories is irreducible, the elements in the sets L , V and T do
not depend on the initial configuration n0. Moreover, the value of their elements and, in
particular, their number depend only on the structure of the Hamiltonian operator, not
on the values of the Hamiltonian parameters.

As we shall show, a crucial point is that, if we consider the conditional expectation
in which the number of jumps N is fixed, E(Mt

n0
|Nt = N), and integrate over all the

possible jump times, what matters in determining the value of E(Mt
n0
|Nt = N) is not the
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detailed sequences of the configurations visited but just the multiplicities, or numbers of
occurrences, Nλ, NV and NT of the variables λ, V and T , respectively. Explicitly, for a
trajectory with N jumps, these multiplicities are defined as

Nλ =

N−1∑
k=0

δλk,λ, (18a)

NV =

N∑
k=0

δVk,V , (18b)

NT =

N−1∑
k=0

δTk ,T , (18c)

with λk, Vk and Tk given by equations (7), (10) and (11). The expectation E(Mt
n0
|Nt = N)

is thus reduced to an average over the variables Nλ, NV and NT . In other words, after the
stochastic times have been integrated out, the knowledge of all the canonical moments

〈Nα1 · · ·Nαk
〉N , (19)

where αi ∈ H = V ∪ T ∪ L , i = 1, . . . , k, determines completely the expectation
E(Mt

n0
|Nt = N).

Let us consider the case of hard-core bosons in the absence of magnetic fields, i.e. the
case for which L = {1}. As we will prove, after the integration of the stochastic times,
the conditional expectation E(Mt

n0
|Nt = N) becomes

E
(
Mt

n0
|Nt = N

)
=

〈
WN (t)

∏
T∈T

T NT

〉

N

, (20)

where WN (t), called the weight, is a function that depends only on the multiplicities of
the potential (18b), whereas the other factor is a purely kinetic function that depends
only on the multiplicities (18c).

In order to understand the behaviour of equation (20), and then of equation (14),

let us start by considering a non-interacting system with V̂ ≡ 0. In this case we have

V = {0} and the weights have the simple exact expression W(0)
N (t) = εN tN/N !. Therefore

for E(Mt
n0
|Nt = N) we are left with a residual canonical average over the variables NT

and we get

E(Mt
n0
|Nt = N) =

(εt)N

N !

〈
e
∑

T log(T )NT
〉

N
∼ (aεt)N

N !
, (21)

where a is a suitable value coming from the integration over NT .
The result in equation (21) can be immediately obtained from the rough

estimate 〈exp[
∑

T log(T )NT ]〉N ∼ constN , based on the bounds exp[N log(Tmin)] ≤
〈exp[

∑
T log(T )NT ]〉N ≤ exp[N log(Tmax)], which in turn follow from the normalization∑

T∈T NT = N . By using a cumulant expansion theorem [8], however, it can be shown
that this result becomes exact for N → ∞ if we assume the existence of the following
rescaled cumulants of the variables NT :

Σ
(k)
T1,...,Tk

= lim
N→∞

1

N
〈NT1 · · ·NTk

〉(c)N , (22)
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where by 〈·〉(c)N we indicate the cumulants, or connected correlation functions, sampled with
respect to the measure induced by the transition matrix (16). The connection between
these cumulants and the statistical moments introduced above is well known. For k = 1
we have 〈NT1〉

(c)
N = 〈NT1〉N , for k = 2 〈NT1NT2〉

(c)
N = 〈NT1NT2〉N − 〈NT1〉N〈NT2〉N and so

on.
Since the Markov chain with the transition matrix (16) is finite and irreducible, for

k = 1 the existence of the limit (22) is ensured by an ergodic theorem [9]. On the other
hand, for k > 1, the existence and the finiteness of the rescaled cumulants (22), or of the
more general limits (26), follows from the exponential decay of the correlations of local
functions of the configurations along the Markov chain. For the T variables, this property
amounts to saying that for any k there exist positive constants bk and Nc(k) such that for
any N ,

|〈χ
T1

(nh1) · · ·χTk
(nhk

)〉(c)N | ≤ bk exp

(
−hmax − hmin

Nc(k)

)
, (23)

where χ
T
(n) = δT (n),T is the characteristic function of the states T and hmax and hmin are

the maximum and the minimum of the indices 0 ≤ hl ≤ N , l = 1, . . . , k along the chain.
A numerical check of equation (23) for k = 2 will be shown in section 5.

Since the rightmost expression in equation (21) has, as a function of N , an
exponentially leading maximum at N = εat, we see that for t large an important
consequence follows. The full expectation E(Mt

n0
) =

∑∞
N=0 E(Mt

n0
|Nt = N) takes

exponentially leading contributions from terms with N ∼ εat. Therefore, for t → ∞
we have that (i) the saddle point technique used to evaluate the canonical averages over
NT becomes exact and (ii) a further saddle point integration can be used to exactly
resum the full expectation E(Mt

n0
). In conclusion, we obtain an exact expression for the

ground-state energy, namely limt→∞−∂t log E(Mt
n0

).

For V̂ �= 0, the above-described scenario remains essentially unchanged. In fact,
even though in this case the integration of the stochastic times cannot be done exactly,
it can be performed using a saddle point approximation, which becomes asymptotically
exact for N → ∞. Independently of their exact value, as we will prove later, the weights

are bounded by W(0)
N (t)e−Vmaxt ≤ WN(t) ≤ W(0)

N (t)e−Vmint and behave, as a function of
N , similarly to in the non-interacting case. The conditional expectations (20), which
now reduce to residual canonical averages over both the variables NT and NV , can be
evaluated analogously with equation (21). The result again implies that the saddle point
integrations we perform to evaluate (i) the weights, (ii) the residual canonical averages and
(iii) the sum of the series

∑∞
N=0 E(Mt

n0
|Nt = N) all become exact in the limit t → ∞.

The conclusion is that for hard-core boson systems in the absence of magnetic fields,
i.e. L = {1}, the ground-state energy E0B is determined by the following scalar equation
involving all the cumulants of the Markov dynamics:
∞∑

k=1

1

k!

∑
α1∈H

· · ·
∑

αk∈H

Σ(k)
α1,...,αk

uα1(E0B) · · ·uαk
(E0B) = 0 E0B ≤ Vmin, (24)

where H = V ∪ T , and the vector uT = (· · ·uV · · · ; · · ·uT · · ·) with V ∈ V and T ∈ T
is defined as

uT(E0B) = (· · · − log[(−E0B + V )/ε] · · · ; · · · log T · · ·). (25)
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The existence of a unique solution of equation (24) is ensured by the condition E0B ≤ Vmin.

The asymptotic rescaled cumulants Σ
(k)
α1,...,αk are defined as

Σ(k)
α1,...,αk

= lim
N→∞

〈Nα1 · · ·Nαk
〉(c)N

N
, (26)

where by 〈·〉(c)N we mean the cumulants, or connected correlation functions, of the
multiplicities Nα, α ∈ H , sampled with respect to the measure induced at N jumps
by the Markov chain with the transition matrix (16).

For V̂ ≡ 0, equation (24) can be solved explicitly and we get the following exact

expression for the ground-state energy E
(0)
0B of a non-interacting hard-core boson system:

E
(0)
0B = −ε exp

[ ∞∑
k=1

1

k!

∑
T1∈T

· · ·
∑

Tk∈T

Σ
(k)
T1,...,Tk

log T1 · · · log Tk

]
. (27)

For a generic V̂ , equation (24), with the series truncated at an arbitrary finite order kmax,

can be solved numerically in a straightforward way by using the bounds E
(0)
0B + Vmin ≤

E0B ≤ Vmin.
Equation (24) allows us, via the Hellmann–Feynman theorem (5), to also evaluate the

expectation of any other operator in the ground state of the chosen Hamiltonian (see [5] for
more details). Moreover, it is clear that the cumulants Σ(k) depend only on the structure
of the Hamiltonian operator, not on the values of the Hamiltonian parameters. Therefore,
once the Σ(k) are known, all the evaluated ground-state expectations are given analytically
in terms of the Hamiltonian parameters.

Our analytical formula for the ground-state energy (24) rests on the knowledge of
the asymptotic rescaled cumulants. In some special cases, it could be possible to also
evaluate, at least approximatively, these cumulants analytically. We refer the reader to
section 5 for a detailed discussion on determining the cumulants in a numerical way. In
that section, some example cases are worked out explicitly. Finally, we refer the reader to
section 6 for a scenario of possible applications that exploit the analytic character of our
approach.

4. Probabilistic expectation in the long-time limit: proof of equations (24)–(27)

4.1. Canonical decomposition of the expectation

To evaluate the expectation E(Mt
n0

), we decompose it as a series of conditional
expectations with a fixed number of jumps (canonical averages):

E(Mt
n0

) =

∞∑
N=0

E(Mt
n0
|Nt = N). (28)

In the canonical averages the stochastic jump times are easily integrated out. In fact,
multiplying the stochastic functional (13) with the condition Nt = N by the infinitesimal
probability,

dPN = e−|Γ|s1ρ ds1e
−|Γ|(s2−s1)ρ ds2 · · · e−|Γ|(sN−sN−1)ρ dsN e−|Γ|(t−sN ),

to obtain the jumps 1, 2, . . . , N of the independent Poisson processes in the intervals
[s1, s1 +ds1), [s2, s2 +ds2), . . . , [sN , sN +dsN), respectively, and integrating over the times
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s1, s2, . . . , sN , we get

E(Mt
n0
|Nt = N) =

∑
r∈ΩN

S(r)
N K(r)

N W(r)
N (t), (29)

where ΩN = ΩN(n0) is the set of all possible trajectories with N jumps branching from
the initial configuration n0 and

S(r)
N = λ

(r)
1 λ

(r)
2 · · ·λ(r)

N , (30)

K(r)
N = ε−Nη

(r)
1 η

(r)
2 · · · η(r)

N , (31)

W(r)
N (t) = εN

∫ t

0

ds1

∫ t

s1

ds2 · · ·
∫ t

sN−1

dsN e−V0s1−V
(r)
1 (s2−s1)···−V

(r)
N (t−sN ). (32)

Equations (30), (31) and (32) define three dimensionless quantities related, respectively,
to the sequences of the signs (more generally, of the phases) of the hopping parameters
and of the potential values associated with the rth trajectory with N > 0 jumps. We

have S(r)
0 = K(r)

0 = 1 and W(r)
0 (t) = e−V0t in the case N = 0. The quantities W(r)

N (t) are
positive definite and will be called weights in the following.

From equation (30), it is clear that only the trajectories formed by a sequence of
active links contribute to the sum in equation (29). Hereafter, therefore, we restrict ΩN

to being the set of these effective trajectories with N jumps branching from n0 and we
exclude the value λ = 0 from the set L .

The sum over the set ΩN can be expressed as an average, 〈·〉N , over the trajectories
with N jumps generated by extracting with uniform probability one of the active links
available at the configurations n0, n1, . . . , nN−1. The probability associated with the rth

trajectory generated in this way is p
(r)
N =

∏N−1
k=0 1/A

(r)
k and we have

∑
r∈ΩN

S(r)
N K(r)

N W(r)
N (t) =

∑
r∈ΩN

p
(r)
N S(r)

N K(r)
N W(r)

N (t)
N−1∏
k=0

A
(r)
k =

〈
SNWN (t)

N−1∏
k=0

Tk

〉

N

, (33)

where 〈·〉N =
∑

r∈ΩN
· p

(r)
N . Note that

∑
r∈ΩN

p
(r)
N = 1. By using the definitions (18a)

and (18c), we rewrite the canonical averages as

E(Mt
n0
|Nt = N) =

〈
WN (t)

∏
λ∈L

λNλ

∏
T∈T

T NT

〉

N

. (34)

In the following, we will consider only hard-core bosons in the absence of magnetic fields.
In this case, L = {1} and we are left with averages of positive definite quantities:

E(Mt
n0
|Nt = N) =

〈
WN (t)

∏
T∈T

T NT

〉

N

. (35)
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4.2. Evaluation of the weights

In this section, first we find a recursive differential equation for the weights WN (t). Then,
taking the Laplace transform of this equation, we realize that the weights depend only on
the multiplicities NV of the potential, not on the detailed sequence V0, V1, . . . , VN . Finally,
we use a saddle point technique on the complex plane to obtain an explicit expression for
the weights, which becomes exact in the limit N → ∞.

Equation (32), which defines the weights WN (t) for N ≥ 1, can be rewritten as (for
simplicity, we omit the trajectory index (r) but we stress the dependence on the sequence
of the potential values)

WN (t; V0, V1, . . . , VN) = GN(t; V0, V1, . . . , VN)e−VN t,

where

GN (t; V0, V1, . . . , VN) = εN

∫ t

0

ds1

∫ t

0

ds2 · · ·
∫ t

0

dsN θ(s2 − s1)θ(s3 − s2) · · ·

× θ(sN − sN−1) exp(∆1s1 + ∆2s2 + · · ·+ ∆NsN ),

with ∆k = Vk − Vk−1, k = 1, 2, . . . , N . By evaluating the derivative of GN (t), for N > 0,
with respect to t,

∂tGN(t; V0, V1, . . . , VN) = εGN−1(t; V0, V1, . . . , VN−1) exp(∆N t),

where G0(t; V0) = 1, we find the following recursive ordinary differential equation for
WN (t):

∂tWN(t; V0, V1, . . . , VN) = εWN−1(t; V0, V1, . . . , VN−1) − VNWN (t; V0, V1, . . . , VN). (36)

Since equation (36) is linear in WN (t) and WN−1(t), it is convenient to introduce the
Laplace transform

W̃N (z) =

∫ ∞

0

dt e−ztWN(t), z ∈ C.

On observing that WN (0) = 0 for N > 0, equation (36) reduces to the following recursive
algebraic equation for W̃N(z):

zW̃N (z) = εW̃N−1(z) − VNW̃N (z), (37)

from which we get

W̃N (z) = ε(z + VN)−1W̃N−1(z). (38)

We recall that for N = 0 we have W0(t; V0) = e−V0t and, therefore, W̃0(z) = (z + V0)
−1.

By iterating equation (38), we arrive at the solution

W̃N (z) = εN
N∏

k=0

1

z + Vk

,

which, in terms of the multiplicities (18b), takes the form

W̃N (z) = εN
∏
V ∈V

(z + V )−NV . (39)
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This expression shows that, for any value of N , the weights depend only on the
multiplicities NV , i.e. WN (t; V0, V1, . . . , VN) = WN (t; {NV }).

The explicit inversion of the Laplace transform (39) can be done analytically only
for N large. However, as we will immediately prove, this is the limit we are interested

in. In fact, in the case V̂ ≡ 0, we have WN(t) = W(0)
N (t) = εN tN/N !, which is easily

obtained by direct integration of equation (32). For t large W(0)
N (t) has, as a function

of N , a maximum at N(t) = εt and, around this maximum, is well approximated by a

Gaussian of width
√

N(t). For V̂ generic, let us indicate by Vmin and Vmax the minimum
and maximum elements of V such that NV �= 0 for the trajectory we are considering. In
equation (32) we thus have Vmin ≤ Vk ≤ Vmax, k = 0, 1, . . . , N , and

e−Vmaxt ≤ e−V0s1−V1(s2−s1)···−VN (t−sN ) ≤ e−Vmint. (40)

We conclude that the weights are bounded by

W(0)
N (t)e−Vmaxt ≤ WN (t) ≤ W(0)

N (t)e−Vmint, (41)

so that, for t → ∞, exponentially leading contributions are obtained from values of N in
the range [εt −

√
εt, εt +

√
εt].

According to equation (39), W̃N (z) has mN ≤ mV poles at the points zV = −V
such that V ∈ V and NV �= 0. For N sufficiently large, the number mN of these poles
approaches mV . For any finite value of N , the poles of W̃N (z) are confined in the real
segment [−Vmax,−Vmin]. Recalling the rule for the Laplace inverse transformation, we
have

WN (t) =
1

2πi

∫
Γ

dz eztW̃N(z),

where the integration contour Γ can be any line parallel to the imaginary axis and
contained in the analyticity domain of the Laplace transform. In our case, Γ must be
in the domain Re z > −Vmin. By Jordan’s lemma, the contour can be closed to infinity
in the left half-plane Re z < −Vmin without changing the integration result. Finally, by
Cauchy’s theorem, Γ can be deformed into any other anticlockwise closed contour Γ′ still
containing all the poles zV .

Using the expression (39) for W̃N (z), we write its anti-transform as

WN (t) =
1

2πiε

∫
Γ

dz exp[Nϕ(z)], (42)

where

ϕ(z) =
zt

N
−

∑
V ∈V

NV

N
log

z + V

ε
. (43)

For t large and N ∼ t, since also NV ∼ N due to the ergodicity of the trajectories, we can
evaluate the complex integral (42) by a saddle point technique. Let us call the point of
the complex plane where ϕ(z) is stationary z0, i.e. ∂zϕ(z0) = 0. We deform the contour
Γ into a new one, Γ′ (steepest descent), such that, for z ∈ Γ′, Re ϕ(z) has a maximum at
z0, whereas Im ϕ(z) is constant, at least at the first order in its Taylor expansion around
z0. Provided that the contour Γ′ remains in the analyticity domain of ϕ(z), the following
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standard result applies [10]:

WN (t) =
1

2πiε

√
2π

N |∂2
zϕ(z0)|

exp[iα + Nϕ(z0)], (44)

where α is defined as

α =
π

2
− 1

2
arg ∂2

zϕ(z0) (45)

and represents the angle formed, at the saddle point z0, by the new contour Γ′ with respect
to the original one Γ.

Now we calculate the first and second derivatives of ϕ(z) and the saddle point z0.
From equation (43) we have

∂zϕ(z) =
t

N
−

∑
V ∈V

NV

N

1

z + V
, (46)

∂2
zϕ(z) =

∑
V ∈V

NV

N

1

(z + V )2
. (47)

In terms of x0 = Re z0 and y0 = Im z0, the saddle point equation, ∂zϕ(z0) = 0, reads

t

N
−

∑
V ∈V

NV

N

x0

(x0 + V )2 + y2
0

= 0, (48a)

∑
V ∈V

NV

N

y0

(x0 + V )2 + y2
0

= 0. (48b)

As NV ≥ 0, equation (48b) is satisfied only by y0 = 0. Hence, we are left with the following
equation for x0:

∑
V ∈V

NV

x0 + V
= t. (49)

For any t > 0, equation (49) has mN solutions. The first mN − 1 solutions, ordered
according to increasing value, are in the range −Vmax < x0 < −Vmin, whereas the last one
is such that x0 > −Vmin. This is the only solution compatible with the condition that the
integration contour Γ, passing through z0 = x0+iy0, is contained in the analyticity domain
of ϕ(z). Therefore, for any t > 0, we have one and only one saddle point determined by
equation (49) with the constraint x0 > −Vmin.

The fact that y0 = 0 also implies

∂2
zϕ(z0) =

∑
V ∈V

NV

N

1

(x0 + V )2
, (50)

so that we have

arg ∂2
zϕ(z0) = 0, (51)

i.e. α = π/2. The integration contour Γ, therefore, has to be deformed into a new one Γ′

parallel to the real axis. At a first sight, this kind of deformation is incompatible with
the condition that Γ′ strictly contains all the poles zV located on the real axis. However,
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Figure 1. Integration contours Γ and Γ′ in the complex plane z = x + iy, which
are used to evaluate the Laplace anti-transform of W̃N (z). The saddle point x0

and the poles of W̃N (z) are indicated by open and filled circles, respectively.

the largest solution of equation (49) is bounded from below by x0 > −Vmin + NVmin
/t.

This means that for t → ∞ with NVmin
∼ N ∼ t, the distance between the saddle point

and the closest pole at z = −Vmin is finite. Therefore, we can take Γ′ parallel to the real
axis only in a finite neighbourhood of the saddle point as shown in figure 1. In fact, the
contribution to the integral due to this neighbourhood of z0 is exponentially leading in N
with respect to the rest of the contour.

In conclusion, for t → ∞ with N ∼ t, the integration on the contour Γ′ chosen as
described above becomes asymptotically exact and, in this limit, we have the following
exact expression for the weights:

WN (t) =
ex0t−

∑
V ∈V NV log[(x0+V )/ε]√

2π
∑

V ∈V (ε2NV /(x0 + V )2)
, (52a)

∑
V ∈V

NV

x0 + V
= t, x0 > −Vmin. (52b)

This expression is semi-analytic in the sense that the simple equation (52b), which
provides x0 to be inserted into equation (52a), must be solved, in general, numerically or
recursively.

For V̂ ≡ 0, we can verify that the above expression for the weights reproduces the

exact result W(0)
N (t) = εN tN/N !. In this case V = {0} and the solution of equation (52b) is

x0 =
N + 1

t
. (53)

Inserting this value into equation (52a), we have

W(0)
N (t) =

exp[N + 1 − (N + 1) log[(N + 1)/εt]]√
2πε2t2/(N + 1)

=
1√
2π

exp(N + 1)

(N + 1)N+1/2
εN tN . (54)
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On recalling Stirling’s formula

N ! �
√

2πNN+1/2e−N , (55)

which derives from a saddle point evaluation of the Gamma function as well, we see that
equation (54) is just the Stirling approximation to εN tN/N !.

4.3. Canonical averages via large deviation analysis

To evaluate the canonical averages it is useful to introduce the frequencies, νV = NV /N ,
V ∈ V and νT = NT /N , T ∈ T , which for N large become continuously distributed in
the range [0, 1] with the constraints∑

V ∈V

νV =
∑
T∈T

νT = 1. (56)

Note that, for N large, we do not distinguish the different normalizations, N + 1 and
N , of NV and NT , respectively. When possible, we will use a compact notation in
terms of the vectors µ and ν, which have m = mV + mT components indicated by a
Greek index α ∈ H = V ∪ T and are defined as µT = (· · ·NV · · · ; · · ·NT · · ·) and
νT = (· · · νV · · · ; · · · νT · · ·). We have

µ = Nν. (57)

For later use, we also define uT = (· · · − log[(x0 + V )/ε] · · · ; · · · log T · · ·), vT =
(· · · (x0 +V )−1 · · · ; · · · 0 · · ·) and wT = (· · · (x0 +V )−2 · · · ; · · ·0 · · ·). Note that the vectors
u, v and w depend on ν through x0 = x0(ν) and v = −∂x0u, w = −∂x0v. Finally, we
will take advantage of a scalar product notation. For instance, we rewrite the saddle point
equation (52b) as (ν, v) = t/N .

Using the result given by equations (52a) and (52b), we express the rhs of
equation (35) in the following explicit form:〈

WN (t)
∏
T∈T

T NT

〉

N

=
∑

µ

PN (µ)
ex0t+(µ,u)√
2πε2(µ, w)

. (58)

The probability PN (µ) is given by the fraction of trajectories branching from the initial
configuration n0 and having after N jumps multiplicities µ. According to Poisson’s
summation formula∑

µ

f(µ) =
∑

k∈Zm

∫
dµ ei(k,µ)f(µ), (59)

the sum over µ in equation (58) can be transformed into a series for k ∈ Z
m of integrals

over the same variable in the presence of the oscillating factors exp[i(k, µ)]. As we will
check at the end of the calculation, in the limit of t large all the terms k �= 0 of this series
are exponentially damped with respect to the term k = 0. In this limit, therefore, we will
not distinguish the sum over µ in equation (58) from the corresponding integral.

In [5] we have evaluated equation (58) for t large by using a central limit theorem
for Markov chains. Although this theorem applies rigorously to each rescaled sum
Nα/

√
N = να

√
N , α ∈ H , it provides an approximation when, as in equation (58),

variables like ναN are involved. As anticipated in [5], the integrand in equation (58) is

doi:10.1088/1742-5468/2005/04/P04007 15

http://dx.doi.org/10.1088/1742-5468/2005/04/P04007


J.S
tat.M

ech.
(2005)

P
04007

Ground state of lattice quantum systems: cumulant expansion

sensitive to the large deviations of PN (µ) from the central limit behaviour and to obtain
more accurate estimates we need to consider a development in terms of the associated
cumulants (connected correlation functions) [8].

Before proceeding with this analysis, we observe that the constraints (56) give

important summation rules for the cumulants. Let us indicate by 〈να1 · · · ναk
〉(c)N ,

α1, . . . , αk ∈ H , a cumulant of order k. In appendix A, we demonstrate that∑
α∈V

〈να〉(c)N =
∑
α∈T

〈να〉(c)N = 1, (60)

for k = 1, whereas for k > 1∑
αk∈V

〈να1 · · · ναk
〉(c)N =

∑
αk∈T

〈να1 · · · ναk
〉(c)N = 0. (61)

These rules provide a basic test for the statistical measurement of the cumulants
themselves. A sampling that aims at measuring the cumulants with a given accuracy
will have to satisfy equations (60) and (61) with the same accuracy.

As is customary in the framework of a large deviation analysis, we are interested in
getting information about the density PN(Nν) in the limit of N large and ν finite. On
introducing the Fourier anti-transformation

PN (µ) =
1

(2π)m

∫
dq elog[P̃N (q)]−i(q,µ), (62)

P̃N (q) being the Fourier transform of PN(µ), equation (58) becomes〈
WN (t)

∏
T∈T

T NT

〉

N

=

(
N

2π

)m ∫
dν

∫
dq eNφ(ν,q)R(ν), (63)

where φ(ν, q) takes into account the exponential behaviour of the integrand, whereas
R(ν) is a smooth function. For brevity, we omit the parametric dependence of φ and R
on t and N . Explicitly, we have

φ(ν, q) = x0
t

N
+ (ν, u) − i(ν, q) +

log P̃N (q)

N
(64)

R(ν) =
1√

2πNε2(ν, w)
. (65)

As is well known, the cumulants are related to log P̃N (q) through the relation

log P̃N(q) = log〈ei(µ,q)〉N ,

=
∞∑

k=1

1

k!
〈(µ, iq)k〉(c)N ,

=

∞∑
k=1

Nk

k!
〈(ν, iq)k〉(c)N . (66)

Note that for any given N , due to the inequalities 〈µα1 · · ·µαk
〉N ≤ Nk, valid for any k,

and due to the asymmetry PN(µ) �= PN(−µ), the series in equation (66) converge for
every q ∈ C

m (see, for example, [8]).
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We evaluate the integrals in equation (63) by a saddle point calculation (actually
Laplace’s method) with respect to the variable (ν, q) ∈ R

m × R
m. The derivatives of

φ(ν, q) with respect to qα and να, α ∈ H , are

∂qαφ(ν, q) = i

∞∑
k=1

Nk−1

(k − 1)!
〈(ν, iq)k−1να〉(c)N − iνα

∂ναφ(ν, q) = −iqα + uα,

where we have used (ν, v) = t/N . Therefore, the stationarity condition for φ(ν, q) implies

να =

∞∑
k=1

Nk−1

(k − 1)!
〈(ν, iq)k−1να〉(c)N

iqα = uα,

which, in turn, reduces to the following equation for the saddle point frequencies νsp:

νsp
α =

∞∑
k=1

Nk−1

(k − 1)!
〈(ν, u(x0(ν

sp)))k−1να〉(c)N . (67)

Hereafter, we will add the superscript sp to a function of ν to indicate the value of
this function for ν = νsp. On approximating the function φ(ν, q) with its second-order
Taylor expansion around the saddle point (νsp, qsp) and performing the resulting Gaussian
integral with respect to the variable (ν − νsp, q − qsp), equation (63) becomes〈

WN (t)
∏
T∈T

T NT

〉

N

= CN exp [ψ(N)], (68)

where

ψ(N) = Nφ(νsp, qsp)

= xsp
0 t + N

∞∑
k=1

Nk−1

k!
〈(ν, usp)k〉(c)N (69)

CN =
R(νsp)√

|det∇2φ(νsp, qsp)|
, (70)

∇2φ(ν, q) being the Jacobian of φ with elements

∂qα∂qβ
φ(ν, q) = −

∞∑
k=2

Nk−1

(k − 2)!
〈(ν, iq)k−2νανβ〉(c)N

∂να∂νβ
φ(ν, q) = − vαvβ

(ν, w)

∂qα∂νβ
φ(ν, q) = ∂να∂qβ

φ(ν, q) = −iδα,β ,

for α, β ∈ H . It is convenient to introduce two m × m matrices Σ and A with elements

Σα,β = −∂qα∂qβ
φ(νsp, qsp) (71)

Aα,β = −∂να∂νβ
φ(νsp, qsp). (72)
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In terms of these matrices equation (70) becomes

CN =
1√

|det (1 + ΣA)|
1√

2πNε2(νsp, wsp)
. (73)

Note that, in the case V̂ ≡ 0, the matrix A is uniform and, due to the summation
rules (60) and (61), ΣA = 0. In general, the same summation rules imply det(ΣA) = 0,
so that det(1 + ΣA) � 1 up to second-order terms in A.

4.4. Resumming the canonical series

In this section, we evaluate the expectation E(Mt
n0

) by resumming the series of
equation (28). We will replace the series over N by the integral

E(Mt
n0

) =

∫
dN CN exp[ψ(N)], (74)

and we will perform the integration again with a saddle point technique. At the end,
we will demonstrate the asymptotic exactness, in the limit t → ∞, of the saddle point
integration, as well as of the substitution of the series with the corresponding integral, by
showing that in this limit equation (74) takes exponentially leading contributions from
values of N in the range [εt −

√
εt, εt +

√
εt].

Before evaluating the stationarity condition for ψ(N), an important comment is in
order. For any finite value of N , let us introduce the rescaled cumulants of order k, in a
compact notation Σ(N ;k), which is defined as the tensor of rank k with components

Σ(N ;k)
α1,...,αk

= Nk−1〈να1 · · · ναk
〉(c)N , (75)

α1, . . . , αk ∈ H . Let Σ(k) be the tensor of the asymptotic values of the rescaled cumulants
in the limit N → ∞:

Σ(k)
α1,...,αk

= lim
N→∞

Nk−1〈να1 · · · ναk
〉(c)N = lim

N→∞

1

N
〈Nα1 · · ·Nαk

〉(c)N . (76)

These limits exist and are finite since the irreducible and finite Markov chain formed by
the evolving configurations has a finite correlation length Nc with respect to the number
of jumps (see equation (23)). Up to corrections exponentially small in N/Nc, for N � Nc

we can use the effective rule

∂NΣ(N ;k)
α1,...,αk

= 0. (77)

Using the rule (77), the derivative of ψ(N) with respect to N is

∂Nψ(N) =
∞∑

k=1

Nk−1

k!
〈(ν, usp)k〉(c)N + ∂Nxsp

0

[
t − N

∞∑
k=1

Nk−1

(k − 1)!
〈(ν, usp)k−1(ν, vsp)〉(c)N

]
.

On the other hand, from equation (67) we have

∞∑
k=1

Nk−1

(k − 1)!
〈(ν, usp)k−1(ν, vsp)〉(c)N = (νsp, vsp),
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so that, by using N(νsp, vsp) = t, we find

∂Nψ(N) =

∞∑
k=1

Nk−1

k!
〈(ν, usp)k〉(c)N . (78)

In conclusion, the stationarity condition, ∂Nψ(N sp) = 0, gives

∞∑
k=1

Nk−1

k!
〈(ν, usp)k〉(c)N

∣∣∣∣∣
N=Nsp

= 0, (79)

which in terms of the rescaled cumulants (75) reads

∞∑
k=1

1

k!

∑
α1∈H

· · ·
∑

αk∈H

Σ(N ;k)
α1,...,αk

usp
α1

· · ·usp
αk

∣∣∣∣∣
N=Nsp

= 0. (80)

Equation (80) determines the saddle point N sp for the chosen value of the time t.
From equation (78) and using the rule (77), for the second derivative of ψ(N) we find

∂2
Nψ(N) = −(νsp, vsp)∂Nxsp

0 , (81)

where

∂Nxsp
0 =

1

N

(νsp, vsp)

(νsp, wsp) + (Σvsp, vsp)
. (82)

Equation (82) has been obtained by evaluating the total derivative of the saddle point
equation N(νsp, vsp) = t with respect to N ,

(νsp, vsp) + N
[
(∂xsp

0
νsp, vsp) − (νsp, wsp)

]
∂Nxsp

0 = 0,

and by observing that, according to equation (67), we have

(∂xsp
0

νsp, vsp) = −
∞∑

k=2

Nk−1

(k − 2)!
〈(ν, usp)k−2(ν, vsp)2〉(c)N

= −(Σvsp, vsp).

To evaluate the integral (74), we approximate ψ(N) � ψ(N sp)+ 1
2
∂2

Nψ(N sp)(N−N sp)2

and CN � CNsp . The remaining Gaussian integration gives the following result:

E(Mt
n0

) =

√
1 + tr(ΣA)

|det (1 + ΣA)|
exsp

0 t

ε(νsp, vsp)

∣∣∣∣∣
N=Nsp

. (83)

The matrices Σ and A are defined by equations (71) and (72) and their components
explicitly read

Σα,β = Σ
(N ;2)
α,β +

∞∑
k=1

1

k!

∑
α1∈H

· · ·
∑

αk∈H

Σ
(N ;k+2)
α,β,α1,...,αk

usp
α1

· · ·usp
αk

, (84)

Aα,β =
vsp

α vsp
β

(νsp, wsp)
. (85)
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Equation (83) represents our final expression for the matrix elements (14). It is valid
for t large but finite with N sp(t) determined by equation (80). It is simple to show that in
the limit t → ∞, equation (80) may admit a solution only if N sp(t) grows proportionally
to t. In fact, from equation (52b) for arbitrary t and N we have that

νsp
Vmin

N + 1

t
< xsp

0 + Vmin ≤ N + 1

t
, (86)

where Vmin is the smallest value of V ∈ V such that νsp
Vmin

> 0. Note that this value of
V exists due to the properties 0 ≤ νsp

α ≤ 1 for any α ∈ V and
∑

α∈V νsp
α = 1. Therefore,

for N = Nsp(t) all the components uV = − log[(xsp
0 + V )/ε] diverge when t → ∞ if

limt→∞ N sp(t)/t = ∞, whereas if limt→∞ N sp(t)/t = 0 the only diverging component is
uVmin

. In both cases, equation (80) does not have a solution for t → ∞. In this limit,
therefore, we must have N sp(t) ∼ t. This condition, which from a physical point of view
simply expresses the proportionality between the time and the length of the trajectories
most contributing to the expectation, implies two important consequences. First, since
the peak of the Gaussian at N = N sp(t) moves to infinity linearly with t, whereas its width
increases only as

√
t, see equations (81) and (82), the result (83) becomes asymptotically

exact for t → ∞. Second, in equation (80) we can replace Σ(N ;k) by their asymptotic
values Σ(k). In this way, equation (80) can be read as a time-independent equation that
determines the quantity

E0B = − lim
t→∞

xsp
0 |N=Nsp(t) (87)

as a function of the asymptotic rescaled cumulants Σ(k), k ≥ 1. Comparing equations (15)
and (83), we realize that this quantity is the ground-state energy of the system considered.
In conclusion, for systems of hard-core bosons the ground-state energy E0B is determined
by the scalar equation
∞∑

k=1

1

k!

∑
α1∈H

· · ·
∑

αk∈H

Σ(k)
α1,...,αk

uα1(E0B) · · ·uαk
(E0B) = 0 E0B ≤ Vmin, (88)

where

uT(E0B) = (· · · − log[(−E0B + V )/ε] · · · ; · · · log T · · ·). (89)

The existence of a unique solution of equation (88) is ensured by the condition E0B ≤ Vmin,
which stems from equation (52b). If we truncate the series in equation (88) to the second
order, we recover the Gaussian approximation of [5] (there Σ(1) and Σ(2) were indicated as

ν and Σ, respectively). Furthermore, as in [5], the V̂ ≡ 0 case can be solved explicitly and

we get the following exact solution for the ground-state energy, E
(0)
0B , of a non-interacting

hard-core boson system:

E
(0)
0B = −ε exp

[ ∞∑
k=1

1

k!

∑
T1∈T

· · ·
∑

Tk∈T

Σ
(k)
T1,...,Tk

log T1 · · · log Tk

]
. (90)

For a generic V̂ , equation (88), with the series truncated at an arbitrary finite order kmax,

can be solved numerically by the bisection method using the bounds E
(0)
0B +Vmin ≤ E0B ≤

Vmin.

doi:10.1088/1742-5468/2005/04/P04007 20

http://dx.doi.org/10.1088/1742-5468/2005/04/P04007


J.S
tat.M

ech.
(2005)

P
04007

Ground state of lattice quantum systems: cumulant expansion

Equation (88) allows one, via the Hellmann–Feynman theorem (5), also to evaluate the
expectation of any other operator in the ground state of the chosen Hamiltonian (see [5] for
more details). Moreover, it is clear that the cumulants Σ(k) depend only on the structure of
the system Hamiltonian, not on the values of the Hamiltonian parameters. Therefore, once
the Σ(k) are known, all the evaluated ground-state expectations are analytical functions
of the Hamiltonian parameters.

5. Numerical evaluation of the cumulants and example cases

In this section, we discuss the numerical evaluation of the cumulants. We also apply
our method to some example cases and compare the ground-state energies obtained from
equation (88) with those from exact numerical calculations.

In our approach, the starting point is the evaluation of the asymptotic values Σ(k)

of the rescaled cumulants Σ(N ;k). According to equation (A.7), the latter are obtained in
terms of the statistical moments 〈Nα1 · · ·Nαk

〉N , which are easily sampled by generating
M random trajectories branching from the initial configuration n0, i.e.

〈Nα1 · · ·Nαk
〉N =

∑
µ

PN(µ)Nα1 · · ·Nαk

� 1

M

M∑
p=1

N (p)
α1

· · ·N (p)
αk

, (91)

where N
(p)
α is the multiplicity Nα, α ∈ H , of the pth trajectory. The number M of

trajectories must be chosen larger than a critical value Mε(N, k), which depends on the
statistical precision ε required in the evaluation of the rescaled cumulants Σ(N ;k).

The length N of the M trajectories is chosen sufficiently large for the asymptotic
behaviour of Σ(N ;k) to be established. This may represent a problem since the fluctuations
in equation (91) grow as Nk so that Mε(N, k) becomes huge for k > 1. However, the
evolving trajectories form a Markov chain having, see later, a finite correlation length Nc.
Therefore, Σ(N ;k) converges exponentially to Σ(k) with a characteristic length of the order
of (k + 1)Nc, kNc if the initial configuration n0 is taken randomly distributed according
to the invariant measure of the Markov chain. As shown in the example case of figure 2,
for a large class of models we have observed that the correlation length Nc exists and
grows no more than linearly with the size of the system. The evaluation of the cumulants
is thus feasible even for large systems.

A possible numerical limitation in the evaluation of the cumulants of large order
is collecting and updating all the components of Σ(k), whose number is mk, with m
the cardinality of H , which grows with the size of the system. Basically, this kind of
difficulty is related to the CPU capability of simultaneously updating many addresses
of memory, not to the CPU speed, and can be reduced by vectorization tools. The

difficulty can be reduced also by exploiting the invariance of the components Σ
(k)
α1,...,αk

under permutation of any pair of the α indices. In this way, only the components Σ
(k)
α1,...,αk

with α1 ≤ α2 ≤ · · · ≤ αk are sampled according to equation (91). This introduces an
error in the summation rules (60) and (61), which, on the other hand, are identically
satisfied if all the components of Σ(k) are sampled. However, more than a drawback
this error represents an advantage, which allows one to set the critical number Mε of
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Figure 2. Absolute value of the normalized correlation function CV =γ,V =γ(h)
as a function of the jump interval h = h2 − h1 for two different FNU hard-core
boson Hubbard models. The straight dashed lines are the results of a fit in the
range 10 ≤ h ≤ 29 with a function of the form const × exp(−h/Nc). We have
Nc = 4.80 and Nc = 6.14 in the 2×3Np = 3 and 4×4Np = 8 cases, respectively.
Each correlation function has been evaluated by using M = 5× 108 independent
trajectories.

sampling trajectories in a simple way. In fact, the determination of the cumulants with a
statistical precision ε implies the summation rules (60) and (61) to be satisfied with the
same precision.

In the following, we report on simulations performed in the case of the first-neighbour
uniform (FNU) hard-core boson Hubbard model defined by the Hamiltonian

Ĥ = −η
∑

(i,j)∈Γ

∑
σ=↑↓

(ĉ†iσ ĉjσ + ĉ†jσĉiσ) + γ
∑
i∈Λ

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓, (92)

where Γ = {(i, j) : i < j ∈ Λ and i, j first neighbours}. We set the reference energy ε to
the value of the hopping parameter η. We have considered two-dimensional systems with
periodic boundary conditions, Lx × Ly sites and N↑ = N↓ = Np particles per spin. For
this model, the set V has elements 0, γ, 2γ, . . . , Npγ, whereas the set T is the collection
of the possible values of the number of active links, e.g., T = {12, 16, 20} in the case of
a 2 × 3 system with Np = 3 or T = {8, 10, 12, 14, 16} for the same system with Np = 2.

To check the correlation properties mentioned before, we studied the connected
correlation functions of order 2:

Cα,β(h2 − h1) = 〈χα(nh1
)χβ(nh2

)〉(c)N , (93)

where h2 ≥ h1 and χα(n) is the characteristic function taking the value 1, if V (n) = α and

α ∈ V , or T (n) = α and α ∈ T , and 0 otherwise. The averages 〈·〉(c)N can be sampled as
indicated in equation (91) by generating M independent trajectories with configurations

n
(p)
h , h = 0, 1, . . . , N and p = 1, . . . , M . For N sufficiently large, the correlation functions

(93) no longer depend on h1 and h2, only on the jump interval h = h2 − h1. In figure 2
we show the behaviour of the correlation function (normalized to 1 at h = 0) obtained

doi:10.1088/1742-5468/2005/04/P04007 22

http://dx.doi.org/10.1088/1742-5468/2005/04/P04007


J.S
tat.M

ech.
(2005)

P
04007

Ground state of lattice quantum systems: cumulant expansion

0 5 10 15

-6

-4

-2

0

2 × 3 Np = 3

2 × 3 Np = 2

1
2
3
4

 /  

E
0

B
/(

N
p
)

η

ηγ

Figure 3. Ground-state energy per particle for the 2 × 3 FNU hard-core
boson Hubbard model versus the interaction strength γ with Np = 2 and 3
particles per spin. We compare the results obtained by solving equation (88)
at truncation orders kmax = 1, 2, 3, 4 (different lines) with those from exact
numerical diagonalizations (+). The statistical errors associated with the
cumulants, evaluated with N = 200 and M = 107, are negligible on this scale.

by choosing α and β equal to the potential value V = γ for two different FNU hard-core
boson Hubbard models. After an initial transient, CV =γ,V =γ(h) decreases as exp(−h/Nc).
The measurement of the correlation length via a fitting procedure shows that Nc increases
slowly with the size of the system. Similar results are obtained for different choices of α
and β.

In figure 3 we show the behaviour of E0B as a function of the interaction strength γ in
a 2×3 lattice with Np = 2 and 3, whereas in figure 4 we consider a 4×4 lattice with Np = 5
and 8. In these figures, we compare the energies obtained from equation (88) by truncating
the cumulant expansion at the order kmax = 1, 2, 3, 4 with the results from exact numerical
diagonalizations (figure 3) and quantum Monte Carlo simulations (figure 4). For kmax = 2,
we recover the results of [5]. As expected, we obtain better and better agreement with
the exact energies as the truncation order kmax is increased.

The number of cumulants needed to obtain a given approximation grows as the
interaction strength γ or the lattice size |Λ| is increased. As explained in the previous
sections and anticipated in [5], this behaviour is due to the form of the function f(µ)
to be averaged in equation (58). In fact, f(µ) involves multiplicities µ coupled with the
potential values and with the number of active links, which, in turn, are related to γ
and |Λ|. For increasing values of γ and |Λ|, f(µ) becomes more and more sensitive to
the large deviations of the probability density PN (µ) and cumulants of higher and higher
order must be kept in the calculation.

In figure 5, which is an enlargement of figure 3 (left panel) and figure 4 (right panel) in
the small γ region of the systems at half-filling considered there, we can better appreciate
the convergence of the solutions of equation (88), for increasing values of kmax, toward the
exact energies. In figures 3–5, the statistical errors associated with the measurement of
the cumulants are negligible on the scales considered.
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Figure 4. As figure 3, but for the 4 × 4 lattice with Np = 5 and 8 particles per
spin. We compare the results obtained by solving equation (88) at truncation
orders kmax = 1, 2, 3, 4 (different lines) with those from quantum Monte Carlo
simulations (×). The statistical errors associated with the cumulants, evaluated
with N = 200 and M = 107, and with the quantum Monte Carlo results are
negligible on this scale.
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Figure 5. Enlargements of figure 3 (left panel) and figure 4 (right panel) in the
small γ region of the systems at half-filling considered there. We show the results
obtained by solving equation (88) at truncation orders kmax = 2, 3, 4 (different
lines, left panel) and kmax = 2, 3, 4, 5 (different lines, right panel) in comparison
with those from exact numerical diagonalizations (+, left panel) and quantum
Monte Carlo simulations (dots with error bars, right panel). The statistical errors
associated with the cumulants are negligible.

6. Conclusions

By using saddle point techniques and a cumulant expansion theorem, we have exploited
an exact probabilistic representation of the quantum dynamics in a lattice to evaluate the
matrix elements of the evolution operator of a system of hard-core bosons in the limit
of long times. The approach yields a simple scalar equation for the ground-state energy
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in terms of the asymptotic cumulants Σ(k) of the values of the potentials, V , and of the
kinetic quantities, T , assumed by the system during its long-time evolution. Since the
cumulants depend only on the structure of the system Hamiltonian, once they are known,
this equation provides the ground-state energy and, via the Hellmann–Feynman theorem
(5), the ground-state expectation of any other operator, analytically as a function of the
Hamiltonian parameters. In contrast, quantum Monte Carlo methods require, due to
the unavoidable branching or reconfiguration techniques (see [7] and [11] and references
therein), different simulations for different values of the parameters.

The analytical character of the present approach suggests many potential applications.
Here, we briefly envisage some of them.

(i) The knowledge of the ground-state energy as a function of the Hamiltonian
parameters, E0B = E0B(ξ), allows in principle the determination of ground-state quenched
averages,

∫
f(E0B(ξ)) dPξ, of crucial interest in the study of disordered systems. Here,

Pξ is a given probability density of the disorder parameters ξ. Note that when the
dimension of the space of the Hamiltonian parameters is larger than 1, the evaluation of the
above integral by a quantum Monte Carlo approach may be a hard, if not unmanageable,
numerical task.

(ii) Even though we have specialized the study to the easiest case, namely that of
hard-core bosons in the absence of a magnetic field, as evidenced in section 3 and in
section 4.1, our approach is general and not limited to hard-core boson systems. Fermions
and bosons in a magnetic field may in principle be treated in a similar way, provided
that we properly take into account also the multiplicities Nλ; see equation (18a). This
possibility is of great interest since, as is well known, fermions and bosons in a magnetic
field are both affected by the so-called sign (or phase) problem, which in practice inhibits
the accomplishing of unbiased quantum Monte Carlo simulations.

(iii) We note that our approach is also analytical in the time parameter, t. By properly
taking into account the derivatives of the cumulants with respect to the number of jumps,
∂NΣ(N ;k), one can obtain not only the asymptotic behaviour of the matrix elements, equa-
tion (83), but also their behaviour at finite times, t, either imaginary or real. The latter
possibility constitutes another chance of great interest because in general, due to the pres-
ence of oscillating terms, the real-time behaviour is also affected by a sort of sign problem
and the quantum Monte Carlo simulations are reliable only for short times [7]. Of course,
the complete knowledge of the time behaviour would imply that of the excited states.

(iv) Finally, we mention a different possible application of the result (88). This
equation can be exploited in a Monte Carlo framework for effectively sampling the ground-
state energy. Essentially, the better efficiency of this Monte Carlo method, compared with
that directly deduced from equation (12), see [7] for details, follows from the fact that
the stochastic times of the original probabilistic representation have been analytically
integrated out, as is done in section 4.2, so that the fluctuations are necessarily reduced.
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Appendix A. Proof of the cumulant summation rules

In this appendix we prove the relations (60) and (61). Due to the constraints (56), it
is trivial that the statistical moments (non-connected correlation functions) of order k,
〈να1 · · · ναk

〉N , α1, . . . , αk ∈ H , satisfy the following summation rules:∑
α∈V

〈να〉N =
∑
α∈T

〈να〉N = 1, (A.1)

for k = 1, whereas for k > 1
∑

αk∈V

〈να1 · · · ναk
〉N =

∑
αk∈T

〈να1 · · ·ναk
〉N

= 〈να1 · · · ναk−1〉N . (A.2)

Since 〈να〉(c)N = 〈να〉N , equation (A.1) coincides with equation (60).
To demonstrate equation (61), let us introduce the short notation

m(I(k)) = 〈να1 · · ·ναk
〉N (A.3)

s(I(k)) = 〈να1 · · · ναk
〉(c)N , (A.4)

where I(k) = {1, . . . , k} is the set of integers that appear as subscripts in α1 . . . αk. More
generally, for any nonempty subset Ip of I(k), Ip = {p1, p2, . . .}, we define m(Ip) and s(Ip)
as

m(Ip) = 〈ναp
1
ναp

2
· · ·〉N (A.5)

s(Ip) = 〈ναp
1
ναp

2
· · ·〉(c)N . (A.6)

The cumulants can be defined implicitly in terms of the moments according to the
relation [8]

m(I(k)) =
∑

∪pIp=I(k)

∏
p

s(Ip), (A.7)

where the sum is extended to all the unordered decompositions of the set I(k) in disjoint
nonempty sets Ip such that ∪pIp = I(k).

Let us proceed inductively and suppose that equations (61) hold for any value of the
order k such that 2 ≤ k ≤ n − 1, i.e.∑

αk

s(I(k)) = 0, 2 ≤ k ≤ n − 1, (A.8)

where the sum runs either over the sets V or T .
At the order n, we rewrite equation (A.7) as

m(I(n)) = s(I(n)) +
∑

∪pIp=I(n−1)

∏
p

s(Ip)s({n}) +
∑

∪pIp=I(n),Ip �=I(n),Ip �={n}

∏
p

s(Ip), (A.9)

doi:10.1088/1742-5468/2005/04/P04007 26

http://dx.doi.org/10.1088/1742-5468/2005/04/P04007


J.S
tat.M

ech.
(2005)

P
04007

Ground state of lattice quantum systems: cumulant expansion

where {n} is the set having only the element n and s({n}) = 〈ναn〉
(c)
N . By summing

over the index αn, for αn ∈ V or αn ∈ T , and using the relations (A.2) together with

〈ναn〉
(c)
N = 〈ναn〉N , we get

m(I(n−1)) =
∑
αn

s(I(n)) +
∑

∪pIp=I(n−1)

∏
p

s(Ip) +
∑

∪pIp=I(n), Ip �=I(n), Ip �={n}

∏
p

∑
αn

s(Ip). (A.10)

According to equation (A.7), the second term in the rhs of equation (A.10) is equal to
m(I(n−1)) whereas the third term involves only sets Ip with |Ip| ≤ n − 1 so that by using
the inductive hypothesis, equations (A.8), we have∑

αn

s(I(n)) = 0. (A.11)

Finally, it is easy to verify by direct inspection that in the case k = 2 we have∑
α2

s(I(2)) = 0, (A.12)

so that equation (61) is proved.
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