
Thermodynamical approaches to efficient sympathetic cooling
in ultracold Fermi-Bose atomic mixtures

Michael Brown-Hayes,1 Qun Wei,1 Carlo Presilla,2,3,4 and Roberto Onofrio5,3,1

1Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, New Hampshire 03755, USA
2Dipartimento di Fisica, Università di Roma “La Sapienza,” Piazzale A. Moro 2, Roma 00185, Italy
3Center for Statistical Mechanics and Complexity, INFM-CNR, Unità di Roma 1, Roma 00185, Italy

4INFN, Sezione di Roma 1, Roma 00185, Italy
5Dipartimento di Fisica “Galileo Galilei,” Università di Padova, Via Marzolo 8, Padova 35131, Italy

�Received 16 November 2007; published 16 July 2008�

We discuss the cooling efficiency of ultracold Fermi-Bose mixtures in species-selective traps using a ther-
modynamical approach. The dynamics of evaporative cooling trajectories is analyzed in the specific case of
bichromatic optical dipole traps also taking into account the effect of partial spatial overlap between the Fermi
gas and the thermal component of the Bose gas. We show that large trapping frequency ratios between the
Fermi and the Bose species allow for the achievement of a deeper Fermi degeneracy, consolidating in a
thermodynamic setting earlier arguments based on more restrictive assumptions. In particular, we confirm that
the minimum temperature of the mixture is obtained at the crossover between boson and fermion heat capaci-
ties, and that below such a temperature sympathetic cooling vanishes. When the effect of partial overlap is
taken into account, optimal sympathetic cooling of the Fermi species may be achieved by properly tuning the
relative trapping strength of the two species in a time-dependent fashion. Alternatively, the dimensionality of
the trap in the final stage of cooling can be changed by increasing the confinement strength, which also results
in a crossover of the heat capacities at deeper Fermi degeneracies. This technique may be extended to Fermi-
Bose degenerate mixtures in optical lattices.
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I. INTRODUCTION

Atomic physics and condensed matter physics now enjoy
strong connections through the study of quantum transport in
ultracold dilute gases �1�. Long-standing problems of con-
densed matter physics may be addressed by preparing con-
trollable environments for the dynamics of cold atoms and
by continuously tuning their interactions. This in turn allows
for the study of fundamental features of high-temperature
superconductivity using ultracold gases as controllable, ana-
log computers of various model Hamiltonians �2�.

Degenerate Fermi gases were first produced in 1999 �3�,
and more recently Fermi superfluid behavior has been con-
clusively evidenced through the generation of vortices �4�
and the onset of critical velocities �5� in degenerate samples
of 6Li. Weakly interacting Fermi gases are difficult to bring
to quantum degeneracy mainly due to fundamental obstacles
in adapting cooling techniques successfully used for bosonic
species. In particular, the Pauli principle inhibits efficient
evaporative cooling among identical fermions as they reach
degeneracy. This issue has been circumvented by developing
two cooling techniques, namely mutual evaporative cooling
of fermions prepared in two different states and sympathetic
cooling with a Bose species. In the case of dual evaporative
cooling, a selective removal of the most energetic fermions
in both the hyperfine states is performed. Provided that the
initial number of atoms in each state is roughly the same,
efficient dual evaporative cooling can be performed through-
out the entire process. Limits to the minimum reachable ab-
solute temperature using dual evaporative cooling have been
addressed in �6�, resulting in a minimum reachable tempera-
ture T�� /kB, with � the chemical potential of the Fermi gas

�see also �7� for a complementary analysis�. Moreover, the
number of available atoms Nf progressively decreases over
time with a corresponding drop in the Fermi temperature TF
proportional to Nf

1/3. The resulting gain in terms of a lower
T /TF degeneracy ratio is therefore limited, and the smaller
clouds obtained at the end of the evaporative cooling are
detrimental to detailed experimental investigations requiring
a large number of atoms, such as a quantitative mapping of
the superfluid phases. In the case of sympathetic cooling us-
ing a Bose gas, the number of fermions is instead kept con-
stant, leaving aside losses due to background pressure and
two- and three-body collisions, and the cooling efficiency
depends on the optimization of Fermi and Bose collisional
properties, heat capacities, and, in the case of inhomoge-
neous samples, their spatial overlap.

To date, the smallest Fermi degeneracy achieved with
both cooling techniques is in the T /TF�5�10−2 range �8,9�.
This limitation has not precluded the study of temperature-
independent features of degenerate Fermi gases, such as
quantum phase transitions related to unbalanced spin popu-
lations �10–13� or the effect of Fermi impurities in the co-
herence properties of a Bose gas �14,15�. However, the study
of more conventional phase transitions in which the tempera-
ture is the key parameter is still uncharted territory and, as
discussed, for instance, in �16–18�, this requires the achieve-
ment of degeneracy factors T /TF�10−3 or lower. Unconven-
tional pairing mechanisms that are unstable at higher T /TF
could then be observed, and the phase diagram of Fermi
atoms in the degenerate regime could be mapped in a wider
range of parameter space. Moreover, the study of ultracold
Fermi-Bose mixtures is an interesting subject in itself, acting
as the counterpart of the 3He-4He liquid mixtures extensively
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investigated at much higher densities and temperatures.
Considering the novel physical insights that deeper Fermi

degenerate gases and Fermi-Bose mixtures may provide, it is
relevant to discuss the limitations to reaching the lowest
T /TF in realistic settings available by means of sympathetic
cooling, and ways to overcome them. Here, we discuss two
different techniques to overcome the apparent T /TF�10−2

limit observed so far, based on optimized heat capacity
matching with species-selective traps or with lower dimen-
sionality traps. The paper is organized as follows. In Sec. II,
after briefly reviewing previous results on sympathetic cool-
ing in species-selective traps, we determine the time evolu-
tion of the temperature of the mixture in a particular class of
species-selective traps through a thermodynamical analysis,
and we subsequently include the effect of the spatial overlap
between the thermal component of the Bose gas and the
Fermi gas. The main novelty with respect to previous semi-
quantitative analyses is that including both temporal and spa-
tial dependence in the thermodynamics of sympathetic cool-
ing leads to an optimization of the heat capacity provided
that a time-dependent trapping frequency ratio is imple-
mented. As an alternative to this optimization procedure, in
Sec. III we discuss heat capacity matching resulting from
lower effective dimensions for trapping, exploiting the strong
dependence on dimensionality of the density of states of the
Bose gas. A simpler protocol for optimizing heat capacity is
available with nearly one-dimensional Fermi-Bose mixtures,
which requires time modulation of the trapping strengths of
the Fermi and Bose gases in the last cooling stage. Broader
considerations on generic trapping settings are then dis-
cussed in the conclusions.

II. HEAT CAPACITY MATCHING THROUGH SPECIES-
SELECTIVE TRAPPING

After discussing the evidence for a correlation between
the degeneracy factor T /TF and the trapping frequency ratio
between the Fermi and the Bose species, we review previous
results on the use of species-selective traps and their limiting
assumptions. We then relax these assumptions with a ther-
modynamical analysis also including the effect of the partial
overlap between the Fermi gas and the thermal component of
the Bose gas in the specific case of bichromatic traps.

A. Qualitative considerations on heat capacity matching

Evaporative cooling has been instrumental in reaching
Bose degeneracy for dilute atomic gases. Extensive analysis
has already addressed the dynamics of evaporative cooling
of a Bose gas �19–22�, using Monte Carlo �23,24�, mean-
field analysis �25�, and beyond �26�, including also more
detailed effects �27–29�. These studies have been also ex-
tended to the case of separate Bose and Fermi clouds �30� or
Fermi-Bose mixtures using the quantum Boltzmann equation
�31�. or other semiclassical models �32�. Some generic fea-
tures of the effectiveness in cooling fermions through a Bose
gas can be addressed based on the insights first discussed in
�33� and then analyzed in more detail in �34,35�. The heat
capacity of a degenerate Fermi gas depends linearly on its

temperature, being for a harmonically trapped gas equal to
Cf ��2kBNfT /TF, while a harmonically trapped degenerate
Bose gas has a cubic dependence on temperature Cb
�10.8 kBNb�T /Tc�3. The degeneracy parameter can be writ-
ten in terms of the ratio of heat capacities: T /TF
�0.35��b /� f�3/2�Cb /Cf�1/2 �35�. By assuming that sympa-
thetic cooling loses efficiency when the heat capacity of the
Bose gas matches exactly that of the Fermi gas �Cb=Cf� we
obtain a conservative limit on the attainable T /TF vs � f /�b
space, depicted in Fig. 1 by the upper line. In the hypothesis
that some residual cooling occurs when Cb�Cf, for instance
with cooling stopping when Cb /Cf 	0.1, we obtain the lower
line in Fig. 1. Realistically, we do expect that sympathetic
cooling will be quenched when 0.1	Cb /Cf �1, i.e., in the
region delimited by the two lines. In Fig. 1 we also plot the
minimum T /TF as obtained by the various running experi-
ments with Fermi-Bose mixtures. Although the number of
explored Fermi-Bose mixtures is limited and the diverse
technical solutions for trapping and cooling may provide al-
ternative explanations �36�, a correlation between the trap-
ping frequency ratio � f /�b and the minimum achieved T /TF
seems corroborated by the actual results and invites more
quantitative attention. Further analysis provided insight into
the cooling limitations in different trapping conditions and
for different species combinations �41�. It was found that
significant gains in T /TF could be achieved for stronger rela-
tive Fermi-Bose confinements than the natural � f /�b pro-
vided by the mass ratio between the two species. In �41� the
focus was on an equilibrium situation at nearly zero tempera-
ture, and to develop a more comprehensive understanding of
the cooling process a dynamical framework is needed in
which crucial finite temperature effects for the Bose gas are
taken into account. Here we specialize the analysis of the
thermodynamics as 6Li is sympathetically cooled by evapo-
rating 87Rb in an optical dipole trap. This mixture, expected
to optimize cooling efficiency �41,42�, is currently used in
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FIG. 1. �Color online� Plot of experimentally obtained T /TF vs
the trapping frequency ratio � f /�b. Lines indicate the theoretically
predicted range of T /TF values based on a semiquantitative heat
capacity matching argument as discussed in the text. The experi-
mental data are taken from �37� �Amsterdam�, �8� �MIT�, �38� �Flo-
rence�, �40� �Boulder�, �33� �Houston�, �39� �Paris�, �43�
�Tubingen�.
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various laboratories �43–45� both for studies of Fermi super-
fluidity and for the formation of ultracold molecules �46�,
taking advantage of the large electric dipole moment of
Li-Rb molecules �47�.

In all previous discussions of species-selective traps a
static picture was assumed for the cooling of the Fermi-Bose
mixture, relying on the analysis already available in the case
of single-species trapping �48�. A critical element of this
cooling is to balance the thermalization and loss rates; rapid
trap modification allows for minimization of atom losses but
is limited by the requirement that we proceed slowly enough
to keep the system at thermal equilibrium. It has been shown
�49� that thermodynamic equilibrium is maintained if the ra-
tio between the potential depth and the atomic cloud tem-
perature, given by 
��U /kBT, is kept constant. The time
dependence of the potential depth is then given by �48�:

�U�t�
�Ui

= �1 +
t

�
�
e

, �1�

where �Ui is the initial potential depth, 
e=−2�
�−3� /
�,
and �−1= �2 /3�
��
−4�exp�−
�
i, with 
�=
+ �
−5� / �

−4� and 
i the initial elastic collision rate. With the time
dependence of �U determined in this way we can obtain the
other relevant quantities in the process �number of particles,
temperature, density, scattering rates� resulting in scaling
laws similar to Eq. �1�. A potential depth and temperature
ratio of 
=5−10 is considered to yield optimal efficiency in
evaporative cooling �49�. This approach can be applied to
either the simple case of evaporative cooling of a single Bose
species, or the sympathetic cooling in a Fermi-Bose mixture.
In both cases, Eq. �1� describes the potential depth of the
Bose species �Ub, with the implicit assumption that the pres-
ence of the fermions does not drastically affect the evapora-
tion and cooling of the bosons. This is justified since all
dual-species systems trap at least an order of magnitude
more bosons than fermions, but this approximation may suf-
fer toward the end of the cooling process when a majority of
the bosons have been evaporated.

In the case of a bichromatic optical dipole trap, from �Ub
we determine the required power P1 of the laser confining
both species, and then for a targeted trapping strength ratio
� f /�b we can calculate the required power P2 for the Bose-
deconfining laser, and finally determine the fermion potential
depth �Uf. In this way we have independent control of the
spatial size and potential depth for each of the two species,
allowing us to either maintain a constant � f /�b throughout
cooling or adjust the relative trapping strengths during the
process.

The exact way in which the temperature is determined
from the trapping parameters depends upon both the model
and the proposed cooling strategy. Equation �1� merely iden-
tifies a limit to the cooling rate if thermodynamic equilibrium
is to be maintained throughout the process, and assuming a
constant ratio 
, as it was discussed in �34�. In practice, these
assumptions can be relaxed by using a more dynamical
model based on energy balance, as we discuss in the next
section.

B. Thermodynamical balance

To move beyond the limiting assumptions in �34�, we start
our analysis by considering a dual-species system at thermo-
dynamic equilibrium. The trap parameters are then suddenly
changed in order to force some bosons to evaporate; then one
waits for a new thermodynamic equilibrium before applying
another evaporation step, in analogy to the scheme discussed
in �50�. The step-by-step temperature reached in this way is
determined by energy conservation for the Fermi and Bose
gases �51�.

For concreteness, we consider a species-selective trapping
scheme as described in �52�. A mixture of Nf fermions and
Nb bosons is confined into a bichromatic optical dipole trap
tailored by two lasers of wavelengths �1, �2 and powers P1,
P2. In order to obtain quasi analytic results, we will approxi-
mate the trap potential by a truncated harmonic potential
properly reproducing the bottom curvature and the depth of
the well. This approximation becomes exact for energies
small with respect to the trap depth, a condition satisfied in
the cases discussed below. The presence of the second laser
allows one to make the trap parameters of the fermion spe-
cies, namely the characteristic frequencies � fx ,� fy ,� fz and
the depth �Uf, different from the corresponding boson pa-
rameters, �bx ,�by ,�bz and �Ub. As a consequence, the ratio
� f /�b, for each species s=b , f we define �s= ��sx�sy�sz�1/3,
can be varied from its mass-determined value for P2 / P1=0
to an ideally arbitrary large value for P2 / P1 approaching a
positive critical value �52�. The evaporation steps are carried
out by decreasing the power P1 of the reference laser while
maintaining the ratio P2 / P1 at a constant value. In this way,
the trap depths �Ub, �Uf, which are proportional to P1, and
the frequencies �b, � f �proportional to 	P1�, decrease while
the ratio � f /�b remains constant �53�.

At the end of an evaporation step in which the power of
the reference laser is changed from P1 to P1+dP1 and once
thermodynamic equilibrium is reestablished, the temperature
changes from T to T+dT according to an energy balance
equation of the form

��Ub + �kBT�dNb
ex = dEb + dEf , �2�

where dNb
ex is the number of bosons in the excited states at

temperature T that evaporate and �Ub+�kBT �with 0	�
	1� is the mean energy per evaporated boson �20�. The
quantities dEb and dEf are the energy changes of the trapped
boson and fermion species, both at temperature T.

By observing that due to a change of P1, all the quantities
T, �b, �Ub, � f, �Uf change and using for Nb

ex, Eb, and Ef the
expressions provided by Eqs. �A9�, �A8�, and �A12�, we
have

dNb
ex =

�Nb
ex

�T
dT +

�Nb
ex

��b
d�b +

�Nb
ex

��Ub
d�Ub, �3�

dEb =
�Eb

�T
dT +

�Eb

��b
d�b +

�Eb

��Ub
d�Ub, �4�
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dEf =
�Ef

�T
dT +

�Ef

�� f
d� f . �5�

It is worthwhile to point out that, within the approximation
used, Ef does not depend on �Uf and the number of fermions
Nf remains constant. By evaluating the above partial deriva-
tives and inserting the result into Eq. �2�, we arrive at

d T
TF

dP1
=

T
TF

2P1

3
�2� � f

�b
�3� T

TF
�2

p„
�UbP1

−1/2

kBTF
� T

TF
�−1

P1
1/2
… + 1

2 + 3
4�2� T

TF
�−2

3
�2� � f

�b
�3� T

TF
�2

q„
�UbP1

−1/2

kBTF
� T

TF
�−1

P1
1/2
… − 1

,

�6�

where we used d�T /TF�=dT /TF− �T /TF�dTF /TF and
dTF /TF=dP1 / �2P1�, which stems from the proportionality of
TF to � f, namely kBTF= �6Nf�1/3�� f; see Eq. �A13�. Like
� f /�b, the value of �UbP1

−1/2 /kBTF is a constant determined
by the value of the ratio P2 / P1, and p�x� and q�x� are defined
as

p�x� = 

0

x t3

et − 1
dt + �

x3

ex − 1
, �7�

q�x� = 3x

0

x t2

et − 1
dt − 4


0

x t3

et − 1
dt + 3�


0

x t2

et − 1
dt

− �
x3

ex − 1
. �8�

Note that p�0�=q�0�=0 whereas p�x��6��4� and q�x�
�6��3�x−24��4�+6��3�� for x�1, � being the Riemann
zeta function.

Equation �6� is a nonlinear ordinary differential equation
which allows for the determination of T /TF�P1� during the
evaporative cooling. Observing that both functions p�x� and
q�x� are non-negative for x�0 and assuming for simplicity
�=0, the qualitative behavior of T /TF�P1� is as follows. The
numerator of the last fraction in Eq. �6� is always positive. If
we start from initial values of P1 and T /TF respectively not
too small and not too large, the argument of the functions p
and q is large with respect to unity, which is equivalent to
state that �Ub�kBT, a fact that also justifies the choice �
=0. The denominator of the last fraction in Eq. �6� is thus
also positive so that T /TF decreases by decreasing P1. The
decrease may be faster or slower than P1

1/2 depending on the
value of the constants � f /�b and �UbP1

−1/2 /kBTF. Eventu-
ally, however, the last fraction in Eq. �6� becomes larger than
1 so that a second regime starts in which T /TF decreases
faster and faster. As a consequence, the argument of the func-
tions p and q decreases and the denominator of the last frac-
tion in Eq. �6� approaches 0. A singular point is thus reached
in which d�T /TF� /dP1=� and T /TF�0. A numerical study
also shows that Eq. �6� has a discontinuity at the singular

0.001 0.01 0.1 1 10
P

1
(W)

0.001

0.01

0.1

1

10

T
/T

F

P
2
/P

1
=0

P
2
/P

1
=0.18

P
2
/P

1
=0.23

FIG. 2. �Color online� Dependence of the degeneracy factor
T /TF upon the confining laser power P1 during sympathetic forced
evaporative cooling as determined by Eq. �6�. The system is a mix-
ture with Nf atoms of 6Li and Nb atoms of 87Rb trapped in a bichro-
matic optical dipole trap shaped by two lasers of power P1 and P2

at the wavelengths of �1=1064 nm and �2=740 nm for the
6Li-87Rb mixture as chosen in �35�. Two sets of curves are shown
for different initial conditions and for different values of the ratio
P2 / P1, kept constant during the evaporation. The fermion-to-boson
trapping frequency ratio, determined by P2 / P1, is � f /�b=2.443 for
P2 / P1=0, � f /�b=8.186 for P2 / P1=0.18 and � f /�b=15.911 for
P2 / P1=0.23. For the same P2 / P1 values, the other constant
�UbP1

−1/2 /kBTF which appears in Eq. �6� amounts to 18.73, 3.70
and 0.59, respectively. For simplicity, we set �=0. We assume Nf

=104 is constant during the evaporation and, for the continuous
�dashed� curves the initial number of bosons is Nb=2�107 �Nb

=2�109�, Fermi degeneracy T /TF=1 �T /TF=10� and P1=1 W
�P1=5 W�. The minimum achievable T /TF, corresponding math-
ematically to a singularity of Eq. �6� and physically to a fermion-
boson heat capacity equality, �a� does not depend on Nf and Nb,
provided that Nb is sufficiently large and �b� depends only slightly
on the initial conditions for T /TF and P1, but �c� decreases appre-
ciably if the trapping frequency ratio � f /�b is increased.
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FIG. 3. �Color online� Dependence of the degeneracy factor
T /TF upon the number of bosons �normalized to the number of
fermions� during a sympathetic forced evaporative cooling driven
by the laser power P1 as determined by Eq. �6�. The parameters are
the same as in the case of the continuous curves in Fig. 2, with the
initial values of Nb=2�107, T /TF=1, and P1=1 W. It is evident
that the use of larger � f /�b ratios allows us to reach a deeper Fermi
degenerate regime, which amounts to a gain by almost two orders
of magnitude difference in the case of the larger � f /�b ratio.
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point with unphysical negative values of T /TF on the left.
The value of T /TF at the right of the singular point represents
the minimum achievable T /TF during the cooling, provided
that the initial number of bosons is sufficiently large so that
they are not completely evaporated before the singular point
is reached.

The behavior of T /TF as a function of P1 is shown in Fig.
2 for different initial conditions and different values of
� f /�b. We stress that whereas the minimum T /TF depends
very little on the details of the cooling, the number of atoms
of both species and initial values of temperature and refer-
ence laser power, we observe a substantial decrease of the
minimum achievable T /TF, by increasing the ratio � f /�b.
This is in agreement with a previous prediction based on a
rough matching of boson and fermion heat capacities �34�. In
fact, the singular point of Eq. �6� is defined by the condition

��Ub + �kBT�
�Nb

ex

�T
−

�Eb

�T
−

�Ef

�T
= 0. �9�

For �Ub�kBT, a condition well satisfied at the singular
point, we have

�Nb
ex

�T
=

1

kBT

�Eb

�T

6��3�
24��4�

, �10�

therefore Eq. �9� is equivalent to

�0.28
�Ub

kBT
− 1�Cb � Cf , �11�

where Cs=�Es /�T with s=b , f .
The sharp drop observed in T /TF before the singular point

deserves some comments. At temperatures sufficiently low
with respect to TF and Tc, the energy of the mixture Eb+Ef is
dominated by the zero temperature Fermi energy Ef�Nf ,0�;
see Appendix A. In this case, the right-hand side of the
energy balance Eq. �2� can be approximated by
��Ef�Nf ,0� /�� f�d� f, and in the proximity of the singular
point �i.e., at low temperatures�, following Eq. �11� the left-
hand side of the same balance can be written as �
Cb
−Cf�dT, where 
�0.28�Ub /kBT−1. The approximated en-
ergy balance thus gives

dT �
d� f

� f

�3/4�NfkBTF


Cb − Cf
. �12�

From Eq. �12� we see that a small decrease of the fermion
trapping frequency induces a temperature decrease, the size

of which depends on the value of NfkBTF / �
Cb−Cf�. Note
that the denominator of this ratio contains a difference, not a
sum, of the boson and fermion specific heats. The divergence
of the derivative dT /d� f predicted at the critical point is
certainly unphysical: we expect that a long time is needed to
re-equilibrate the system in a freezing step T→T+dT with
dT large. In this case, dissipative phenomena should be taken
into account by a more complicated model in which the sin-
gular point will be substituted by a minimum. However, this
does not change the meaning of the lowest reachable T /TF
which is the point where fermion and boson specific heats do
match.

In Fig. 3 we plot the dependence of T /TF upon the num-
ber of bosons, normalized to the fermion number �assumed
to be constant during the evaporation process�. It is manifest
that deeper Fermi degeneracy factors are obtained for higher
trapping frequency ratios. This plot has to be compared to
the one presented in Fig. 2 of �32� in which T /TF was shown
vs a similar quantity �in our notation �Nb

�0�−Nb� /Nf where
Nb

�0� is the number of initial bosons prior to evaporation�.
While our analysis confirms that the initial decrease in T /TF
is faster for lower � f /�b ratios, thus suggesting more effi-
cient cooling—if measured by the drop in T /TF per unit of
boson removed in the evaporation process-we also notice
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that the evaporation process extends much further for larger
� f /�b and allows to reach deeper Fermi degeneracy factors
before stopping. Therefore, if the goal of the cooling process
is the achievement of the lowest T /TF degeneracy param-
eters rather than saving bosons during the evaporative pro-
cess �54�, the use of larger � f /�b is beneficial, at variance
with �32�.

The main issue in �32� is that no temporal dependence for
the trapping frequencies was assumed �unlike in Eqs.
�3�–�5��, which is unphysical for any realistic evaporative
cooling strategy involving species-selective trapping
strengths. The discussion in �32� also struggles with issues
arising from more practical limitations, as commented in
�41�, in particular the fact that all the Fermi-Bose species
available in practice will be affected by issues of spatial
overlap in usual confining potentials, due to the smaller mass
of the Fermi species �apart from the never considered
40K-23Na mixture�. Also, for �b /� f �1 the superfluid critical
velocity of the Bose gas will become larger than the Fermi
velocity, inhibiting scattering between fermions and bosons
and then sympathetic cooling �55,56�. Finally, a weaker trap-
ping frequency for the Fermi species corresponds to a lower
potential energy depth with respect to that of the bosons,
resulting in significant fermion losses during the forced
evaporative process of the bosons. As we discuss in the fol-
lowing, a large � f /�b ratio is also beneficial in terms of
improving the spatial overlap between fermions and bosons
and therefore the cooling efficiency.

C. Spatial overlap between the fermion and the thermal Bose
atoms

An even more realistic analysis of the cooling dynamics
must also account for the intrinsic inhomogeneous character
of the trapping potential as this will result in incomplete
overlap between the Fermi and the Bose gases and conse-
quently a decreased cooling efficiency. As introduced in �41�,
we express the spatial overlap �ij between two clouds of
densities �i and � j, as

�ij = �NiNj�−1/2
 �i
1/2�r�� j

1/2�r�d3r , �13�

where i , j refer to the fermion �F�, Bose condensate �B�, or
thermal boson �T� density profiles. The fraction of atoms that
share the same region of space is thus given by �ij

2 . The Bose
atoms available for cooling are those having a nonzero spe-
cific heat, i.e., those in a thermal state. Finite overlap be-
tween the thermal bosons and the Fermi atoms will result in
a decrease in the cooling rate with respect to the case of ideal
overlap. An accurate evaluation of the cooling rate should
take into account kinetic equations for the two interacting
gases. In a pessimistic, conservative fashion, we can assume
that the cooling rate q̇ is decreased by a factor equal to the
fraction of atoms that can actually exchange energy without
any mass transport involved, as q̇cool→�FT

2 q̇cool. The mini-
mum attainable degeneracy parameter T /TF correspondingly
increases as T /TF→�FT

−2T /TF. This static estimate does not
take into account the timescale over which fermions and
bosons exchange energy through elastic collisions, and the
particle relocation along the trap volume, but it can be con-
sidered as an upper limit to the effect of partial overlap. This
analysis requires the density profiles of the condensate and
the noncondensed thermal boson to compute d indepen-
dently, following the discussion of a Fermi-Bose mixture at
finite temperature reported in �57�.

The dependence of the spatial overlap parameters �FB and
�FT on temperature, boson number, and trapping frequency

FIG. 6. �Color online� Three-dimensional plot and two-
dimensional contour plot of the �FT dependence on � f /�b, and
T /Tc. Significant overlap values for trapping ratios in the range of
� f /�b�3−7 are evident at relatively large temperature ratios T /Tc.
At lower temperatures, the optimal overlap is achieved at higher
trapping frequencies ratios. The optimal path maximizing the over-
lap is highlighted by the dashed line in both plots.

FIG. 7. �Color online� Contour plot of the Fermi degeneracy
factor T /TF versus the Bose degeneracy factor T /Tc and the trap-
ping frequency ration � f /�b. The lower Fermi degeneracy factor of
T /TF�0.02 is obtained for � f /�b�8.
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ratio is shown in Fig. 4. As the temperature drops below Tc a
finite condensate fraction appears; the fermion-thermal bo-
son overlap starts to decrease, and the fermion-condensate
overlap increases. There is a limit to �FB for a given � f /�b,
however, since the cloud of less massive fermions will have
a much larger spatial radius and thus a strong relative con-
finement is required to improve the fermion-Bose condensate
overlap. The overlap dependence on number ratio is rather
straightforward, with a gradual decrease in fermion-
condensate overlap as bosons are evaporated and an almost
flat behavior for �FT since Nb

ex is roughly constant for a given
temperature and boson losses manifest as a decrease in the
condensate fraction and have minimal effect on the thermal
cloud.

The effect of the spatial overlap on the minimum reach-
able Fermi degeneracy factor T /TF is depicted in Fig. 5, with
the choice of interspecies scattering length of the Li-Rb sys-
tem corresponding to the pessimistic scenario of repulsive
interaction �see �58� for the issues related to its measure-
ment�. It is evident that about one order of magnitude may be
lost in the achievable minimum degeneracy factor when the
overlap factor is taken into account, although we conjecture
that with a full kinetic analysis the actual result will be lo-
cated in between the two curves. The situation is analyzed in
more detail in Fig. 6, which shows �FT vs � f /�b and T /Tc.
During the cooling process, i.e., as T /Tc decreases, the opti-
mal overlap is shifted to larger values of � f /�b, until the
minimum of the Fermi degeneracy is reached as shown in
the contour plot of Fig. 7. This suggests the use of a time-
variable trapping strategy, initial with lower values of � f /�b,
then increased in time by increasing the power ratio P2 / P1.
Such a time-dependent relative confinement strategy is not
the only way to optimize the Fermi degeneracy factor, how-
ever. In the following, we will discuss a similar procedure
which exploits the advantages of reducing the dimensionality
of the system when Fermi degeneracy is approached.

III. HEAT CAPACITY MATCHING THROUGH LOWER
DIMENSIONALITY

As an alternative to the cooling strategy described above,
we discuss here the possibility to match the heat capacity of
Bose and Fermi gases at the lowest possible T /TF by exploit-
ing lower dimensionality traps. Ultimately, the mismatching
between the specific heats of Bose and Fermi degenerate
gases depend on the scaling of the heat capacities with tem-
perature, and this in turn depends upon the dimensionality of
the Bose gas. As discussed in �59,60� and demonstrated in
�61,62�, a dramatic increase in the trapping frequency in one
�or two� trapping axes will result in an effective two- �or
one-� dimensional system. This in turn allows for a better
matching of the heat capacities since the Bose gas depen-
dence on temperature will become milder than in the full 3D
case. In order to gain quantitative insights on how to realize
such a matching, we first consider noninteracting gases in a
harmonic potential, with the number Nf ,b of particles fixed.

The total number of fermions and bosons is evaluated as
�+ for fermions, − for bosons�:

Nf ,b��,T� = �
j=0

�
gj

e�Ej−��/kBT � 1
, �14�

where gj is the degeneracy of energy level Ej, � the chemical
potential, kB Boltzmann constant, and T the temperature,
with the number of particles Nf ,b fixed. Solving this equation
numerically for �=��T�, we can then calculate the total en-
ergy

Ef ,b�T� = �
j=0

�
gjEj

e�Ej−��T��/kBT � 1
, �15�

and from this we obtain the heat capacity as C�T�=�E /�T. In
the calculation below, we assign Nf ,b=104, and assume the
initial trap to be isotropic with the trapping frequency �
=2��15.87 kHz. The numerical calculations for two and
three dimensions are straightforward, while for one dimen-
sion some approximations are necessary to reduce the simu-
lation time to realistic values.

A. 2D and 3D traps

For atoms trapped in a three dimensional harmonic poten-
tial V�r�=m�2r2 /2, the energy eigenvalues Ej �j
=0,1 ,2 , . . .� are given by Ej

3D= �j+3 /2���. Since the trap is
three-dimensional and isotropic, the degeneracy gj of the en-
ergy levels is given by gj = �j+1��j+2� /2. The number of
particles for bosons �−� and fermions �+� is

Nf ,b
3D =

1

2�
j=0

Q
�j + 1��j + 2�

e��j+3/2���−��/kBT � 1
. �16�

The upper limit Q in the summation should be infinity in
principle, but a value of Q=1500 is sufficient for numerical
convergence. For the given parameters Nf ,b and � we solve
the above two equations for � at different temperatures, and
then calculate the heat capacities. As depicted in Fig. 8, the
Bose and Fermi heat capacities intersect each other at T
�0.293TF, with the three-dimensional Fermi temperature
TF

3D= �6Nf�1/3�� /kB. The situation is very similar for atoms
trapped in a 2D isotropic harmonic potential, except that now
the energy eigenvalues are given byEj

2D= �j+1���, with de-
generacy gj = j+1, and Q needs to be increased to �105 to
achieve adequate convergence. The two heat capacities
curves intersect each other at T�0.308 TF where the 2D
Fermi temperature TF is given by TF

2D= �2Nf�1/2�� /kB. From
Fig. 8 we see that going from a full 3D to a 2D system
actually slightly worsens the heat capacity matching, yield-
ing a higher T /TF at the point where Cb and Cf intersect each
other. However, further reduction to a 1D system results in
complete matching of the heat capacities, as we will see
below.

B. 1D trap

For atoms in a 1D trap, the energy eigenvalues are given
by Ej

1D= �j+1 /2���, with degeneracy gj =1. If we follow the
same steps as the 2D and 3D cases, the upper summation
limit Q �see Eq. �16�� must be extremely large in order to
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reach convergence and approximations are required for the
one-dimensional trap analysis. These approximations are
outlined in Appendix B and with them we obtain the Fermi
and Bose energies, from which the heat capacities are evalu-
ated. To take full advantage of the gain in the heat capacity
matching in 1D traps it is helpful to investigate how heat
capacities of bosons and fermions change when we gradually
reduce the dimension of the trap. We assume that the atoms
are first trapped in a 2D trap with trapping frequencies along
the two dimensions � and k�, and then this relative confine-
ment parameter k is gradually increased from 1 to infinity.
The system will be effectively 1D when kBT�k��. We
evaluate the heat capacities of bosons and fermions at differ-
ent values of k. The results are shown in Figs. 9�a�–9�d�. As
k increases, the shape of the heat capacity curve of bosons
becomes more similar to that of fermions, in the sense that it

slowly loses the peak structure and the curvature near zero
temperature begins to resemble that of fermions. If k is fur-
ther increased �case �c�� there will be a region where the two
curves completely coincide with each other. This is consis-
tent with the previous result we obtained for an ideal 1D
trap. In Fig. 9�d� the heat capacity curves of bosons and
fermions are shown at an even higher aspect ratio, to empha-
size the crossover from the 1D case to the 2D case at high
temperatures. In the ideal 1D case, the heat capacity curves
are identical, as simply explained in the canonical ensemble
approach �63,64�. Indeed, the total internal energy of fermi-
ons in a 1D harmonic trap only differs from that of the
bosons by the Fermi zero-point energy E0=Nf�Nf −1��� /2,
and therefore the two systems have identical heat capacities.

The existence of this crossover indicates that we can con-
trol the heat capacity matching of bosons and fermions by
changing the ratio of the two trapping frequencies in a 2D
trap. Thus one possible solution to improve the cooling effi-
ciency is to first evaporate in a 3D trap and then, when the
Fermi degeneracy starts to reach about T /TF�0.3, to in-
crease the trapping frequencies achieving a quasi-one-
dimensional system, then continuing the evaporation pro-
cess. A possible limitation of this technique comes from the
larger collisional loss rate as a result of the increased con-
finement. Also, as studied for achieving Bose condensation
of hydrogen atoms, the nearly 1D character of the evapora-
tive cooling �65� may lead to nonergodic evaporation limit-
ing its efficiency �66�, although this has not prevented
achievement of Bose degeneracy �67�.

IV. CONCLUSIONS

We have examined the thermodynamics of evaporative
and sympathetic cooling in a Fermi-Bose mixture, and iden-
tified possible ways to achieve a lower Fermi degeneracy
factor T /TF. Thermodynamical considerations are based on
general assumptions and measurable, phenomenological in-
puts, like heating rate and specific heat, and provide a solid
framework to discuss cooling dynamics regardless of sophis-
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FIG. 8. �Color online� Heat capacity curves of bosons and fer-
mions in three dimensions �dashed curves� and two dimensions
�solid curves� in an isotropic harmonic trap, with the bosons exhib-
iting nonmonotonic behavior. The crossing point between the Bose
and Fermi curves for the 2D case occurs at a slightly higher T /TF

value, ruling out its use for a more favorable cooling of fermions.
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FIG. 9. �Color online� Heat capacity curves of
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ticated microscopic models �68�. They also allow for com-
parison with experimental results, such as those discussed in
�69–74�, or for the inclusion of more realistic inputs such as
the specific heat of an interacting gas �75�. Although we have
focused the attention on the particular 6Li-87Rb mixture, the
extension to other Fermi-Bose combinations is straightfor-
ward, furthermore benefiting from more favorable interspe-
cies thermalization properties with respect to this particular
mixture, for which limitations in elastic scattering and use of
Feshbach resonances have been experimentally evidenced
�43,76�.

Among the main results we have obtained, we have dis-
cussed two different cooling strategies: constructing a
species-selective trap with independently tunable Fermi and
Bose trapping frequencies, and creating traps with reduced
dimensionality in the latest stage of evaporation. We have
shown that different trapping ratios lead to distinctly differ-
ent cooling trajectories. However, incomplete spatial overlap
will not only result in a longer cooling time needed to attain
a given temperature, but will also increase the temperature at
with the heating rate will balance the cooling rate. When the
progressive depletion of the bosonic thermal cloud is taken
into account, optimized cooling requires time-dependent
trapping strengths. Additionally, we have discussed how to
exploit the strong dependence of the bosonic specific heat
upon dimensionality to create nearly one-dimensional traps
in the ultimate stage of sympathetic cooling. This will be of
particular relevance for various planned studies of Fermi
gases in optical lattices �77� in which bichromatic optical
traps are not viable.
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APPENDIX A: BOSE AND FERMI GASES IN A 3D
HARMONIC TRAP OF FINITE DEPTH

We report here the expressions for the energy and the
number of particles of ideal degenerate Bose and Fermi
gases confined a in a three-dimensional harmonic trap of
finite depth. For the trapped bosons we start with the exact
expressions of the energy and of the number of particles in a
general 3D harmonic potential:

Eb = �
nx=0

�

�
ny=0

�

�
nz=0

� Enx,ny,nz

e�Enx,ny,nz
−��/kBT − 1

, �A1�

Nb = �
nx=0

�

�
ny=0

�

�
nz=0

�
1

e�Enx,ny,nz
−��/kBT − 1

, �A2�

where Enx,ny,nz
=��bx�nx+1 /2�+��by�ny +1 /2�+��bz�nz

+1 /2�. As usual, we write Nb=Nb
0+Nb

ex, where Nb
0

= �eE0,0,0/kBT−1�−1 is the number of bosons in the ground state
and Nb

ex the number of those thermally excited. In order that
the number of particles remains positive, it is necessary for
the chemical potential to satisfy ��T�	E0,0,0. At tempera-
tures T	Tc, where Tc is the Bose-Einstein condensation
critical temperature, the chemical potential is frozen to its
maximum value. In general, ��T� and all the other thermo-
dynamic quantities can be evaluated explicitly as a power
series expansion in the two parameters ��T�−E0,0,0 and
��b /kBT, where �b= ��bx�by�bz�1/3 �78�. In the case T�Tc
and ��b�kBT, which is relevant to the experimental situa-
tions discussed here, we can restrict to the lowest order and
write

Eb = 3��4�
�kBT�4

���b�3 , �A3�

Nb
ex = ��3�� kBT

��b
�3

, �A4�

where � is the Riemann zeta function. Alternatively, the
above two results can be obtained using the semiclassical
density of states

�b�E� =
d

dE

�1/6�E3

��bx��by��bz
=

E2

2���b�3 �A5�

and the continuum approximation

Eb = 

0

� E

eE/kBT − 1
�b�E�dE , �A6�

Nb
ex = 


0

� 1

eE/kBT − 1
�b�E�dE . �A7�

For a trap of finite depth schematized as a harmonic potential
truncated at energy �Ub, we thus write

Eb = 

0

�Ub E

eE/kBT − 1
�b�E�dE =

�kBT�4

���b�3

1

2



0

�Ub/kBT t3

et − 1
dt ,

�A8�

Nb
ex = 


0

�Ub 1

eE/kBT − 1
�b�E�dE =

�kBT�3

���b�3

1

2



0

�Ub/kBT t2

et − 1
dt .

�A9�

Consider now a system of Nf fermions confined by a har-
monic trap having characteristic frequencies � fx ,� fy ,� fz.
Under the condition �� fx ,�� fy ,�� fz�kBT, a continuum ap-
proximation holds as in the boson case, so that the fermion
counterparts of Eqs. �A1� and �A2� can be simplified to

Ef = 

0

� E

e�E−��/kBT + 1
� f�E�dE , �A10�
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Nf = 

0

� 1

e�E−��/kBT + 1
� f�E�dE , �A11�

where � f�E�=E2 /2��� f�3 and � f = �� fx� fy� fz�1/3. Note that
in the above expressions we have neglected the zero-point
energy which is justified since for fermions ��E0,0,0. The
accuracy of the continuum approximation introduced above
is discussed in detail in �79�. The chemical potential ��T�
can be eliminated between Eqs. �A10� and �A11� by means
of the standard Sommerfeld expansion in powers of tempera-
ture. By keeping terms only to second order in T, we have
the well known result

Ef�Nf,T� � Ef�Nf,0� +
�2

6
�kBT�2��EF� , �A12�

where the Fermi energy EF is related to Nf by

Nf = 

0

EF

� f�E�dE =
1

6
� EF

�� f
�3

�A13�

and the zero temperature term Ef�Nf ,0� is given by

Ef�Nf,0� = 

0

EF

E� f�E�dE =
EF

4

8��� f�3 . �A14�

Making use of the relationship between the Fermi energy and
the number of fermions, we finally obtain

Ef =
3

4
61/3Nf

4/3�� f +
�2

2
6−1/3Nf

2/3 �kBT�2

�� f
. �A15�

Equations �A13� and �A15� are valid also for fermions
trapped into a harmonic potential truncated at energy �Uf,
provided that �Uf �EF ,kBT.

APPENDIX B: INTERNAL ENERGY FOR A 1D TRAPPED
IDEAL FERMI GAS

The total atom numbers in one dimension Nb
1D and Nf

1D

are given by Eq. �14�, with gj =1. However, the upper sum-
mation limit Q �see Eqs. �16�� needed for convergence be-
comes unreasonably large in one dimension �80�, and thus
approximations are required.

For fermions, we can directly replace the summation with
an integral in the case of kBT���:

Nf
1D = �

j=0

�
1

e��j+1/2���−��/kBT + 1
�

1

��



��/2

+� dE

e�E−��/kBT + 1
.

�B1�

Similarly, the total energy is given by

Ef �
1

��



��/2

+� EdE

e�E−��/kBT + 1
. �B2�

The total number of bosons is given by

Nb
1D = �

j=0

+�
1

e��j+1/2���−��/kBT − 1

=
1

e���/2−��/kBT − 1
+ �

j=1

+�
1

e��j+1/2���−��/kBT − 1
. �B3�

The second summation term can be evaluated by integral
using the Euler-Maclaurin formula:

�
x=a

b

F�x� = 

a

b

F�x�dx +
F�a�

2
+

F�b�
2

+ �
k=1

n
B2k

�2k�!
�F�2k−1��b�

− F�2k−1��a�� + R ,

where B2=1 /6, B4=−1 /30, . . . are the Bernoulli numbers,
and R is the remainder term. In the case of kBT���, the first
term �k=1� in the expansion is sufficient, giving

Nb
1D =

1

e���/2−��/kBT − 1
+ 


1

+� dx

e��x+1/2���−��/kBT − 1

+
1

2�e�3��/2−��/kBT − 1�
−

��

12KBT

e�3��/2−��/kBT

�e�3��/2−��/kBT − 1�2 .

�B4�

Having fixed N, we solve this equation numerically for � at
different temperatures to obtain �=��T�, and then apply the
Euler-Maclaurin formula again to obtain the total energy
Eb

1D.
The discussion above holds for a one dimensional Bose

gas. In the case of a trapping frequency range for which there
is a smooth crossover from two dimensions to one dimen-
sion, we recall that the number of particles in a 2D trap is
given by:

Nf ,b
2D = �

i,j=0

+�
1

e��i+1/2���1+�j+1/2���2−��/kBT � 1
. �B5�

Running two independent indexes is computationally very
inefficient and slow. We therefore assume �1=� and �2
=k� where k is a positive integer. The summation is run until
�i+kj�=Q which, with Q large enough, yields a good ap-
proximation. Now Nf ,b

2D becomes:

N2d = �
i,j=0

i+kj=Q
1

e��i+kj���+�1/2+k/2���−��/kBT � 1

= �
i=0

Q
floor�i/k� + 1

e�i��+�1/2+k/2���−��/kBT � 1
, �B6�

where floor�j /k� is the nearest integer less than or equal to
j /k. In this way only one index is present, allowing to im-
prove significantly the computational speed.
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