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Resume Nous analysons l' emploi de l a supe r symetr ie de la me canique quanti que pour 
la diffusion c lass i que d'un part icule brownienne dans des potentie1s faibl emen t lies. 
En particulie r , no s ca1culs numeriques ont pennis 1a determination analytique precise 
de 1a forme du mode de frequence d'un " kink" stat ique de l' e quations de s ine- Gordon 
doub l e. 

Abstract · We review the use of supersynunetric quantum mechanics in the analysis of the classical diffusion of 

a brownian particle in weakly binding (soft) potentials. In particular, our computations are shown to provide an 

accurate analytical determination of the shape- mode frequency of the static double sine- Gordon kink. 

1. Introduction 

The usage of the Langevin equation formalism to describe the dynamics of localized solutions (solitons) of non· 

linear field theories perturbed by random fields of force is now conunon practice [1]. In the present Conununication 

we wish to show how the very same formalism also provides a useful tool for the stability analysis of soliton-like 

solutions through the connection between Schrodinger and Fokker-Planck equation [2-5]. We shall specia lize our 

approach to the discussion of the stability of the static double sine-Gordon soliton and to the related problem of 

the brownian diffusion in weakly binding (soft) potentials. 

2. Classical diffusion and quantum mechanics 

Consider the classical diffusion problem described by the Langevin equation 

dz dW - = -- +1/(t) 
dt dz 

(2.1) 

where W( z) is a binding potential function and 71( t) is a gaussian white noise with zero mean and auto-correlation 

function 

< 11(t)11(t') > = 2D5(t- t') (2.2) 

The associated Fokker-Planck equation for the probability density P(z,t) 

&P(z, t) = .i_[dW D.i_]P( ) 
ot oz dz + oz z , t (2.3) 

is trasformed [5] into an imaginary-time Schrodinger equation 

&w(z,t) 
--

0
-t- = H_w(z,t) (2.4) 

through the substitution 

P(z,t) 
- W(e) 

e >D 'lt(z,t) (2.5) 
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where the hamiltonian in (2.4) is given by 

and the quantum potential V_ (z) is related to the "classical" potential by the Riccati equation 

The connection with quanttun mechanics is obtained by setting D = 2':,.. for the diffusion coefficient (5]. 

The hamiltonian (2.6) is a positive operator 

H _ 

with 
8 1 dW 

A=v'fl-+--
8z ..j4i5 dz 

A+ = -v'fl~ + _1_ dW 
8z ..j4i5 dz 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

which implies a non-negative spectrum E;; ~ 0. Introducing the set of eigenfunctions <p;;(z ), H -'P;; = E;;<p;;, t he 

transition probability of the classical diffusion process can be expanded as 

(2.10) 

thus implying that the lowest non- vanishing eigenvalue >. = E! provides an estimate of the rate of approach to 

equilibrium of the brownian particle. Furthermore, if the classical problem admits of a stationary state there must 
exist 

lim R(z,t\z',O) = P.9 (z) 
t-oo 

(2.11 ) 

independent of z'. From (2.10) and (2.11) it follows that in this case E0 = 0 and 

(2.12) 

with 

(2.13) 

3. Supersymmetric quantum mechanics 

It is well known (6] that the quantum mechanics generated through the transformation (2.5) is supersymmetric. 

Introducing the two-component wave-functions 

(3.1) 

and the supercharges 

(3.2) 

the supersymmetric hamiltonian is given by 

(3.3) 

with H_ =A+ A and H+ = AA+, i.e. 

(3.4) 

(3 .5) 
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It is well known that if the classical diffusion problem (2.1) admits an equilibrium state with a normalizable 
probability distribution (2.11), the supersymmetry is not broken, the ground state has zero energy (E0 = 0) with 
wave-function given by (2.12). Furthermore the partner hamiltonians H'f have the same spectra, H'frp'f = E'frp'f, 
with 

E;;+1 = E: 
and the eigenfunctions corresponding to the same eigenvalues are related by 

Arp;;-+l = v'Ef 'P! 
A+rp! = ../iifrp;;-+1 

The supersymmetric partner of the ground state of H _ is not normalizable. 

(3.6) 

(3.7) 

(3.8) 

The use of supersymmetric quantum mechanics for solving a bistable Fokker-Planck equation has, indeed, 
several major advantages over other computational methods. First of all, in the Schrodinger equation corresponding 
to H+ the bistable potential is replaced with an essentially monostable (single-well) supersymmetric partner. The 
zero-eigenvalue appearing in the spectrum of the Fokker-Planck equation is deleted and the determination of>. does 
not require then any difficult tunneling calculation (we recall that in the low temperature limit >. is exceedingly 
small) [2). Secondly, supersymmetry provides a way to construct a family of Schrodinger equations, the eigenvalue 
spectrum of which differs only for a finite number of states [6); as a consequence diffusion problems with a different 
number of time scales might be related to each other. 

Furthermore supersymmetric quantum mechanics provides a sistematic and simple method for determining 
>. also when the brownian particle experiences a constant binding force at infinity [4) : we agree to term these 
potentials soft. Soft potentials are relevant not only for physical applications, but also because they allow to verify 
the assumptions underlying Kramers' method [7,8) to evaluate the time of approach to equilibrium of a brownian 
particle in a bistable potential. In these cases supersymmetry may provide an exact solution even when Kramers ' 
theory is inadequate. This we shall investigate in the next section. 

4. A soft potential 

We consider a one-dimensional system defined by the stochastic differential equation (2.1) with potential 

Ch'"f'Z 
W(z ,R) = -2,Bln[ h2 h2 RJ (4.1) 

c '"f'Z + 6 

For r -+ 0 (4.1) produces the free particle potential while for 7 -+ oo with r.B con6t (4.1) gives the exactly 
solvable wedge potential [5]. From now on, we set r = ,B = 1. On varying the tunable parameter R the potential 
shape changes from a single-well structure for R < R• = 0.88 to a double-well structure (Fig. 1). Note that the 
potential is linear as z-+ ±oo and W(z;O) = -W(z;oo). 

X 

Fig.J- Plot of the potential W(z;R). 

We shall now estimate the smallest eigenvalue>. for all values of Rand D. The transformation (2 .5) forD = 1 
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leads to the eigenvalue problem 

with H _ given by 
cfZ 2 2 2 

H - - - + 1 - - + -:--o-=------::-=-
- - dz2 ch2(z-R) ch2(z+R) ch2R +3h2 z 

With ( 4.2a) is associated [9] the supersymmetric partner H + 
d2 2 2 

H+ = - dz2 + 1 - ch2z + sh2R + ch2z 

which, in turn, may be approximated to a symmetric Poschl- Teller hamiltonian of t he form 

d2 Uo 
HPT = -- + 1---

dz2 ch2az 
with 

U0 = 2th2R 

2 3h2R 
a= th R sh2R- 2R 

(4.2) 

(4.2a) 

(4.2b) 

(4.3) 

(4.4a) 

(4.4b) 

The eigenvalue spectrum of ( 4.3) is known analytically [9]. The smallest non- vanishing eigenvalue is then computed 
as [4] 

with 

.X _< 'ft(z)IH+l'ft > 
- < 'ft'ft > 

+ ( 1 )' 
'fb = cha z 

1 
s =-(-1+ 

2 

( 4.5) 

(4.6a) 

(4.6b) 

The behavior of A as a function of R is displayed in Fig. 2 and is compared with A obtained from the numerical 
integration of the Schrod.inger equation [9]. We see that the agreement is excellent for all values of R, including 
the range R < 2 where the usual semiclassical approximations are no longer tenable. 

We notice that (4.5) provides also an analytical expression- valid for all values of R- of the frequency of the 
shape mode [9] of the 411" double sine-Gordon kink. 
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Fig.2- The supersymmetric result (4. 5) (solid line} is compared with the numerical integration of (4.2} {dots) 
and Kramers' appro:zimation {.(.7) (dotted-dashed line) 

To obtain the correct result for A using standard FP techniques is less straightforward. In fact, the computation 
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of .X through Kramers' formula turns out to hold only for D < < 1. The assumptions implicit in Kramers' method 
are often swnmarized by the requirement that D < < ~ W = W(O, R)- W( ± zm; R) = 2ln~~:~, where Zm denotes 
the position of the potential minima for R > R•. Such a condition is meant to guarantee by one token that the 
potential barrier ~W is much larger than the average energy fiuctuation D and that the bistable potential can be 
approximated by parabolic curves in the vicinity of the extremal points z = 0 and ± zm. This is not the case of soft 
potential where the second condition corresponds (4] to the further inequality D << [W''(O; R)F fW'v(O; R) c::: 0(1). 

This explains why Kramers' formula for .X 

_xK = !l_ ~h2 R - 1 thR 
... ch4R 

(4.7) 

is inadequate at D = 1 even for R--. oo , where ~W c::: 2R becomes infinitely large. 

For D :f 1 the Schrodinger problem is not amenable to an easy analytical solution. We may use in this case 
the variational method proposed by Bernstein and Lowell-Brown (2] to investigate the behavior of .X as a function 
of both D and R. To obtain a good variational estimate for the ground state level, .X, of the hamiltonian H + , one 
first notices that H+ezp w;~R) = 0. As the operator H+ is positive definite a natural choice for the trial function 
is 

,P(z) 
l"+(z) = ezp--

2D 
(4.8a) 

with 
_ _ { W (z;R) 

,P(z) - .P(-z)- W(c) + W'(c)(z- c) ( 4.8b) 

where c is the only variational parameter in this scheme. To guarantee that I"+ ( z) is normalizable, one requires 
that 0 < c < Zm, so that W'(c) is negative definite. 

The variational method provides then an upper bound for A 

A < Av =min< l"+(z)IH+II"+ > 
- {c) < 1"+1"+ > 

(4.9) 

The variational computation of A(D; R) for the potential ( 4.1) has been reported elsewhere (10]. Here we recall 
only that 

i) Av is well defined only for R > R• as understood in the variational approach -where the bistable structure of 
W(z;R) is always assumed. For R > 2 Av approximates A within up to 40 % for the whole range of values of D 
considered; an excellent agreement (within 1 %) is obtainable for both D < < ~ W and D > > ~ W. 

ii ) in the limit ~W >> D and D << 1 Av and >.K (the eigenvalue computed via Kramers' formula) come close to 
each other. 

iii) there is a critical value De such that for ~W >> D :::>: D e the activation rate is no longer reproduced by 
Kramers' formula; a good approximation for).. has been obtained from (4.9) [10]. 

In summary, we have shown how supersymmetric quantum mechanics could provide - in an easy and systematic 
fashion- an estimate of the time of approach to equilibrium of a brownian particle even in cases (soft potentials) 
in which FP techniques are hard to use. For D == 1, supersymmetric quantum mechanics is able to reproduce the 
exact activation rate. 
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