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Obtaining pure steady states in nonequilibrium quantum systems with strong dissipative couplings
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Dissipative preparation of a pure steady state usually involves a commutative action of a coherent and a
dissipative dynamics on the target state. Namely, the target pure state is an eigenstate of both the coherent and
dissipative parts of the dynamics. We show that working in the Zeno regime, i.e., for infinitely large dissipative
coupling, one can generate a pure state by a noncommutative action, in the above sense, of the coherent and
dissipative dynamics. A corresponding Zeno regime pureness criterion is derived. We illustrate the approach,
looking at both its theoretical and applicative aspects, in the example case of an open XXZ spin-1/2 chain,
driven out of equilibrium by boundary reservoirs targeting different spin orientations. Using our criterion, we
find two families of pure nonequilibrium steady states, in the Zeno regime, and calculate the dissipative strengths
effectively needed to generate steady states which are almost indistinguishable from the target pure states.
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I. INTRODUCTION

One indispensable prerequisite for quantum information
processing is preparing a given quantum state and maintaining
it for a sufficiently long time. A promising perspective in
generating quantum states with desired properties is offered
by using a controlled dissipation. Instead of producing a
detrimental decoherent effect on the quantum system, the
controlled dissipation can help to create and preserve the
coherence. With the help of the controlled dissipation, one can
prepare and maintain entangled qubit states [1–6], perform
universal quantum computational operations [7–9], generate
and replicate entanglement between macroscopic systems
[10–12], and store and protect quantum memory [13]. Dis-
sipative state engineering methods are robust since, due to the
dissipative nature of the process, the system is driven towards
its nonequilibrium steady state (NESS) independently of the
initial state and of the presence of perturbations.

Dissipative pure state engineering typically requires com-
mutative actions on the target state by both the coherent and
dissipative parts of the effective dynamics [5,6,14–18]. In other
words, the target state is required to be an eigenstate of the
Hamiltonian and of all quantum jump operators; see Eq. (3)
[19]. On the other hand, generic noncommutative coherent and
dissipative actions result in a mixed steady state [20].

In this paper, we demonstrate that by applying sufficiently
strong dissipative couplings, one can generate steady states,
which are arbitrarily close to pure states, for noncommutative
dissipative and coherent dynamics. Namely, while the target
pure state is still required to be an eigenstate with respect to the
quantum jump operators, it is not generically an eigenstate of
the Hamiltonian. This is not in conflict with previous results,
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since the exact pure NESS is attained only in the Zeno limit,
i.e., in the limit of infinitely strong dissipative action, where
the NESS pureness criteria [15,16] are not valid.

The Zeno regime belongs nowadays to a standard toolbox
of dissipative protocols [21]. It is usually associated with an
effect of freezing the whole quantum system, or freezing some
degrees of freedom and accelerating some others (static Zeno
effect, dynamic Zeno effect, anti-Zeno effect) [22–24]. In
the following, we derive a general criterion of steady-state
pureness which applies exactly in the Zeno regime but can be
used to generate an almost pure NESS for sufficiently strong
dissipative couplings. We demonstrate the applicability of our
criterion by obtaining two classes of pure stationary states
in nonequilibrium boundary-driven Heisenberg XXZ spin
chains, both in the critical and noncritical phases. Moreover,
we show that in practice, reaching the Zeno regime is not
necessary since applying a dissipation above a finite strength
is sufficient to obtain pure steady states with arbitrary preset
pureness.

II. ZENO REGIME PURE NESS CRITERION

We consider an open quantum system in contact with an
external environment. The effective time evolution of the
reduced density matrix ρ of the system is described by a
quantum master equation in the Lindblad form [25–27],

∂ρ

∂t
= −i[H,ρ] + �D[ρ], (1)

where H is the Hamiltonian representing the coherent part
of the evolution, � measures the strength of the dissipative
coupling, and D[ρ] is the Lindblad dissipator,

D[ρ] =
∑

α

[
LαρL†

α − 1

2
(L†

αLαρ + ρL†
αLα)

]
, (2)
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defined in terms of a set of Lindblad, or quantum jump,
operators, {Lα}. We set � = 1 and J = 1, where J is a global
energy factor which multiplies H , measuring energy in units
of J , time in units of �/J , and � in units of J/�. A NESS is
a fixed point solution of the dynamical Lindblad equation (1).
We shall assume that the NESS is unique. It is easy to see that
the NESS is a pure state, namely, ρNESS(�) = |�〉〈�|, if |�〉
is an eigenstate of the Hamiltonian and a dark state (i.e., an
eigenstate with zero eigenvalue) with respect to all Lindblad
operators,

H |�〉 = λ|�〉 and Lα|�〉 = 0 for all α. (3)

Most theoretical studies and experimental protocols rely on
this sufficient condition (3) for dissipatively preparing pure
states. It often happens, however, that for the given set H,{Lα},
no pure state satisfying the conditions (3) [19] can be found. In
those cases, it is worth formulating a less demanding criterion
by requiring ρNESS(�) to become pure only in the Zeno limit
� → ∞. We then assume that for sufficiently large �, the
following expansion in powers of (1/�)k exists:

ρNESS(�) = |�〉〈�| +
∞∑

k=1

�−kρ(k), (4)

where the first term of the expansion ρ(0) = |�〉〈�| is a pure
state. Inserting the time-independent state (4) into Eq. (1) and
comparing the terms at different orders of �, we obtain

D[|�〉〈�|] = 0 (5)

and the recurrence relations

i[H,ρ(k)] = D[ρ(k+1)], k = 0,1,2, . . . , (6)

which have the formal solution

ρ(k+1) = D−1[i[H,ρ(k)]], k = 0,1,2, . . . . (7)

The existence of D−1[i[H,ρ(k)]] is granted if and only if
[H,ρ(k)] lies entirely in the subspace orthogonal to the kernel
of D, i.e.,

PkerD([H,ρ(k)]) = 0, k = 0,1,2, . . . , (8)

where P� denotes the orthogonal projector on �. In particular,
the zeroth-order condition reads

PkerD([H,|�〉〈�|]) = 0. (9)

Conditions (5) and (8), which, for brevity, will be named the
Zeno regime pure NESS criterion, substitute the criterion (3)
in the limit � → ∞. As we will demonstrate in the following,
the Zeno regime pure NESS criterion is less restrictive than
criterion (3) [19]. Moreover, satisfying Eq. (5) and just the
zeroth-order necessary condition (9) can be enough to find a
pure NESS in the Zeno limit. By continuity, for sufficiently
large dissipative coupling �, the actual NESS will be arbitrarily
close to the pure state. The target state |�〉 is not an eigenstate
of the Hamiltonian H ; otherwise the condition (9) becomes
trivial. On the other hand, the condition (5) implies [15,16] that
the target state is an eigenstate of the quantum jump operators
{Lα}. Thus, the actions of the coherent and dissipative parts
of the dynamics on |�〉 are noncommutative, HLα|�〉 �=

LαH |�〉, which implies that the target pure state cannot be
exactly prepared for any finite �.

III. HEISENBERG SPIN CHAINS

To test the Zeno regime pure NESS criterion, we consider
an open XXZ Heisenberg spin chain with Hamiltonian

H = 1

2

N−1∑
j=1

[
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + 

(
σ z

j σ z
j+1 − I

)]
, (10)

where 
 is the dimensionless anisotropy parameter measuring
the ratio between the couplings of the Z and XY spin
components, and a dissipator with just two Lindblad operators,
L1 = LL and L2 = LR , acting locally on the “left” and
“right” boundary spins only. The operators LL and LR favor
an alignment of the boundary spins at k = 1 and k = N

along the vectors �lL,�lR defined by longitudinal and azimuthal
coordinates as

�lL = (sin θL cos ϕL, sin θL sin ϕL, cos θL),

�lR = (sin θR cos ϕR, sin θR sin ϕR, cos θR).

If �lL �= �lR , then there is a boundary gradient leading to a
NESS with nonzero current. For specific boundary gradients,
the NESS of this model has been calculated analytically at
arbitrary dissipation strength [28–31]. The explicit form of
LL,LR is given in Appendix A, where we also detail the
content of Eq. (8) and the calculation of the superoperator
inverse D−1. In the Zeno limit, the boundary spins 1,N are
projected into the states described by the one-site density
matrices

ρL = 1
2 (I + �lL · �σ1), (11)

ρR = 1
2 (I + �lR · �σN ). (12)

These are single-qubit pure states, tr ρ2
L = tr ρ2

R = 1.
We look for a zeroth-order pure NESS, ρNESS = |�〉〈�|, in

the factorized form

|�〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ . . . |ψN 〉, (13)

with |ψk〉 satisfying the generalized divergence condition

h(|ψk〉 ⊗ |ψk+1〉) = μk|ψk〉 ⊗ |ψk+1〉 + |Uk〉 ⊗ |ψk+1〉
− |ψk〉 ⊗ |Uk〉, (14)

where h is a local density of the Hamiltonian (10) and |Uk〉
is a local unknown vector. Substituting expression (14) into
Eq. (9), we find that this is satisfied if and only if

N−1∑
k=1

(μk − μ∗
k) = 0, (15a)

Rk = R̃k, k = 1, . . . ,N, (15b)

tr R1 = tr R̃N = 0, (15c)

where Rk = |Uk〉〈ψk| − |ψk〉〈Uk| and R̃k = |Uk−1〉〈ψk| −
|ψk〉〈Uk−1|.
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Proof. Denoting ρk = |ψk〉〈ψk| and using Eq. (14), we
rewrite the commutator [H,ρNESS] as

[H,ρNESS] =
N−1∑
k=2

ρ1 ⊗ · · · ⊗ (Rk − R̃k) ⊗ · · · ⊗ ρN

+R1 ⊗ ρ2 ⊗ · · · ⊗ ρN − ρ1 ⊗ · · · ⊗ ρN−1

⊗ R̃N +
N−1∑
k=1

(μk − μ∗
k)ρNESS. (16)

Requiring that Eq. (9) is satisfied and taking into account
that tr(ρ1) = tr(ρN ) = 1 and tr(A⊗ B) = tr(A) tr(B), we obtain
(15).

The criterion (3) would not, in the present example, provide
any nontrivial solution: the NESS is not pure for any finite �

and for any boundary polarization gradient. The only solution
of Eq. (3) is obtained for identical boundary conditions, �lL =
�lR , and fixed anisotropy, 
 = 1, and it corresponds to a trivial
ferromagnetic state ρ = (ρL)⊗N . Conversely, using the Zeno
regime pure NESS criterion, we readily find the following two
nontrivial families of solutions.

A. Boundary twisting in the XY plane

Let us choose the boundary polarizations in the XY plane.
Due to isotropy, this choice can be parametrized by a single
angle � between the left and right boundary polarizations,
i.e., we can put �lL = (1,0,0), �lR = (cos �, sin �,0). Various
properties of the XXZ model with boundary twisting in the
XY plane for strong and weak driving have been investigated
for � = π/2 and arbitrary 
 in [32,33], while for the isotropic
case 
 = 1, the full analytic NESS for arbitrary �,� has been
obtained in [29,30].

We look for a solution of Eq. (14) taking |ψk〉 in the form

|ψk〉 = 1√
2

(
e−i

ϕk
2

ei
ϕk
2

)
, (17)

which corresponds to a local spin polarization �lk =
(cos ϕk, sin ϕk,0). As detailed in Appendix B, such a solution
exists and, via Eq. (15), is also a solution of Eq. (9), provided
that ϕk+1 − ϕk = γ and 
 = cos(γ ). The constant γ is fixed
by requiring that Eq. (5) is also satisfied, which amounts to
meeting the boundary conditions ϕ1 = 0 and ϕN = �. We
conclude that for any twisting angle �, we have a factorized
state which satisfies the Zeno regime conditions (5) and (9)
only when the anisotropy assumes the values


(�,m) = cos[(� + 2πm)/(N − 1)], (18)

with m = 0,1, . . . ,N − 2. This solution represents an equidis-
tant twisting of the polarization vector in the XY plane along
the chain with winding number m; see Fig. 1 for an illustration.
For a fixed twisting angle � and in the limit N → ∞, the set
of the anisotropies (18) becomes dense in the interval [−1,1].
While the pure states that we obtain are, by construction, dark
states of the quantum jump operators, Lα|�〉 = 0, α = 1,2,
they are not eigenstates of the Hamiltonian, H |�〉 �= λ|�〉.

Since Eqs. (5) and (9) satisfied by our XY -twisting solution
are just necessary (but not sufficient) conditions for the NESS
in the Zeno limit to be pure, one needs an independent check of
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FIG. 1. Orientation, for a pure NESS in the Zeno regime, of the
lattice spins of a driven XXZ chain arranged along the Z axis with
boundary twisting in the XY plane for winding number m = 0,1,2
(left to right). The Z labels indicate the lattice points along the chain.
Parameters: N = 12, � = π/3.

the pureness of the found solution. A straightforward analytic
computation for small system sizes N � 7 reveals that indeed
the found NESS in the Zeno limit becomes pure exactly for
the anisotropies (18), with two exceptions, namely, � = 0 and

 = 0; see Appendix C. Moreover, we find that no other pure
states in the Zeno limit exist. Thus, all solutions of Eqs. (5)
and (8) for real-valued 
 are given by the factorized states
(13) with anisotropy (18).

In Fig. 2, we show the von Neumann entropy S =
− tr(ρNESS log2 ρNESS) versus the anisotropy 
, in the Zeno
limit and for finite �, obtained numerically for a system of
four sites. In the Zeno limit, the NESS becomes pure, i.e.,

1.0 0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

S

FIG. 2. The von Neumann entropy S = − tr(ρ log2 ρ) for ρ =
ρNESS vs the Z-axis anisotropy 
, in a driven XXZ chain with
boundary twisting in the XY plane. The dotted, dot-dashed, and
dashed lines correspond to finite dissipative couplings, � = 2,5,15,
respectively, while the thick line is the Zeno limit. Parameters: N = 4,
� = π/3.
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FIG. 3. Minimal dissipation strength �ε needed to reach a pure
state with accuracy ε = 10−3 vs system size N (dots, left-bottom
axes). The solid line is the fit �ε = 94.8N−1.36. Gap λ�ε

of the
Liouvillian spectrum at � = �ε vs system size N (squares, right-top
axes). The solid line is the fit λ�ε

= 9.42N−2.88. Parameters: � =
π/3, 
 = cos[�/(N − 1)].

S = 0, only at the points predicted by Eq. (18). For finite �,
the NESS is always mixed. However, at the points (18), and for
� finite but larger and larger, ρNESS approaches the respective
pure states arbitrarily closely.

To find out if the pure states found in the Zeno regime are
experimentally accessible, we have numerically calculated the
minimal dissipation strength �ε(m,N,�) required to reach a
pure NESS within a given tolerance ε, and the relaxation time
needed to establish the NESS, namely, the inverse gap λ(�ε)−1

of the spectrum of the Liouvillian L[·] = −i[H,·] + �D[·] at
� = �ε . In practice, we define �ε as the dissipation strength
at which the von Neumann entropy of the corresponding
NESS becomes equal to ε; see Appendix D for details.
Most remarkably, we find, on the base of a study of small-
size systems (N � 9), that the optimal (minimized among
all the winding numbers m [34]) �ε decreases with N ,
making the effective “Zeno regime” more and more accessible
as the system size increases; see Fig. 3. This somewhat
counterintuitive property follows from the fact that for longer
chains, it becomes easier to freeze the boundary spins, i.e., to
suppress their fluctuations, so that the effective Zeno regime is
reached earlier. In compensation, the corresponding relaxation
time increases with N ; see Fig. 3. However, this increase is
only polynomial, in accordance with the general observation
made in [35].

B. Boundary twisting in the X Z plane

Next we orient the boundary polarization in the XZ plane,
�lL = (sin θL,0, cos θL), �lR = (sin θR,0, cos θR). As before, we
first solve Eq. (14), now taking |ψk〉 in the form

|ψk〉 =
(

cos θk

2

sin θk

2

)
, (19)

which corresponds to a local spin polarization �lk =
(sin θk,0, cos θk), and then restrict the found solution to meet

X

Y
1

2

3

4

5

6

7

Z

X

Y
1

2

3

4

5

6

7

Z

FIG. 4. As in Fig. 1 for boundary twisting in the XZ plane and in
correspondence to solutions with decreasing (left) and increasing
(right) orbital angles. Parameters: N = 7, θL = π/2, θR = π/10
(left), θR = π − π/10 (right).

Eqs. (5) and (9). As detailed in Appendix E, we have a NESS
which can be of two kinds, corresponding to the orbital angles
θk monotonically decreasing or increasing in the interval
]0,π [ ; see Fig. 4. We never have a pure NESS with θk = 0,π

unless in the thermodynamic limit N → ∞. For finite-size
systems and given boundary polarizations in the XZ plane,
i.e., θL, θR , the NESS becomes pure in the Zeno limit and only
for the anisotropy value,


(θL,θR) = 1
2 [tan(θR/2)/ tan(θL/2)]1/(N−1)

+ 1
2 [tan(θL/2)/ tan(θR/2)]1/(N−1). (20)

In Fig. 5, we show the dependence of the von Neumann
entropy S = − tr(ρNESS log2 ρNESS), obtained by numerically

2 4 6 8 10
0.0000
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0.0010

0.0015

0.0020

S

FIG. 5. The von Neumann entropy S = − tr(ρ log2 ρ) for ρ =
ρNESS vs the Z-axis anisotropy 
, in a driven XXZ chain with
boundary twisting in the XZ plane. Parameters: N = 4, θL = π/2,
θR = arctan[1/(15

√
3)]. The NESS is pure for a single value of

the anisotropy, 
 = 2, given by Eq. (20). The dot-dashed and
dashed lines are obtained for finite dissipative couplings, � = 30,370,
respectively, while the thick line is the Zeno limit.
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evaluating the NESS in a system of four sites for different
values of the anisotropy. In the Zeno limit, the NESS becomes
pure, i.e., S = 0, at the point predicted by Eq. (20).

IV. CONCLUSIONS

To summarize, we have formulated a criterion for a
nonequilibrium steady state of an open quantum system to be
pure, in the Zeno limit, i.e., for asymptotically large dissipative
coupling. The criterion is specified by Eqs. (5) and (8). Zeno-
limit pure states are not reachable, in a strict mathematical
sense, for any finite dissipative coupling. However, by applying
a finite but large enough dissipative coupling, one can generate
pure NESSs with arbitrary precision.

Using our criterion, in the Zeno regime we find two families
of pure NESSs for the driven quantum XXZ spin chain with
boundary twisting in the XY or XZ plane, for values of the
Z-axis anisotropy given by Eqs. (18) and (20), respectively.
The criterion can be straightforwardly applied to generate pure
steady states in other nonequilibrium quantum systems.

Our approach opens an interesting perspective in dissipative
engineering of pure states. If, for given resources, preparing
an exact pure steady state at finite dissipative strength is
impossible (as it happens in our example of driven XXZ

chain), it may still be possible to generate a pure state in the
Zeno limit. In practice, this means that at finite dissipation,
a slightly mixed state will be produced, which, however,
becomes infinitesimally close to a pure state as the dissipation
is increased. The effective coupling needed to reach the
“Zeno regime” depends on the chosen measure of pureness
and the required precision and must be estimated in each
case separately. In the example of the driven XXZ model
considered here, the effective Zeno regime is reached at very
moderate dissipative couplings.
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APPENDIX A: INVERSE OF THE LINDBLAD DISSIPATOR
AND SECULAR CONDITIONS

The Lindblad operators L1 ≡ LL, L2 ≡ LR have the form

L1 = [
(cos θL cos ϕL)σx

1 + (cos θL sin ϕL)σy

1

− (sin θL)σ z
1 + iσ x

1 (− sin ϕL) + iσ
y

1 (cos ϕL)
]
/2,

L2 = [
(cos θR cos ϕR)σx

N + (cos θR sin ϕR)σy

N

− (sin θR)σ z
N + iσ x

N (− sin ϕR) + iσ
y

N (cos ϕR)
]
/2.

The dissipator, D = DL + DR , is the sum of the left and right
dissipators,

DL[·] = L1 · L
†
1 − 1

2 {L†
1L1,·},

DR[·] = L2 · L
†
2 − 1

2 {L†
2L2,·},

which are linear superoperators acting locally on a single qubit.
The eigenbasis {φα

R}4
α=1 of the eigenproblem DR[φα

R] = λαφα
R

is {
φα

R} = {2ρR,2ρR − I,− sin ϕRσx + cos ϕRσy,

cos θR(cos ϕRσx + sin ϕRσy) − sin θRσ z},
with the respective eigenvalues

{λα} = {
0,−1,− 1

2 ,− 1
2

}
.

Here, I is a 2 × 2 unit matrix, σx,σ y,σ z are the Pauli
matrices, and ρR is the targeted spin orientation at the right
boundary. Analogously, the eigenbasis and eigenvalues of the
eigenproblem DL[φβ

L] = μβφ
β

L are

{
φ

β

L

} = {2ρL,2ρL − I,− sin ϕLσx + cos ϕLσy,

cos θL(cos ϕLσx + sin ϕLσy) − sin θLσ z},

{μβ} = {
0,−1,− 1

2 ,− 1
2

}
,

where ρL is the targeted spin orientation at the left boundary.
Since the bases {φα

R} and {φβ

L} are complete, any matrix χ

acting in the appropriate Hilbert space can be expanded as

χ =
4∑

α=1

4∑
β=1

φ
β

L ⊗ χβα ⊗ φα
R. (A1)

Indeed, let us introduce two complementary bases,{
ψα

L,R

} = {I/2,ρL,R − I,(−sinϕL,Rσ x + cos ϕL,Rσ y)/2,

( cos θL,R(cos ϕL,Rσ x + sin ϕL,Rσ y)

− sin θL,Rσ z)/2},
trace-orthonormal to the {φα

L,R}, namely, tr(ψγ

Rφα
R) = δαγ and

tr(ψγ

Lφ
β

L) = δβγ . Then, the coefficients of the expansion (A1)
are given by

χβα = tr1,N

[(
ψ

β

L ⊗ I⊗N−1
)
F

(
I⊗N−1 ⊗ ψα

R

)]
,

where tr1,N denotes the trace taken with respect to the first-
and the last-spin spaces only. On the other hand, in terms of
the expansion (A1), the superoperator inverse D−1 = (DL +
DR)−1 is simply

(DL + DR)−1[χ ] =
∑
α,β

1

λα + μβ

φ
β

L ⊗ χβα ⊗ φα
R.

The above sum contains a singular term with α = β = 1
because λ1 + μ1 = 0. To eliminate this singularity, one must
require χ11 = tr1,N χ = 0, which is equivalent to the secular
condition

PkerD(χ ) = 0,

where P� denotes the orthogonal projector on �.
We conclude that the existence of ρ(k+1) = D−1[i[H,ρ(k)]]

at order k = 0,1,2, . . . is granted if and only if

tr1,N ([H,ρ(k)]) = 0. (A2)
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APPENDIX B: STATIONARY STATES WITH BOUNDARY
TWISTING IN THE XY PLANE

Assuming ρ(0) = |�〉〈�| in the factorized form

|�〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · |ψN 〉,
with

|ψk〉 = 1√
2

(
e−i

ϕk
2

ei
ϕk
2

)
, k = 1, . . . ,N,

we look for a solution of the generalized divergence condition

h(|ψk〉 ⊗ |ψk+1〉) = μk|ψk〉 ⊗ |ψk+1〉
+ |Uk〉 ⊗ |ψk+1〉 − |ψk〉 ⊗ |Uk〉, (B1)

where h is the local density of the HXXZ Hamiltonian,

h = 1
2 [σx ⊗ σx + σy ⊗ σy + 
(σ z ⊗ σ z − I )],

and |Uk〉 is a local unknown vector,

|Uk〉 =
(

uk

vk

)
.

Equation (B1) is an overdetermined system of equations for
μk,uk,vk . The system does not admit a solution unless the
Z-anisotropy parameter takes the value 
 = cos(ϕk+1 − ϕk),
which is possible only if the difference between any two
consecutive angles along the chain is kept constant, ϕk+1 −
ϕk = γ . In this case, we have

μk = 4 sin
ϕk+1 − ϕk

4
cos2 ϕk+1 − ϕk

4
,

uk = −i
√

2 sin
ϕk+1 − ϕk

4
cos

ϕk+1 − ϕk

2
e−i

ϕk+1+ϕk
4 ,

vk = i
√

2 sin
ϕk+1 − ϕk

4
cos

ϕk+1 − ϕk

2
ei

ϕk+1+ϕk
4 .

From the above solution, we compute

Rk = |Uk〉〈ψk| − |ψk〉〈Uk| = i

2
σ z sin(ϕk+1 − ϕk),

R̃k = |Uk−1〉〈ψk| − |ψk〉〈Uk−1| = i

2
σ z sin(ϕk − ϕk−1).

It is straightforward to check that the system of equations,

N−1∑
k=1

(μk − μ∗
k) = 0, (B2a)

Rk = R̃k, k = 1, . . . ,N, (B2b)

tr R1 = tr R̃N = 0, (B2c)

is then satisfied. Since Eq. (B2) has been demonstrated to be
equivalent to PkerD([H,|�〉〈�|]) = 0, we conclude that the
found solution meets the necessary condition of our Zeno
regime pure NESS criterion. To meet the other condition,
namely, D[|�〉〈�|] = 0, we just need to satisfy the boundary
conditions ϕ1 = 0 and ϕN = �. This is accomplished by
choosing

γ = γ (�,m) = (� + 2πm)/(N − 1),

with m = 0,1, . . . ,N − 2.

APPENDIX C: ANALYTIC CALCULATION OF THE ZENO
NESS FOR SMALL SIZES AND BOUNDARY TWISTING

IN THE XY PLANE

Solving the secular conditions (8) for k = 0,1, we compute
the analytic form of ρNESS(N,
,�) for small system sizes N

and calculate the pureness parameter,

f (N,
,�) = tr[ρNESS(N,
,�)2] − 1.

Note that the state ρNESS is pure if and only if f = 0. We obtain

f (3,
,�) = − [−T2(
) + cos(�)]2

2[2
2 + cos(�) + 1]2
,

f (4,
,�) = −[−T3(
) + cos(�)]2 P4

D4
,

f (5,
,�) = −[−T4(
) + cos(�)]2 P5

D5
,

...

where Tn(cos x) = cos(nx) are Chebyshev polynomials of the
first kind,

T2(x) = −1 + x2,

T3(x) = −3x + 4x3,

T5(x) = 1 − 8x2 + 8x4,

...

and, for instance,

P4 =16
6 + 56
4 + 4(10
2 + 3)
 cos(�)

+ 30
2 + 3 cos(2�) + 3,

Q4 =2[16
6 + 12
4 + 4(5
2 + 2)
 cos(�)

+ 14
2 + cos(2�) + 1]2.

Substituting 
 = cos γ into the above expressions for f ,
we obtain

f (3, cos γ,�) = − [cos(2γ ) − cos(�)]2

2[cos(2γ ) + cos(�) + 2]2
,

f (4, cos γ,�) = −[cos(3γ ) − cos(�)]2 P4

D4
,

f (5, cos γ,�) = −[cos(4γ ) − cos(�)]2 P5

D5
,

...

Extrapolating for arbitrary N , we get cos[(N − 1)γ ] = cos(�)
as a pure NESS condition, yielding

γ (�,m) = (� + 2πm)/(N − 1), m = 0,1, . . . ,N − 2,

as well as


(�,m) = cos[γ (�,m)] = cos

(
� + 2πm

N − 1

)
. (C1)

Independently, we verify that the anisotropy values given by
Eq. (C1) exhaust the solutions of the equations f (N,
,�) = 0
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for 
 being real. Points of nonanalyticity of the functions
f (N,
,�), e.g., f (3,0,π ) = 0/0, correspond to exceptions
and need to be analyzed separately.

Exception (a) � = 0. This case corresponds to a full
boundary alignment, i.e., to the absence of a boundary gradient.
The Zeno NESS is pure only for 
 = 1 for N even, which
corresponds to m = 0 in Eq. (C1), and 
 = ±1 for N odd,
corresponding to m = 0,(N − 1)/2 in Eq. (C1). The 
 = 1
solution represents a trivial factorized state with all spins
polarized in the X direction. This homogeneous state remains
a NESS for any finite value of �.

Exception (b) 
 = 0. Whenever among the critical
anisotropy values (C1) a free-fermion point 
 = 0 appears, the
respective NESS at 
 = 0 is not a pure state, but a fully mixed
state, apart from the boundaries, ρNESS = ρL ⊗ (I/2)⊗N−2 ⊗
ρR . The peculiarity of this exception results from the fact that
the Zeno limit � → ∞ and the free-fermion limit 
 → 0 do
not commute, with the reason being the existence of an extra
symmetry of the NESS at 
 → 0; see [32] for an elaborate
treatment of a � = π/2 case.

APPENDIX D: MINIMAL DISSIPATION STRENGTH
�ε(m,N,�)

For system sizes 3 � N � 9, we have numerically calcu-
lated ρNESS(�), namely the NESS of the Liouvillian −i[H,·] +
�D[·], where H is the Hamiltonian of the XXZ model and
D = DL + DR is the dissipator described in Appendix A,
for several finite dissipation strengths �. In the case of
boundary twisting in the XY plane, the von Neumann
entropy S(�) = − tr[ρNESS(�) log2 ρNESS(�)] corresponding
to the NESS obtained for m = 0 and � = π/3 is plotted in
Fig. 6 as a function of �. We see that for any N , S(�) decreases
monotonously to 0 by increasing �, approximately as �−2

for � large. As is natural, we define the minimal dissipation
strength �ε(m,N,�) required to reach a pure NESS within a

1 2 5 10 20 50
10 5

10 4

0.001

0.01

0.1

1

S

10 3

N 3

N 9

FIG. 6. The von Neumann entropy S(�) =
− tr[ρNESS(�) log2 ρNESS(�)] corresponding to the NESS calculated
for m = 0 and � = π/3 in the case of boundary twisting in the XY

plane and for system size N from 3 (top) to 9 (bottom). The dashed
line is the eye guide S ∼ �−2, while the horizontal solid line is the
tolerance value S = 10−3.

given tolerance ε as the unique solution of

S(�ε) = − tr[ρNESS(�ε) log2 ρNESS(�ε)] = ε,

which is plotted in Fig. 3 of the main text.

APPENDIX E: STATIONARY STATES WITH BOUNDARY
TWISTING IN THE X Z PLANE

Here, we solve Eq. (14) taking |ψk〉 in the form

|ψk〉 =
(

cos θk

2

sin θk

2

)
.

It is convenient to denote

κk = [tan(θk+1/2)]/[tan(θk/2)].

We find that if the Z anisotropy has the value 2
 = κk + κ−1
k ,

Eq. (14) has the solution

μk = −
(

cos θk+3θk+1

2 − cos 3 θk+θk+1

2

)2

sin θk sin θk+1
,

uk = cos θk+1

2 − cos θk

2

sin θk

2 sin θk+1

2

cos2 θk + θk+1

4
,

vk = sin θk+1

2 − sin θk

2

cos θk

2 cos θk+1

2

sin2 θk + θk+1

4
.

From the above solution, we compute

Rk = |Uk〉〈ψk| − |ψk〉〈Uk| = ibkσ
y,

R̃k = |Uk−1〉〈ψk| − |ψk〉〈Uk−1| = ib̃kσ
y,

with

bk = (cos θk+1 − cos θk)/ sin θk+1,

b̃k = (cos θk − cos θk−1)/ sin θk−1.

Conditions (15), i.e., PkerD([H,|�〉〈�|]) = 0, are thus sat-
isfied if κk + κ−1

k = 2
 and b̃k = bk for all k. The latter
condition after some algebra gives

κ−1
k + κk−1 = κk + κ−1

k−1. (E1)

Notice that since κk are real numbers, |
| > 1. There are two
independent solutions of Eq. (E1), namely, κk = z±, where
z± = 
 ± √


2 − 1 are the roots of the quadratic equation z +
1/z = 
. To meet the condition D[|�〉〈�|] = 0, we require
θ1 = θL and θN = θR .

The solutions with κk = z± describe orbital angles θk

monotonically decreasing or increasing in the interval ]0,π [ .
Note that we never have a pure NESS with θk = 0,π , unless
in the thermodynamic limit N → ∞. In conclusion, for
finite-size systems and given boundary polarizations in the XZ

plane, we have one NESS in correspondence to the anisotropy
value,


(θL,θR) = 1
2 [tan(θR/2)/ tan(θL/2)]

1
N−1

+ 1
2 [tan(θL/2)/ tan(θR/2)]

1
N−1 . (E2)
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